
www.free-ebooks-download.org

LINQ Quickly

A practical guide to programming Language
Integrated Query with C#

N Satheesh Kumar

 BIRMINGHAM - MUMBAI

LINQ Quickly

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2007

Production Reference: 1161107

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-54-7

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

N Satheesh Kumar

Reviewer

Granville Barnett

Senior Acquisition Editor

Douglas Paterson

Development Editor

Nikhil Bangera

Technical Editor

Sarvesh Shanbhag

Editorial Manager

Dipali Chittar

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Hemangini Bari

Proofreader

Cathy Cumberlidge

Production Coordinators

Aparna Bhagat

Shantanu Zagade

Cover Designer

Aparna Bhagat

About the Author

N Satheesh Kumar has a Bachelor's Degree in Computer Science Engineering and
has around eleven years of experience in software development lifecycle, project and
program management. He started his career developing software applications using
Borland software products in a company based in India, and then moved to the
United Arab Emirates where he continued developing custom application software
using Borland Delphi, and customizing Great Plain Dynamics (now known as
Microsoft Dynamics) for an automobile company. He moved back to India and spent
three years in design and developing application software using Microsoft products
for a top multi national company, and then spent a couple of years in project
management and program management activities. Now he works as a Technical
Architect for a top retail company based in the United States. He works with the
latest Microsoft technologies and has published many articles on LINQ and other
features of .NET.

 About the Reviewer

Granville Barnett's interest in programming has spanned many languages; his
talents have been applied most notably at Microsoft. Granville has worked with
LINQ since the LINQ May 2006 CTP and has since then advised some of the biggest
companies in the world on the successful application of LINQ. Granville has a very
active interest in data structures and algorithms, and compiler theory, design and
implementation.

He would like to thank all at Microsoft, in particular the members of the UK
Application Development Consulting team.

As an author, Granville has written several magazine and web articles on LINQ.

He can be reached through his website at http://gbarnett.org.

Table of Contents
Preface 1
Chapter 1: Overview 5

LINQ Architecture 5
Integration with SQL 7
Integration with XML 7
Support for C# 3.0 Language Features 8

Anonymous Types 9
Object Initializers 11

Collection Initializers 12
Partial Methods 13

Implicitly Typed Local Variables 14
Extensions 15
Expressions 16

Lambda Expressions 16
Query Expressions 18
Expression Trees 22

Summary 24
Chapter 2: LINQ to Objects 25

Array of Integers 25
Collection of Objects 27
Reading from Strings 29
Reading from Text Files 30
Summary 32

Chapter 3: LINQ to XML 33
Features 33

Classes and Hierarchy 34
XElement Class 36
XAttribute Class 36
XDocument Class 36
Other Classes 36

Table of Contents

[ii]

LINQ to XML with Other XML Technologies 38
LINQ with XmlReader 40
LINQ with XSLT 41

LINQ with MSXML 41
Functional Construction 41

XML Names 44
Loading and Traversing XML 45

Loading XML 46
Traversing XML 46

Data Manipulation 50
Inserting or Adding Elements to XML 50
Inserting or Adding XML Attributes 54
Deleting XML 55
Updating XML 56
Deleting XML Attributes 56
Updating XML Attributes 57

Outputting and Streaming XML 57
Streaming XML 58

Querying XML 59
Query Operators 59
Queries 60
Ancestors and Descendants 63
XML Transformation 64
Dictionaries 65

Convert Dictionary to XML 65
Create Dictionary from XML 66

Writing XML as Text Files and CSV Files 67
Reading from CSV Files 69
LINQ to XML Events 71
XML Literals and Embedded Expressions in Visual Basic 73
Summary 75

Chapter 4: LINQ to SQL 77
Working with Databases Using DataContext 77
Entity Classes 78

Attributes 81
Database Attribute 81
Table Attribute 82
Column Attribute 82
Association Attribute (Foreign Keys) 84
Relationships 85
Function Attribute 87
Parameter Attribute 88
Inheritance Mapping Attribute 88

Table of Contents

[iii]

Creating and Deleting Databases 89
DataContext Methods 90
Data Manipulation 93
LINQ to SQL Queries 96

Identifying Objects 99
Queries with Multiple Entities 100

Remote Queries and Local Queries 100
Deferred Loading 101
Immediate Loading 103
Projections 105

Constructing XML 106
Joins 107
Raw SQL Query 109
Query Result 109
Stored Procedures 110

User-Defined Functions 116
Class Generator Tool 117

Transactions 121
Handling Concurrency Conflicts 122

Object Relational Designer (O/R Designer) 123
Summary 140

Chapter 5: LINQ over DataSet 141
Loading Data into DataSets 142
Querying Datasets 144
Sequence Operator 146
Querying Typed DataSets 147
DataSet Query Operators 148

CopyToDataTable 149
LoadDataRow 149
Intersect 150
Union 150
Except 151
Field<T> 151
SetField<T> 152

Projection 152
Join 153
SequenceEqual 154
Skip 154
Distinct 154
Summary 154

Table of Contents

[iv]

Chapter 6: LINQ to XSD 155
Un-typed XML 157
Creating Typed XML using Visual Studio 159

Object Construction 163
Load Method 165
Parse Method 165
Save Method 166
Clone Method 166
Default Values 167

Customization of XML Objects 167
Mapping Time Customization 167
Compile Time Customization 168
Post Compile Customization 169

Using LINQ to XSD at Command Line 169
Summary 169

Chapter 7: Standard Query Operators 171
Restriction Operators 173

Where 173
OfType 174

Projection Operators 176
Select 176
SelectMany 177

Join Operators 179
Join 179
GroupJoin 181

Concatenation Operator 183
Concat 183

Ordering Operators 183
Set Operators 186

Distinct 186
Except 187
Intersect 188
Union 189

Grouping Operators 190
GroupBy 190

ToLookup 191
Conversion Operators 191

AsEnumerable 191
Cast 192
OfType 193
ToArray 193

Table of Contents

[v]

ToDictionary 194
ToList 195
ToLookup 196

Equality Operators 197
SequenceEqual 197

Generation Operators 198
Empty 198
Range 198
Repeat 198

Quantifiers 199
All 199
Any 199
Contains 200

Aggregation Operators 201
Average 201
Count 202
LongCount 202
Min 202
Max 203
Sum 204
Aggregate 204

Partitioning Operators 205
Take 205
Skip 206
TakeWhile 207
SkipWhile 207
TakeWhile 208

Element Operators 209
DefaultIfEmpty 209
ElementAt 210
ElementAtOrDefault 210
First 211
FirstOrDefault 212
Last 212
LastOrDefault 213
Single 214
SingleOrDefault 215

List of Query Operators 216
Query Operator Equivalent Expressions 219

Summary 219

Appendix A: Building an ASP.NET Application 221
Appendix B: LINQ with Outlook 229
Index 233

Preface
Language Integrated Query (LINQ) is a new feature in Visual Studio 2008 that
extends its query capabilities using C# and Visual Basic. Visual Studio 2008 comes
with LINQ provider assemblies that enable the use of LINQ with data sources,
such as in-memory collections, SQL relational databases, ADO.NET Datasets, XML
documents, etc. In Visual Studio 2008, Visual C# and Visual Basic are the languages
that implement the LINQ language extensions. LINQ language extensions use the
new standard query operators, API, which is the query language for any collection
that implements IEnumerable<T>.

This book introduces the reader to the basic concepts of LINQ, and takes them
through using LINQ with an example-driven approach.

What This Book Covers
Chapter 1 looks at the overall features of LINQ, and gives an overview of different
operators provided by LINQ to operate on objects, XML, relational databases, etc.

Chapter 2 examines LINQ to Objects, which means that you can use LINQ to query
objects in a collection. Using this feature, you can access in-memory data structures
using LINQ. You can directly query collections, and filter out required values
without using powerful filtering, ordering, and grouping capabilities.

Chapter 3 looks at LINQ to XML. It is a new in-memory XML programming API
to work against XML data. There are different ways of creating XML trees in .NET.
LINQ to XML is the new method of creating and manipulating XML data through
.NET. The properties and methods of LINQ help in navigating and manipulating
XML elements and attributes.

Preface

[2]

Chapter 4, which covers LINQ to SQL, takes care of translating LINQ expressions
into equivalent T-SQL, passing it onto the database for execution, and then returning
the results back to the calling application. It reduces programming time and comes
with two different design-time tools, which are used for converting relational
database objects into object definitions. It also has the ability to create databases, and
database objects.

Chapter 5 examines LINQ to DataSets. An ADO.NET DataSet provides a
disconnected data source environment for applications. It can be used with multiple
data sources. A DataSet has the flexibility of handling data locally in cache memory
where the application resides. The application can continue working with a DataSet
when it is disconnected from the source and is not dependent on the availability
of the data source. The DataSet maintains information about the changes made to
data so that updates can be tracked and sent back to the database as soon as the data
source is available or reconnected.

Chapter 6 covers LINQ to XSD. It enhances XML programming by adding the feature
of typed views on un-typed XML trees. LINQ to XSD gives a better programming
environment by providing the object models generated from XML schemas. This is
called typed XML programming.

Chapter 7 looks at standard query operators provided by LINQ, and how you can
use some of them against different data sources.

Appendix A takes you through building a simple ASP.NET application using LINQ.

Appendix B tells you how to access Outlook objects using LINQ.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "LINQ
queries work on sources which are IEnumerable<>. The new ADO.NET provides
a feature for getting the rows enumerated by applying AsEnumerable() on
DataTables."

A block of code will be set as follows:

 public class Icecream
 {
 public string Name { get; set; }
 public double Price { get; set; }
 }

Preface

[3]

New terms and important words are introduced in a bold-type font.

Words that you see on the screen, in menus or dialog boxes, for example, appear in
our text like this: "You can see DataTables listed in the DataSet Visualizer."

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or disliked. Reader feedback is important for us to develop
titles that you get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
www.packtpub.com/authors.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Overview
When we say Language Integrated Query, we might think that it is already
integrated into the programming language, just as we write SQL queries in our
application. So what is the difference or additional features that we are going to get
in LINQ? How is LINQ going to make our programming life easier? Also, I am sure
that we all want to know how the new feature, LINQ, is making use of the other new
features of C# 3.0. We'll see many of those in this book.

LINQ Architecture
Language Integrated Query is a new feature in Visual Studio 2008 that extends
the query capabilities, using C# and Visual Basic. Visual Studio 2008 comes with
LINQ provider assemblies that enable the use of Language Integrated Queries with
different data sources such as in-memory collections, SQL relational database,
ADO.NET Datasets, XML documents and other data sources.

In Visual Studio 2008, Visual C# and Visual Basic are the languages that implement
the LINQ language extensions. The LINQ language extensions use the new
Standard Query Operators API, which is the query language for any collection that
implements IEnumerable<T>. It means that all collections and arrays can be queried
using LINQ. The collections classes simply needs to implement IEnumerable<T>, to
enable it for LINQ to query the collections.

Overview

[6]

The following figure shows the architecture of LINQ, which can query different data
sources using different programming languages:

ObjectsRelational Data

Data Sources

XML Data

ADO.NET

Other Sources
of Data

LINQ to Datasets LINQ to SQL LINQ to Entities

Language Integrated Query

LINQ to Objects LINQ to XML

.NET languages supporting LINQ

LINQ to Objects Refers to the use of LINQ queries to access in-memory
data structures. We can query any type that supports
IEnumerable(Of T) (Visual Basic) or IEnumerable<T> (C#).

LINQ to SQL LINQ to SQL is used for managing the relational data as objects.
It is part of the ADO.NET family of technologies. LINQ to SQL
translates the Language Integrated Queries in the object model
to SQL and sends them to the database for execution. When the
database returns the result, LINQ to SQL translates them back to
objects that we can work with. LINQ to SQL also supports stored
procedures and user-defined functions in the database.

LINQ to Datasets LINQ to Datasets makes it easier to query the data cached in
Datasets. A Dataset is disconnected, consolidated data from
different data sources.

LINQ to Entities The Entity Data Model is a conceptual data model that can be
used to model the data so that applications can interact with
data as entities or objects. Through the Entity Data Model,
ADO.NET exposes the entities as objects.

LINQ to XML LINQ to XML provides the in-memory document modification
capabilities of the Document Object Model and supports LINQ
queries. Using LINQ to XML, we can query, modify, navigate,
and save the changes of an XML document. It enables us to write
queries to navigate and retrieve a collection of elements and
attributes. It is similar to XPath and XQuery.

Chapter 1

[7]

Integration with SQL
LINQ to SQL supports LINQ queries against a relational database for data retrieval
and manipulation. Currently in software development, we use Relational data
for most of the applications, and we depend on database queries and objects, in
some way or the other. The applications use APIs to process or get details from
the database by passing queries as strings, or calling database objects by passing
parameters. So what is the purpose of LINQ here? Presently scenario, we see a lot of
applications, especially multi-tier applications, having a separate data access layer
and a business logic layer. If we take the business logic layer, we must have lots of
entities or objects to hold the information. These objects represent the database table
rows in the form of objects. We use object references similar to primary keys in the
database to identify a set of information.

To get data from a relational database to an application, the programmer ends
up creating two different types of objects, but in different formats. The other
disadvantage is that the programmer has to pass relational database queries as text
strings from the application, then get it executed from the relational database, and
pass on the information to the application objects or entity objects. We will not be
able to validate the query, which is passed as text strings, until it gets compiled and
executed at the database server. We cannot make use of IntelliSense or the debugging
feature of the development environment to validate
the queries.

Using LINQ to SQL, we can manage relational data as objects at run time using the
querying facility. The LINQ queries get translated to SQL queries for the database to
execute the queries, and the results are again translated to objects for the application
to understand. LINQ uses the same connection and transaction features of current
.NET framework for connecting to the database and manipulating the data under
transaction. We can also make use of the IntelliSense feature for validating LINQ
queries. To represent relational data, we need to create classes for the entities. For
creating the entity classes, we need to specify some custom attributes to the class
declaration. This is to make the entity objects have similar properties as that of the
database objects.

Integration with XML
LINQ to XML is a new concept that supports queries against XML data. This is
similar to the LINQ queries with relational data, but here the source of data is XML.
Using LINQ to XML, we can manipulate XML documents and elements, create or
save XML documents, and traverse through the XML tree.

Overview

[8]

When we use XML, we will be talking about elements and attributes. XML trees
are composed of only attributes and elements. If we look at W3C DOM, the XML
document object contains the whole XML tree in it. All elements and attributes are
created within the context of the XML document. For example, the .NET 2.0 way
of creating the XML element, Icecream using XML Document object model is
shown below:

XmlDocument xdoc = new XmlDocument();
XmlElement Icecream = xdoc.CreateElement("Icecream");

This is an unnecessary dependency that we have to follow.

.NET 3.0 avoids creating XML document objects and we can directly create elements
and attributes. For example, the following code is used for creating the Icecream
element using XElement.

XElement Icecream = new XElement("Icreceram", "Chocolate Fudge");

The XML document feature is still supported for adding information like processing
instructions and comments to XML.

LINQ to XML has better features than DOM for handling names and namespaces,
fragments, loading XML, inner XML, annotations, and schema information.

Functional construction is a new approach taken by LINQ to XML for constructing
XML elements. Using functional construction, we can create the entire XML tree
in a single statement. XElement is the main class used for the construction. It has
different constructors by which we can construct an XML tree. We will see this in
detail later when we discuss functional construction. This is one of the important
features of LINQ to XML.

LINQ to XML has a set of classes under its hierarchy structure for constructing
and manipulating XML data. XElement, XNode, XName, XContainer, XAttribute
and XText are some of the classes in the hierarchy. XElement is the main class for
building and manipulating the XML tree.

Support for C# 3.0 Language Features
There are various features in C# 3.0 which support LINQ. They are explained
in detail.

Chapter 1

[9]

Anonymous Types
Anonymous types are used to define strong types without defining the full class.
Anonymous types are strongly typed and checked at compile time. This type is
widely used by LINQ, because LINQ returns dynamically-shaped data, whose
type is determined by the LINQ query. In LINQ, the types are defined in
situations where the types are needed temporarily, or just once. For example, given
an ice-cream which has properties like name, flavor, ingredients, price, and fat
content, we might sometimes only need the name of the ice-cream and the price.
Anonymous type helps us to define a dynamic type containing only the name and
price of the Icecream object. This is also called shaping the result of the data being
queried into a different structure or format than the original data source.

For example, following is a class that is defined for an application, and objects
created and assigned some data to it.

 public class Icecream
 {
 public string name;
 public string ingredients;
 public string totalFat;
 public string cholesterol;
 public string totalCarbohydrates;
 public string protein;
 public double price;
 }

 List<Icecream> icecreamsList = new List<Icecream>
 {
 new Icecream
 {
 name="Chocolate Fudge Icecream",
 ingredients="cream, milk, mono and diglycerides...",
 totalFat="20g",
 cholesterol="50mg",
 totalCarbohydrates="35g",
 protein="4g",
 price=10.5
 },
 new Icecream
 {
 name="Vanilla Icecream",
 ingredients="vanilla extract, guar gum, cream...",

Overview

[10]

 totalFat="16g",
 cholesterol="65mg",
 totalCarbohydrates="26g",
 protein="4g", price=9.80
 },
 new Icecream
 {
 name="Banana Split Icecream",
 ingredients="Banana, guar gum, cream...",
 totalFat="13g",
 cholesterol="58mg",
 totalCarbohydrates="24g", protein="6g",
 price=7.5
 }
 };

I have created a list, containing details of different ice-creams. Now I can use the
projection or transformation capabilities of LINQ, and create structure and give a
custom shape to something other than the original Icecream object. I don't have to
explicitly define a new class for the new custom shaped structure. Instead, I can use
the anonymous type feature to implicitly define a new type with just two properties
to represent my custom shaped data.

 var IcecreamsWithLessPrice =
 from ice in icecreamsList
 where ice.Price < 10
 select new
 {
 Name = ice.Name,
 Price = ice.Price
 };
 Console.WriteLine("Ice Creams with price less than 10:");
 foreach (var icecream in IcecreamsWithLessPrice)
 {
 Console.WriteLine("{0} is {1}", icecream.Name,
 icecream.Price);
 }

In this code, I am declaring an anonymous type within the CIT clause in my LINQ
query. The anonymous type has only two properties, Name and Price, whose
property names and values are inferred from the shape of the query.

In the next step, I am referring to the IEnumerable<T> collection of this anonymous
type returned by the query and loop over them and extract the details. This feature
gives it a dynamic language-like flexibility.

Chapter 1

[11]

Object Initializers
Object initializers lets you assign values to the properties of an objects at the time
of creating the object. Normally in .NET 1.1 and 2.0, we define the class with
properties, then create the instance, and then define the values for properties either
in constructor or in the function which is using the object. Here, in C# 3.0 we can
define the values at the time of creation itself. Consider the following example
of class Icecream with two auto-implemented properties. Auto-implemented
properties are the properties without a local variable to hold the property value.

 public class Icecream
 {
 public string Name { get; set; }
 public double Price { get; set; }
 }

Now when I create the new object of type Icecream, I can directly assign
values directly.

Icecream ice = new Icecream { Name = "Chocolate Fudge
 Icecream", Price = 11.5 };

This is not only for the auto-implemented properties, but I can also assign a value
to any accessible field of the class. The following example has a field named
Cholestrol added to it.

 public class Icecream
 {
 public string Name { get; set; }
 public double Price { get; set; }
 public string Cholestrol;
 }

Now I can assign values to this new field added to the class at the time of creating
the object itself.

LINQ query expressions make use of these object initializers for initializing
anonymous types. In the Anonymous Types section, as discussed previously, we have
a select query which creates an anonymous type with two properties. The values
are also assigned using object initializers.

 var IcecreamsWithLessPrice =
 from ice in icecreamsList
 where ice.Price < 10
 select new
 {
 Name = ice.Name,
 Price = ice.Price
 };

Overview

[12]

Collection Initializers
Collection initializers use object initializers to initialize their object collection. By
using a collection initializer, we do not have to initialize objects by having multiple
calls. For example, in the Anonymous Types section a little earlier, we created a list
named icecreamsList which is a collection of Icecreams. All Icecream objects
added to the collection are initialized using the collection initializer, as follows:

List<Icecream> icecreamsList = new List<Icecream>
{
 new Icecream
 {
 Name="Chocolate Fudge Icecream",
 Ingredients="cream, milk, mono and diglycerides...",
 Cholesterol="50mg",
 Protein="4g",
 TotalCarbohydrates="35g",
 TotalFat="20g",
 Price=10.5
 },
 new Icecream
 {
 Name="Vanilla Icecream",
 Ingredients="vanilla extract, guar gum, cream...",
 Cholesterol="65mg",
 Protein="4g",
 TotalCarbohydrates="26g",
 TotalFat="16g",
 Price=9.80
 },
 new Icecream
 {
 Name="Banana Split Icecream",
 Ingredients="Banana, guar gum, cream...",
 Cholesterol="58mg",
 Protein="6g",
 TotalCarbohydrates="24g",
 TotalFat="13g",
 Price=7.5
 }
};

Chapter 1

[13]

Partial Methods
Microsoft introduced the concept of partial classes in .NET 2.0, which allows
multiple developers to work on the same class file at the same time. This feature
provides a way to split the definition of a class in multiple files. All these files are
combined at the time of compilation. This is very helpful in adding new code or
new functionality to the class without disturbing the existing class files; partial is a
keyword modifier used for splitting the class.

Partial method is a new feature introduced in .NET 3.0 which is similar to partial
classes. Partial methods are a part of partial classes, where the implementer of one
part of the class just defines the method, and the other implementer can implement
the method. It is not necessary that the second implementer of the class has to
implement the method. If the method is not implemented, the compiler removes
the method signature and all the calls to this method. This helps the developer to
customize the code with his own implementation. It is safe to declare the partial
methods without worrying about the implementation. The compiler will take care
of removing all the calls to the method. Following is an example for defining and
implementing partial methods:

 // Defining UpdateItemsList method in Items1.cs file
 partial void UpdateItemsList();
 //Implemeting UpdateItemsList method in Items2.cs file
 partial void UpdateItemsList()
 {
 // The method Implementation goes here
 }

There are some constraints in using partial methods. They are as follows:

1. Method declaration must begin with the keyword partial and the method
should return void.

2. Methods can have ref parameters, but not out parameters.
3. Methods cannot be virtual, as they are private implicitly.
4. Partial methods cannot be extern as the presence of a body determines

whether they are defining or implementing.
5. We cannot make a delegate to a partial method.

Overview

[14]

Implicitly Typed Local Variables
Implicitly typing variables is a new feature that makes your job easier. The compiler
takes care of identifying the type of variables from the value used for initializing the
variables. LINQ also make use of this new feature for identifying the type of data
that results from the LINQ queries. The programmer need not specify the return
type of the querie's result. We normally declare variables by specifying the type of
the variable. For example, to declare variables of type integer, string, and array of
integers we would be writing it as:

int iCount = 0;
string sName = "Hi";
int[] iIntegers = new int[] {1,2,3,4,5,6,7,8,9};

The equivalent of the above declarations using implicit typing would be as follows:

var iCount = 0;
var sName = "Hi";
var iIntegers = new int[] {1,2,3,4,5,6,7,8,9};

We have used the keyword var and a value for initializing the variable. We have not
used any type for the variable. In this case, the compiler takes care of defining the
variable type from the value assigned to it. The variable iCount is considered as an
integer as the value assigned to it is an integer. So for any variable to be an implicitly
typed variable, it should have an initializing value assigned to it, and it cannot have
null value assigned to it. As the type is defined by the initial value, the initial value
cannot be changed over the lifetime of the program. If we do so, we will end up
getting an error while compiling.

We can also use implicit typing for declaration of collections. This is very useful
when instantiating complex generic types. For example, the normal way of declaring
a collection which holds item numbers is given as follows:

List<int> itemNumbers = new List<int>();
itemNumbers.Add(100005);
itemNumbers.Add(100237);
itemNumbers.Add(310078);

The equivalent for the above declaration, using implicit typing, would be as follows:

var itemNumbers = new List<int>();
itemNumbers.Add(100005);
itemNumbers.Add(100237);
itemNumbers.Add(310078);

Chapter 1

[15]

In all the previous cases, the implicit type declaration has some restrictions and
limitations:

We should use only the var keyword with an initializer for the declaration.
The intializer cannot be a null value.
The initializer cannot be an object or collection by itself.

Once initialized, the type cannot be changed throughout the program. Even though
implicit typing gives the advantage of not specifying the type of the variable, it
is better practice to use typed variable in order to clearly know the type of the
variable declared.

Extensions
Extension methods are static methods that can be invoked using instance method
syntax. Extension methods are declared using this keyword as a modifier on the
first parameter of the method. Extension methods can only be declared in static
classes. The following is an example of a static class that has the extension method
CountCharacters to count the number of characters in the parameter string:

namespace Newfeatures.Samples
{
 public static class Example
 {
 public static int CountCharacters(string str)
 {
 var iCount = str.Length;
 return iCount ;
 }
 }
}

To test the above extension methods, include the following code into the main
method of the program. Now run the application and test it.

static void Main(string[] args)
{
 string[] strings = new string[]
 {"Name", "Chocolate Fudge Icecream" };
 foreach (string value in strings)
 Console.WriteLine("{0} becomes: {1}",value,
 Example.CountCharacters(value));
}

•

•

•

Overview

[16]

In order to define the previous method to be an extension method that can be
invoked using the instance method syntax, include the keyword this as the modifier
for the first parameter:

public static int CountCharacters(this string str)

In the Main method, change the invocation of CountCharacters to use the instance
method syntax making CountCharacters appear as a method of the string class,
as shown:

static void Main(string[] args)
{
 string[] strings = new string[]
 { "Name", "Chocolate Fudge Icecream"};
 foreach (string value in strings)
 Console.WriteLine("{0} becomes: {1}",
 value, value.CountCharacters());
 }

Extension methods can also be added to generic types, such as List<T> and
Dictionary<T>, as in the case of normal types.

public static List<T> result<T>(this List<T> firstParameter, List<T>
secondParameter)
{
 var list = new List<T>(firstParameter);
 // required coding
 return list;
}

It is recommended that we use extension methods only when it is really required.
It is better to use inheritance, and create a new type by deriving the existing type
wherever it is possible. An extension method will not be called if it has the same
signature as a method defined in the type. Extension methods are defined at the
namespace level, so we should avoid using it when we create class libraries.

Expressions
The various types of expressions used in LINQ are explained below.

Lambda Expressions
Anonymous methods in C# 2.0 help us to avoid declaring a named method by
writing methods inline with code. This can be used in places where we need
the functionality only within the parent method. We cannot reuse the anonymous

Chapter 1

[17]

method code in the other methods, as it is available within the parent method.
Following is an example for finding a particular string from a list of strings:

class Program
 {
 static void Main(string[] args)
 {
 List<string> icecreamList = new List<string>();
 icecreamList.Add("Chocolate Fudge Icecream");
 icecreamList.Add("Vanilla Icecream");
 icecreamList.Add("Banana Split Icecream");
 icecreamList.Add("Rum Raisin Icecream");
 string vanilla = icecreamList.Find(FindVanilla);
 Console.WriteLine(vanilla);
 }
 public static bool FindVanilla(string icecream)
 {
 return icecream.Equals("Vanilla Icecream");
 }
 }

The equivalent anonymous method for the above code would be as follows:

 List<string> icecreamList1 = new List<string>();
 icecreamList1.Add("Chocolate Fudge Icecream");
 icecreamList1.Add("Vanilla Icecream");
 icecreamList1.Add("Banana Split Icecream");
 icecreamList1.Add("Rum Raisin Icecream");
 string vanilla1 = icecreamList1.Find(delegate(string icecream)
 {
 return icecream.Equals("Vanilla Icecream");
 });
 Console.WriteLine(vanilla1);

In the previous example, a method is defined inline and we do not have any external
method to find the string.

Now C# 3.0 has a new feature called lambda expression which helps us to avoid the
anonymous methods itself. For example, here is the equivalent method with lambda
expression for the previous anonymous method.

 // Using Lambda Expressions
 List<string> icecreamList2 = new List<string>();
 icecreamList2.Add("Chocolate Fudge Icecream");
 icecreamList2.Add("Vanilla Icecream");
 icecreamList2.Add("Banana Split Icecream");

Overview

[18]

 icecreamList2.Add("Rum Raisin Icecream");
 string vanilla2 = icecreamList2.Find((string icecreamname)
 =>icecreamname.Equals("Vanilla Icecream"));
 Console.WriteLine(vanilla2);

A lambda expression is the lambda with the expression on the right side.

(input parameters separated by commas) => expression

We can also specify the types of the input paramaters; for example, (int x, int y)
=> x > y.

There is another type called statement lambda that consists of a number of
statements enclosed in curly braces.

The following is an example of lambda expression with an extension method. It
uses the where extension method to get the total number of integers, and the list of
integers (which are less than 10) in the array of integers.

var numbers = new int[] { 1, 10, 20, 30, 40, 5, 8, 2, 9};
var total = numbers.Where(x => x < 10);
Console.WriteLine("Numbers less than ten: " + total.Count());
foreach(var val in total)
Console.WriteLine(val);

LINQ provides the ability to treat expressions as data at runtime using the new
type Expression<T> which represents an expression tree. This is an in-memory
representation of the lambda expression. Using this, we can modify the lambda
expressions through code. By getting these expressions as data, we can also build the
query statements at runtime. System.Expressions is the namespace used for this.
There are some limitations to the lambdas. They are as follows:

It must contain the same number of parameters as the delegate type.
Each input parameter in the lambda must be implicitly convertible to its
corresponding delegate parameter.
The return value of the lambda must be convertible to the delegate's
return type.

Query Expressions
Currently, we are actually working with two different languages when we retrieve
data from the database and work with our front-end applications. One would be for
front-end application development and the other is the SQL for retrieving data from
the database. These SQL queries are embedded into the application code as strings,
so we don't get the facility of the compiler checking the query statements in quotes.

•

•

•

Chapter 1

[19]

In C# 3.0, we have LINQ which gives the benefit of strong type checking. Also, we
don't need to depend on SQL queries and writing it within quotes. LINQ is similar to
relational database queries. Query expressions provide the language integrated syntax
for queries.

The query expression begins with a from clause and ends with a select or a group
clause. The from clause can be followed by many from, let, or where clauses.The
from clause is a generator, the let clause is for computing the value, the where
clause is for filtering the result and select or group specifies the shape of the result.
There are other operators like orderby. For example, the query below is to select
ice-creams with price less than 10.

from Icecream Ice in Icecreams
where Ice.Price <= 10.0
select Ice

Following are the syntax for the query expressions:

query-expression:
 from-clause query-body
from-clause:
 from typeopt identifier in expression join-clausesopt

join-clauses:
 join-clause
 join-clauses join-clause
join-clause:
 join typeopt identifier in expression on expression equals expression
 join typeopt identifier in expression on expression equals expression
 into identifier
query-body:
 from-let-where-clausesopt orderby-clauseopt select-or-group-clause query-
 continuationopt

from-let-where-clauses:
 from-let-where-clause
 from-let-where-clauses from-let-where-clause
from-let-where-clause:
 from-clause
 let-clause
 where-clause
let-clause:
 let identifier = expression

Overview

[20]

where-clause:
 where boolean-expression
orderby-clause:
 orderby orderings
orderings:
 ordering
 orderings , ordering
ordering:
 expression ordering-directionopt

ordering-direction:
 ascending
 descending
select-or-group-clause:
 select-clause
 group-clause
select-clause:
 select expression
group-clause:
 group expression by expression
query-continuation:
 into identifier join-clausesopt query-body

C# 3.0 actually translates the query expressions into invocation of methods like
where, select, orderby, groupby, thenby, selectmany, join, cast, groupjoin
that have their own signatures and result types. These methods implement the actual
query for execution. The translation happens as a repeated process on the query
expressions, until no further translation is possible. For example, the
following query:

from Icecream Ice in Icecreams
where Ice.Cholestrol == "2mg"
select Ice

...is first translated into:

from Icecream Ice in Icecreams.Cast<Icecream>()
where Ice.Cholestrol == "2mg"
select Ice

...the final translation would be as follows:

Icecreams.Cast<Icecream>().Where(Ice => Ice.Cholestrol == "2mg")

Chapter 1

[21]

The following query:

from Ice in Icecreams
group Ice.Name by Ice.Cholestrol

...is translated into the following:

Icecreams.GroupBy(Ice => Ice.Cholestrol, Ice =>Ice.Name

Let us see how we can make use of these queries with in-memory collections. The
System.Linq namespace has all the standard query operators. We have to use this
namespace for writing queries. Create a class, Icecream as follows:

public class Icecream
 {
 public string name;
 public string ingredients;
 public string totalFat;
 public string cholesterol;
 public string totalCarbohydrates;
 public string protein;
 public double price;
 }

Using the above Icecream class, create list of ice-creams and assign that to a list
variable. We will see how we can easily retrieve information from this list
using queries.

 List<Icecream> icecreamsList = new List<Icecream>
 {
 new Icecream("Chocolate Fudge Icecream", "cream, milk, mono and
 diglycerides...", "20g", "50mg", "35g", "4g", 10.5),
 new Icecream ("Vanilla Icecream", "vanilla extract, guar gum,
 ream...", "16g", "65mg", "26g", "4g", 9.80),
 new Icecream ("Banana Split Icecream", "Banana, guar gum,
 cream...", "13g", "58mg", "24g", "6g", 7.5)
 };

The following query will return the name and price of the ice-creams with a price
less than or equal to 10. In this query we have not specified any type for variables; it's
all implicit. Even if we want to specify the type, it is not easy to identify the type of
the value returned for the query.

 var icecreamswithLeastPrice =
 from Ice in icecreamsList
 where Ice.price <= 10
 select new { Ice.name, Ice.price };

Overview

[22]

 Console.WriteLine("Icecreams with least price: ");
 foreach (var ice in icecreamswithLeastPrice)
 {
 Console.WriteLine(ice.name + " " + ice.price);
 }

Let us see how we can leverage the feature of lambda expressions here. For
example, we will find out the list of ice-creams with a lower price using the lambda
expressions. Include the following code to the main method of the program after
creation of the icecreamsList.

 var count = icecreamsList3.Count<Icecream>(Ice => Ice.price <=0);
 Console.WriteLine("Number of Icecreams with price
 less than ten: {0} ", count);

The above lambda expression will return the total number of ice-creams with a price
less than or equal to 10.

Expression Trees
Expression trees are an in-memory representation of a lambda expression. Using this
we can modify and inspect the lambda expressions at runtime using expression trees
in the System.Linq.Expressions namespace. Lambda expressions are compiled
as code or data, depending on the context they are used in. If we assign a lambda
expression to a variable of type delegate, then the compiler will generate the
corresponding executable code; but we assign the lambda expression to a variable of
the generic type Expression<T>, so the compiler won't create the executable code,
but will generate an in-memory tree of objects that represents the structure of the
expression. These structures are known as expression trees.

For example, consider the following lambda expression using delegate:

Func<int, int> func = x => x + 5;

This code is compiled as executable and can be executed as follows:

var three = func(1);

The same delegate is no longer compiled as executable, but compiled as data if we
define the delegate as expression tree:

Expression<Func<int, int>> expression = func => x + 5;

To use this expression in the application, it has to be compiled and invoked as follows:

var originalDelegate = expression.Compile();
var three = originalDelegate.Invoke(2);

Chapter 1

[23]

Each node in the expression tree represents an expression. If we decompose
the expression, we can find out how the expression tree represents the lambda
expressions. Following is the sample code to decompose the previous expression:

ParameterExpression parameter =
ParameterExpression)expression.Parameters[0];
BinaryExpression operation = (BinaryExpression)expression.Body;
ParameterExpression left = (ParameterExpression)operation.Left;
ConstantExpression right = (ConstantExpression)operation.Right;

Console.WriteLine("Decomposed expression: {0} => {1} {2} {3}",
parameter.Name, left.Name, operation.NodeType, right.Value);

The output of the above decomposition would be:

Decomposed expression: func => func Add 5

Expression trees are implemented in the System.Query.dll assembly under the
System.Linq.Expressions namespace. The abstract class Expression provides
the root of a class hierarchy used to model expression trees. The Expression class
contains static factory methods to create expression tree nodes of various types.

There are many different abstract classes used to represent the different types of
elements in an expression. These classes are derived from the non-generic version of
Expression. The following table examines some abstract classes derived from the
Expression class.

Class Description Parameters
lambda expression This is the bridge between

the generic Expression<T>
class and non-generic
Expression class.

Its main properties are body and
parameters.

Body—represents the body of the
expression.

Parameters—represents the list of
parameters it uses.

constant
expression

This represents the constant
values that appear in the
expression.

Value is it's main property, which
returns the constant value in the
expression.

parameter
expression

Represents a named
parameter expression. Values
must be passed to parameter
to evaluate the expression.

Name is the property of the
parameter expression to represent the
name of the parameter.

unary expression Represents an expression
that has the unary operator.

The main property of this class is
operand which is associated with the
operand in expression.

Overview

[24]

Class Description Parameters
binary operator This is to represent the

binary operators, like sum,
multiplication, and many
others.

The main properties of this class are
left and right which provides access
to the left and right operand in the
expression.

method call
expression

This represents the method
call in an expression.

The main properties of this class are:

Method—metadata information
associated to the method to be called.

Object—the object to which the
method call will be applied.

Parameters—to represent the
arguments used in the method.

conditional
expression

Represents an expression
that has a conditional
operator.

The main properties of conditional
expression are.

IfFalse—gets the expression to
execute if the test evaluates to false.

IfTrue—gets the expression to
execute if the test evaluates to true.

Summary
In this chapter, we have seen an overview of Language Integrated Query. The
architecture diagram explains the different types of LINQ which are used for
querying data from different sources of data. Also, we have seen some of the new
features of C# 3.0 and above in relation to LINQ. This chapter also explained some
of the new features introduced in C# 3.5 such as partial methods, expressions and
anonymous types with some examples for each of those. We will be looking into
details of LINQ features and its usability in the coming chapters.

LINQ to Objects
LINQ to Objects means that we can use LINQ to query objects in a collection. We can
access the in-memory data structures using LINQ. We can query any type of object
that implements the IEnumerable interface or IEnumerable<T>, which is of generic
type. Lists, arrays, and dictionaries are some collection objects that can be queried
using LINQ. If we don't use LINQ, we have to use the looping method to filter the
values in a collection. We have to go through the values one-by-one and then find the
required details. However, using LINQ we can directly query collections and filter
the required values without using any looping. LINQ provides powerful filtering,
ordering, and grouping capabilities that requires minimum coding. For example,
if we want to find out the types stored in an assembly and then filter the required
details, we can use LINQ to query the assembly details using System.Reflection
classes. The System.Reflection namespace contains types that retrieve information
about assemblies, modules, members, parameters, and other entities as collections
are managed code, by examining their metadata. Also, files under a directory are
a collection of objects that can be queried using LINQ. We shall see some of the
examples for querying some collections.

Array of Integers
The following example shows an integer array that contains a set of integers. We can
apply the LINQ queries on the array to fetch the required values.

int[] integers = { 1, 6, 2, 27, 10, 33, 12, 8, 14, 5 };
 IEnumerable<int> twoDigits =
 from numbers in integers
 where numbers >= 10
 select numbers;
 Console.WriteLine("Integers > 10:");
 foreach (var number in twoDigits)
 {
 Console.WriteLine(number);
 }

LINQ to Objects

[26]

The integers variable contains an array of integers with different values. The
variable twoDigits, which is of type IEnumerable, holds the query. To get the
actual result, the query has to be executed.

The actual query execution happens when the query variable is iterated through the
foreach loop by calling GetEnumerator() to enumerate the result. Any variable of
type IEnumerable<T>, can be enumerated using the foreach construct. Types that
support IEnumerable<T> or a derived interface such as the generic IQueryable<T>,
are called queryable types. All collections such as list, dictionary and other classes
are queryable. There are some non-generic IEnumerable collections like ArrayList
that can also be queried using LINQ. For that, we have to explicitly declare the
type of the range variable to the specific type of the objects in the collection, as it is
explained in the examples later in this chapter.

The twoDigits variable will hold the query to fetch the values that are greater than
or equal to 10. This is used for fetching the numbers one-by-one from the array. The
foreach loop will execute the query and then loop through the values retrieved
from the integer array, and write it to the console. This is an easy way of getting the
required values from the collection.

If we want only the first four values from a collection, we can apply the Take()
query operator on the collection object. Following is an example which takes the
first four integers from the collection. The four integers in the resultant collection are
displayed using the foreach method.

IEnumerable<int> firstFourNumbers = integers.Take(4);
Console.WriteLine("First 4 numbers:");
foreach (var num in firstFourNumbers)
{
 Console.WriteLine(num);
}

The opposite of Take() operator is Skip() operator, which is used to skip the
number of items in the collection and retrieve the rest. The following example skips
the first four items in the list and retrieves the remaining.

IEnumerable<int> skipFirstFourNumbers = integers.Skip(4);
Console.WriteLine("Skip first 4 numbers:");
foreach (var num in skipFirstFourNumbers)
{
 Console.WriteLine(num);

}

Chapter 2

[27]

This example shows the way to take or skip the specified number of items from the
collection. So what if we want to skip or take the items until we find a match in the
list? We have operators to get this. They are TakeWhile() and SkipWhile().

For example, the following code shows how to get the list of numbers from the
integers collection until 50 is found. TakeWhile() uses an expression to include
the elements in the collection as long as the condition is true and it ignores the other
elements in the list. This expression represents the condition to test the elements in
the collection for the match.

int[] integers = { 1, 9, 5, 3, 7, 2, 11, 23, 50, 41, 6, 8 };
IEnumerable<int> takeWhileNumber = integers.TakeWhile(num =>
 num.CompareTo(50) != 0);
Console.WriteLine("Take while number equals 50");
foreach (int num in takeWhileNumber)
 {
 Console.WriteLine(num.ToString());
 }

Similarly, we can skip the items in the collection using SkipWhile(). It uses an
expression to bypass the elements in the collection as long as the condition is true.
This expression is used to evaluate the condition for each element in the list. The
output of the expression is boolean. If the expression returns false, the remaining
elements in the collections are returned and the expression will not be executed
for the other elements. The first occurrence of the return value as false will stop
the expression for the other elements and returns the remaining elements. These
operators will provide better results if used against ordered lists as the expression is
ignored for the other elements once the first match is found.

IEnumerable<int> skipWhileNumber = integers.SkipWhile(num =>
 num.CompareTo(50) != 0);
Console.WriteLine("Skip while number equals 50");
foreach (int num in skipWhileNumber)
 {
 Console.WriteLine(num.ToString());
 }

Collection of Objects
In this section we will see how we can query a custom built objects collection. Let us
take the Icecream object, and build the collection, then we can query the collection.
This Icecream class in the following code contains different properties such as Name,
Ingredients, TotalFat, and Cholesterol.

LINQ to Objects

[28]

public class Icecream
{
 public string Name { get; set; }
 public string Ingredients { get; set; }
 public string TotalFat { get; set; }
 public string Cholesterol { get; set; }
 public string TotalCarbohydrates { get; set; }
 public string Protein { get; set; }
 public double Price { get; set; }
}

Now build the Icecreams list collection using the class defined perviously.

List<Icecream> icecreamsList = new List<Icecream>
{
 new Icecream {Name="Chocolate Fudge Icecream", Ingredients="cream,
 milk, mono and diglycerides...", Cholesterol="50mg",
 Protein="4g", TotalCarbohydrates="35g", TotalFat="20g",
 Price=10.5
},
new Icecream {Name="Vanilla Icecream", Ingredients="vanilla extract,
 guar gum, cream...", Cholesterol="65mg", Protein="4g",
 TotalCarbohydrates="26g", TotalFat="16g", Price=9.80 },
new Icecream {Name="Banana Split Icecream", Ingredients="Banana, guar
gum, cream...", Cholesterol="58mg", Protein="6g",
 TotalCarbohydrates="24g", TotalFat="13g", Price=7.5 }
};

We have icecreamsList collection which contains three objects with values of the
Icecream type. Now let us say we have to retrieve all the ice-creams that cost less.
We can use a looping method, where we have to look at the price value of each
object in the list one-by-one and then retrieve the objects that have less value for
the Price property. Using LINQ, we can avoid looping through all the objects and
its properties to find the required ones. We can use LINQ queries to find this out
easily. Following is a query that fetches the ice-creams with low prices from the
collection. The query uses the where condition, to do this. This is similar to relational
database queries. The query gets executed when the variable of type IEnumerable is
enumerated when referred to in the foreach loop.

List<Icecream> Icecreams = CreateIcecreamsList();
IEnumerable<Icecream> IcecreamsWithLessPrice =
from ice in Icecreams
where ice.Price < 10
select ice;

Chapter 2

[29]

Console.WriteLine("Ice Creams with price less than 10:");
foreach (Icecream ice in IcecreamsWithLessPrice)
{
 Console.WriteLine("{0} is {1}", ice.Name, ice.Price);
}

As we used List<Icecream> objects, we can also use ArrayList to hold the
objects, and a LINQ query can be used to retrieve the specific objects from the
collection according to our need. For example, following is the code to add the same
Icecreams objects to the ArrayList, as we did in the previous example.

ArrayList arrListIcecreams = new ArrayList();
arrListIcecreams.Add(new Icecream {Name="Chocolate Fudge Icecream",
 Ingredients="cream, milk, mono and diglycerides...",
 Cholesterol="50mg", Protein="4g", TotalCarbohydrates="35g",
 TotalFat="20g", Price=10.5 });
arrListIcecreams.Add(new Icecream {Name="Vanilla Icecream",
 Ingredients="vanilla extract, guar gum, cream...",
 Cholesterol="65mg", Protein="4g", TotalCarbohydrates="26g",
 TotalFat="16g", Price=9.80 });
arrListIcecreams.Add(new Icecream {Name="Banana Split Icecream",
 Ingredients="Banana, guar gum, cream...", Cholesterol="58mg",
 Protein="6g", TotalCarbohydrates="24g", TotalFat="13g", Price=7.5
});

Following is the query to fetch low priced ice-creams from the list.

var queryIcecreanList = from Icecream icecream in arrListIcecreams
where icecream.Price < 10
select icecream;

Use the foreach loop, shown as follows, to display the price of the objects retrieved
using the above query.

foreach (Icecream ice in queryIcecreanList)
Console.WriteLine("Icecream Price : " + ice.Price);

Reading from Strings
We all know that a string is a collection of characters. It means that we can directly
query a string value. Now let us take a string value and try to find out the number
of upper case letters in the string. For example, assign a string value to the variable
aString as shown below.

string aString = "Satheesh Kumar";

LINQ to Objects

[30]

Now let us build a query to read the string and find out the number of characters
that are in upper case. The query should be of type IEnumerable.

IEnumerable<char> query =
from ch in aString
where Char.IsUpper(ch)
select ch;

The query uses the Char.IsUpper method in the where clause to find out the upper
case letters from the string. The following code displays the number of characters
that are in upper case:

Console.WriteLine("Count = {0}", count);

Reading from Text Files
A file could be called a collection, irrespective of the data contained in it. Let us create
a text file that contains a collection of strings. To get the values from the text file, we
can use LINQ queries. Create a text file that contains names of different ice-creams.
We can use the StreamReader object to read each line from the text file. Create a List
object, which is of type string, to hold the values read from the text file. Once we
get the values loaded into the strings List, we can easily query the list using LINQ
queries as we do with normal collection objects. The following sample code reads the
text file, and loads the ice-cream names to the string list:

List<string> IcecreamNames = new List<string>();
using(StreamReader sReader = new StreamReader(@"C:\Icecreams.txt"))
{
 string str;
 str = sReader.ReadLine();
 while (str != null)
 {
 IcecreamNames.Add(str);
 }
}

The following sample code reads the list of strings and retrieves the name of
ice-creams in descending order:

IEnumerable<string> icecreamQuery =
from name in IcecreamNames
orderby name descending
select name;

Chapter 2

[31]

We can verify the result of the query by displaying the names using the
following code:

foreach (string nam in icecreamQuery)
{
 Console.WriteLine(nam);
}

The following code displays the names and verifies the result of the query:

foreach (string nam in icecreamQuery)
{
 Console.WriteLine(nam);
}

Similar to collections used in above examples, the .NET reflection class library can
be used to read metadata of the .NET assembly and create the types, type members,
parameters, and other properties as collections. These collections support the
IEnumerable interface, which helps us to query using LINQ.

LINQ has lot of standard query operators which can be used for querying different
objects that support IEnumerable interface. We can use all standard query operators,
listed in the following table, against objects.

Query Operator type Query Operators
Restriction Where, OfType
Projection Select, SelectMany
Joining Join, GroupJoin
Concatenation Concat
Sorting OrderBy, OrderByDescending, ThenBy, ThenByDescending,

Reverse
Set Distinct, Except, Intersect, Union
Grouping GroupBy
Conversion AsEnumerable, Cast, OfType, ToArray, ToDictionary,

ToList, ToLookup
Equality SequenceEqual
Element DefaultIfEmpty, ElementAt, ElementAtOrDefault, First,

FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault
Generation Empty, Range, Repeat
Quantifiers All, Any, Contains
Aggregation Aggregate, Average, Count, LongCount, Max, Min, Sum
Partitioning Skip, SkipWhile, Take, Takewhile

LINQ to Objects

[32]

Summary
In this chapter, we saw some examples to query different objects using LINQ
operators. We can use LINQ queries on any object that supports IEnumerable. By
using LINQ, we can avoid using looping methods to loop through the collections
and fetch the required details. LINQ provides powerful filtering, ordering, and
grouping methods. This will reduce our coding as well as the development time.

LINQ to XML
LINQ to XML is a new in-memory XML programming API to work against XML
data. There are different ways of creating XML trees in .NET. LINQ to XML is the
new method of creating and manipulating XML data through .NET. The properties
and methods of LINQ help us to navigate and manipulate the XML elements
and attributes.

LINQ uses a feature called functional construction for creating the XML tree. The
.NET compiler translates XML literals into calls to the equivalent XML constructor
to build the objects. LINQ to XML also provides the object model for creating and
manipulating the XML data. This feature also integrates well in the .NET framework.
The namespaces which supports LINQ and LINQ to XML are as follows:

using System.Linq;
using System.Xml.Linq;

The namespaces have changed from the May CTP. We need to include these
namespaces into our project to take advantage of the LINQ to XML features. There
are a lot of XML-specific query operators that come with LINQ, which we can use for
querying and manipulating the XML elements and values, as we do in our normal
SQL queries. Visual Studio also provides IntelliSense for accessing some of the query
methods and properties that will make a developer's life easier.

In this chapter, we will see how to use LINQ to XML features for navigating and
manipulating the XML elements and attributes.

Features
Using LINQ queries, we can query data from different sources, whether it is relational
or XML. LINQ to XML is the XML programming language built on the .NET Language
Integrated Query framework. Using LINQ to XML we can create, update, and delete
XML elements in the XML tree. It also provides streaming, and the transformation and
querying feature, similar to XQuery and XPath.

LINQ to XML

[34]

XQuery is a language which can query structured or semi-structured XML data.
XQuery is based on the XPath language. It has the ability to iterate, sort, and
construct the necessary XML. If the XML document is stored in the SQL server
database, which has support for XML, the document can be queried using XQuery.
The result of the XQuery can be typed or un-typed. The type information of the result
is based on the type, which is specified in the XML schema language.

LINQ provides query features to write queries against XML, as we do normally
with the relational data model. LINQ provides different query operators, such as
projections, aggregates, partitioning, grouping, and conversion.

The developers can take advantage of writing LINQ queries instead of writing
normal SQL queries, to reduce their coding work and get high performance. We
can take advantage of .NET 3.5 features, as LINQ and LINQ to XML are integrated
in the .NET framework. If we are using LINQ with Visual Studio, we can also use
IntelliSense and statement completion feature provided by Visual Studio for easy
programming.

The results of the queries from LINQ, and LINQ to XML, are strongly typed. This
increases the robustness of the application. All the errors are caught at compile time
instead of runtime, as it happens when we write SQL queries while programming.

Technical architects or software designers, can design their own LINQ providers for
the data source they use. By implementing a new provider, they can give the query,
language support to the data model they use. They can also take advantage of using
some of the features of the .NET 3.0 framework.

Class Library
All the classes of LINQ to XML are present in the System.Xml.Linq namespace; we
have seen most of the LINQ to XML classes in the examples given in the previous
sections. Following is the list of LINQ to XML classes present in the System.Xml.
Linq namespace and the hierarchy of classes.

Classes and Hierarchy
The major high level classes defined in LINQ to XML are as follows:

XName

XNamespace

XNode

XDeclaration

XAttribute

XObject

•
•
•
•
•
•

Chapter 3

[35]

The XNode class has the second level of classes, listed as follows:

XText

XComment

XContainer

XDocumentType

XProcessingInstruction

The XContainer has two more classes further down as:

XElement

XDocument

Below is the diagrammatic representation of classes defined in LINQ to XML:

XObjed XDeclaration XName

XNode XAttribue

XCData XText XComment XContainer XDocumentType XProcessingInstruction

XDocument XElement

XNamespace

We will see details of the important classes used, to work with the elements and
attributes in XML documents, in the following sections.

•

•

•

•

•

•

•

LINQ to XML

[36]

XElement Class
This is one of the fundamental classes of all LINQ to XML classes. The entire XML
tree is created using this class, as we have seen in the functional construction section.
XML data manipulation and traversing through the XML tree happens using
XElement object, as seen in the following code:

new XElement("Nutrition","Calories:290",
new XAttribute("TotalFat", "18g"))

XAttribute Class
These are the name or value pair associated with an XML element, but they are not
derived from nodes. Working with attributes is similar to working with XElements.
Using functional construction, attributes are added to the elements to form the XML
tree. The XAttribute class has one constructor which takes two parameters. The first
parameter specifies the name, and the second specifies the content, as shown in the
following code:

new XElement("Nutrition","Calories:290",
new Xattribute("TotalFat", "18g"))

XDocument Class
Similar to W3C DOM, the XDocument is a container for the XML document.
The XDocument can contain one root XElement, XComment, XDeclaration, and
XProcessingInstruction. For example:

XmlDocument Icecreams = new XmlDocument();

Other Classes
An XNode represents any item that is represented as a node in the XML
tree. XElements, XComments and XDocument, XDocumentType, and
XProcessingInstructions and XText are some of the nodes represented in the
XML tree.

The XComments class is used for adding comments to the XML.
XProcessingInstruction is for providing additional information to the application
that processes the XML data.

Chapter 3

[37]

Following is the code for adding some of the nodes to the XML:

// Adding Declaration, Comments and PI
 XDocument IcecreamsDocument = new XDocument
 (
 new XDeclaration("1", "utf-8", "yes"),
 new XComment("XML data Manipulation using LINQ"),
 new XProcessingInstruction("Instructions", "12345-67890"),
 new XElement("Icecreams",
 new XElement("Icecream",
 new XElement("Name", "Chocolate Fudge Icecream"),
 new XElement("Ingredients", "cream, milk, sugar, corn syrup,
 cellulose gum, mono and diglycerides..."),
 new XElement("Cholesterol", "50mg"),
 new XElement("TotalCarbohydrates", "35g"),
 new XElement("Protein","4g")
)
)
);

Here we have the XDocument object, IcecreamsDocument, which has a declaration, which has a declaration,
comment, and processing instruction added to it. XElement is used for creating the
nodes of the XML document. The output for the above code will be
as follows:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--XML data Manipulation using LINQ-->
<?Instructions 12345-67890?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein>4g</Protein>
 </Icecream>
</Icecreams>

LINQ to XML

[38]

LINQ to XML with Other
XML Technologies
When we talk about using XML, the first thing that comes to our mind is the XML
DOM. We use XML programming API of W3C Document Object Model (DOM).
XML programming means either traversing or manipulating data in the XML tree.
These are the only things that we normally do with an XML document. In case of
XML DOM, we follow the "bottom-up" approach of creating the XML document
using XmlDocument object first and then building the XML elements and attributes.
We do programming with elements and attributes. Coming up is an example of
creating an XML document using XML DOM, which is the standard way of doing it
using ADO.NET 2.0.

The following code creates an XML document Icecreams to store different varieties
of ice-creams as XML elements. Each ice-cream element contains many elements to
hold the properties of ice-cream. Each XML element is created separately and then
added to the main Icecream element as children. After adding all the properties as
elements, the main Icecream element itself is added to the document as an XML
element. Like this, we can keep on adding the elements to the document and build
the XML tree.

XmlDocument Icecreams = new XmlDocument();
XmlElement Name = Icecreams.CreateElement("Name");
Name.InnerText = "Chocolate Fudge Icecream";
XmlElement Ingredients =
Icecreams.CreateElement("Ingredients");
Ingredients.InnerText = "cream, milk, sugar, corn syrup,
 cellulose gum, mono and diglycerides...";
XmlElement SaturatedFat = Icecreams.CreateElement("SaturatedFat");
SaturatedFat.SetAttribute("type", "SaturatedFat");
SaturatedFat.InnerText = "20g";
XmlElement TransFat = Icecreams.CreateElement("TransFat");
TransFat.SetAttribute("type", "TransFat");
TransFat.InnerText = "5g";
XmlElement OtherFat = Icecreams.CreateElement("OtherFat");
OtherFat.SetAttribute("type", "OtherFat");
OtherFat.InnerText = "10g";
XmlElement Cholesterol = Icecreams.CreateElement("Cholesterol");
Cholesterol.InnerText = "50mg";
XmlElement TotalCarbohydrates =
 Icecreams.CreateElement("TotalCarbohydrates");
TotalCarbohydrates.InnerText = "35g";
XmlElement Protein = Icecreams.CreateElement("Protein");

Chapter 3

[39]

Protein.InnerText = "4g";
XmlElement Icecream = Icecreams.CreateElement("Icecream");
Icecream.AppendChild(Name);
Icecream.AppendChild(Ingredients);
Icecream.AppendChild(SaturatedFat);
Icecream.AppendChild(TransFat);
Icecream.AppendChild(OtherFat);
Icecream.AppendChild(TotalCarbohydrates);
Icecream.AppendChild(Protein);
Icecreams.AppendChild(Icecream);
Icecreams.Save(@"C:\Icecreams.XML");

LINQ to XML simplifies this XML document creation process. We don't need to
create the XML Document object to create elements and attributes of the XML tree.
Using LINQ, we can create the XML tree directly using the XElement object. Here is
how we can construct the same code as seen previously, using LINQ:

XElement IceCreams =
new XElement("Icecreams",
 new XElement("Icecream",
 new XElement("Name", "Chocolate Fudge Icecream"),
 new XElement("Ingredients", "cream, milk, sugar, corn
 syrup, cellulose gum, mono and diglycerides..."),
 new XElement("TotalFat", "20g",
 new XAttribute("SaturatedFat", "8g"),
 new XAttribute("TransFat", "12g")),
 new XElement("Cholesterol", "50mg"),
 new XElement("TotalCarbohydrates", "35g"),
 new XElement("Protein","4g")
)
);
IceCreams.Save(@"C:\Icecreams2.XML");

In the example, we don't see an XmlDocument object for creating the XML tree. This
is the main advantage of .NET 3.5. In W3C DOM, everything happens in the context
of the document object; we can directly use the XElement object for creating elements
and attributes and we can even save this to a file. We don't need to depend on the
XmlDocument object. Following is the code for loading an XML document using the
W3C DOM.

XmlDocument DOMLoadIcecreams = new XmlDocument();
DOMLoadIcecreams.Load(@"C:\Icecreams.xml");

The equivalent code would be:

XElement LoadIcecreams = XElement.Load(@"c:\Icecreams.xml");

XElement is the main object used for loading the XML as well as saving the XML.
The XmlDocument object is nowhere in the picture when we use LINQ.

LINQ to XML

[40]

Following is a list of features that differentiates LINQ from W3C DOM. Most of the
features are well supported by LINQ.

Feature Support by LINQ
Namespaces LINQ to XML provides a better approach for namespaces than

DOM. An XML name consists of an XML namespace, which
is also called XML namespace URI. XML namespace is similar
to the namespace used in .NET Framework and the purpose is
the same. It helps us uniquely identify elements and attributes
in the XML document without having any name conflicts in
different parts of the XML document.

DTD Constructs LINQ to XML does not support XmlEntityReferences.
When an XML tree is populated, all DTD entities are
expanded. This simplifies the XML construction.

XPath LINQ to XML does not support Xpath queries. Instead we
can use LINQ features.

XmlDocumentFragment LINQ to XML does not support XmlDocumentFragment
class. It is handled by the query result, which is of the
IEnumerable<XNode> type.

XPathNavigator No support.
BaseURI No support. LINQ to XML does not store any URI

information.
InnerXml LINQ to XML provides a read only XML property which

returns the InnerXml and also through Parse method. DOM
provides support for getting and setting InnerXML.

Annotations LINQ to XML elements support an extensible set of
annotations, whereas the XmlElement does not support this.
This is useful to add additional information to the element.

Schema Information LINQ to XML nodes are extensible via annotations. LINQ to
XML does not provide any schema information.

LINQ with XmlReader
LINQ to XML is implemented on top of the XmlReader, but each of these is used for
different purposes.

XmlReader provides a fast-forward only, and non-cached access to XML data. It can
be used in places where we have to navigate through a large amount of XML data
without any manipulations. XmlReader will be helpful performance-wise, but will
not be able to update the data as it returns read only data.

If we have to deal with different sources of data involving data manipulation, we can
go for LINQ to XML, as it provides an in-memory XML programming.

Chapter 3

[41]

LINQ with XSLT
XSLT (Extensible Stylesheet Language Transformation) is the definition language
for XML data presentation and transformations. XSLT is derived from the XSL
(Extensible Stylesheet Language). The presentation gives a specific format or style
to the XML document, and transformation, reading the nodes of the XML tree, and
converting that to the required tree.

XSLT and LINQ to XML are two different approaches for getting the XML
transformations. Both are flexible and powerful ways of doing the transformation.

In case of XSLT, it is an independent programming language, which is rule based
and has a declarative approach. XSLT is used in situations where multiple web
applications have the same transformation style, but possibly have different sources
of data. Performance wise, it helps a lot but the disadvantage is that the developers
cannot make use of the C# or VB.NET. programming language The developer has to
depend on these two different programming languages, which is a complex process.
Also, it is difficult to maintain.

LINQ to XML provides the feature of functional construction, by which we can
construct the XML objects dynamically, by pulling the data from different sources.
Constructing transformation is very easy, which helps the user not to depend on
other programming language, like XSLT. This reduces a lot of maintenance and
development work.

LINQ with MSXML
MSXML can be used from any programming language that supports COM.
MSXML is a COM-based technology for processing XML. MSXML provides a
native implementation of the DOM with support for XSLT and XPath. It is not
recommended for use in managed code, based on the Common Language
Runtime (CLR)

Functional Construction
Functional construction is how we construct the XML tree. Using LINQ, we can
construct the entire XML tree with only the XElement class. XElement has three
constructors for constructing the XML tree:

1. XElement(XName name)—creates an XML element with the name specified
in the XName parameter.

2. XElement(XName name, object content)—creates an element with the
name specified in the XName parameter, and the content passed in by the
object content.

LINQ to XML

[42]

3. XElement(XName name, params object[] content)—creates an element
with the name specified in the XName parameter, and the second parameter
is the child element created by the paremeter list. It could be any valid
object, which can be a child of an element. It can be another XElement or an
XAttribute or any of the following::

A string, which is added as text content. This is the
recommended pattern to add a string as the value of an
element; the LINQ implementation will create the internal
XText node.
An XText, which can be a string or CData value, added as
child content. This is mainly useful for CData values; using a
string is simpler for ordinary string values.
An XElement, which can be added as a child element.
An XAttribute, which can be added as an attribute.
An XProcessingInstruction or XComment, which is added
as child content.
An IEnumerable, which is enumerated, and these rules are
applied recursively.
null, which is ignored.

Let us see how we can build an XML tree using the functional construction
method. The code for building an XML tree, which has details of Icecream, is
as follows:

Icecreams.Add(
 new XElement("Icecream",
 new XElement("Name", "Vanilla Icecream"),
 new XElement("Ingredients", "vanilla extract,
 guar gum, cream, nonfat milk, sugar,
 locust bean gum, carrageenan,
 annatto color..."),
 new XElement("Cholesterol", "65mg"),
 new XElement("TotalCarbohydrates", "26g"),
 new XElement("Protein", "4g",
 new XAttribute("Vitamin A","1g"),
 new XAttribute("Calcium", "2g"),
 new XAttribute("Iron", "1g")),
 new XElement("TotalFat", "16g",
 new XAttribute("SaturatedFat","7g"),
 new XAttribute("TransFat", "9g"))
)
);

°

°

°

°

°

°

°

Chapter 3

[43]

The first XElement object, Icecreams, uses the following constructor:

XElement(XName name, params object[] content)

The second parameter takes the number of XElement objects as content. This
will be the child of this parent element that gets created. The child element in
turn can have any number of XElements. So the Icecreams element has the child
element Icecream, which in turn has many elements such as which in turn has many elements such as Name, Ingredients,
Cholesterol, and and TotalCarbohydrates.

The XElement name is constructed with the use of the constructor: is constructed with the use of the constructor:

XElement(XName name, object content)

This takes the XName for the name of the element and content for the element. This
element is added as one of the child elements for the Icecream element:

new XElement("Name", "Vanilla Icecream")

The output of this will be as follows:

<Name>Vanilla Icecream</Name>

If we have to create an element with only the XName, and without the content, we can without the content, we can
use the following constructor:

XElement(XName name)

For example, ,XElement Icecream = new XElement("Icecream"), will give
output:

<Icecream/>

Let us save this XElement using the Save method and see the XML tree created by
the functional construction using XElement.

Icecreams.Save(@"C:\Icecreams");

The output of the above created XElement Icecreams would be:

<?xml version="1.0" encoding="utf-8"?>
<Icecreams>
 <Icecream>
 <Name>Vanilla Icecream</Name>
 <Ingredients>vanilla extract, guar gum, cream, nonfat milk,
 sugar, locust bean gum, carrageenan,
 annatto color...
 </Ingredients>
 <Cholesterol>65mg</Cholesterol>

LINQ to XML

[44]

 <TotalCarbohydrates>26g</TotalCarbohydrates>
 <Protein VitaminA="1g" Calcium="2g" Iron="1g">4g</Protein>
 <TotalFat SaturatedFat="7g" TransFat="9g">16g</TotalFat>
 </IcecreamTwo>

</Icecreams>

To create the above XML file, we have used only the functional construction feature
of LINQ.

XML Names
An XML name consists of an XML namespace, which is also called XML namespace
URI. XML namespace is similar to the namespace used in .NET framework and the
purpose is the same. It helps us uniquely identify the elements and attributes in the
XML document, without having any name conflicts in different parts of the XML
document. The XML names are represented by an XNamespace object and a local
name. For example, if you want to create an element Icecreams, you might want to
create it under a namespace called http://yourcompany.com/Icecreams.

To make the XML document more understandable, we can use a prefix for the
namespaces. Prefixes allow us to create a shortcut for an XML namespace. LINQ
simplifies this by introducing the XNamespace object and a local name. So when
reading in XML, each XML prefix is resolved to its corresponding XML namespace.
The class that represents XML names is XName, which consists of XNamespace and a
local name. The code below is an example of defining the namespace and using it in
the node:

XNamespace nspace = "http://yourcompany.com/Icecreams/";
XElement Icecreamss = new
XElement("{http://yourcompany.com}IcecreamsList");

The string representation of an XName is referred to as an expanded name. Anexpanded name. An An
expanded name looks like this:looks like this:

{NamespaceURI}LocalName

Instead of constructing a namespace object, we can use the expanded name, but we
need to type the namespace every time we need the XName. To avoid this, we can
take advantage of the language feature of defining the namespace and use it with the
local name:

XNamespace nspace = "http://yourcompany.com/";
XElement Icecreamss = new
XElement("{http://yourcompany.com}IcecreamsList",

Chapter 3

[45]

 new XElement(nspace + "Icecream",
 new XElement(nspace + "Name",
 "Rum Raisin Icecream"),
 new XElement(nspace + "Ingredients", "Rum, guar
 gum, nonfat milk, cream, alomnds,
 sugar, raisins, honey, chocolate,
 annatto color..."),
 new XElement(nspace + "Protein", "6g",
 new XAttribute("Iron", "4g")),
 new XElement(nspace + "TotalCarbohydrates", "28g")
)
);
Icecreamss.Save(@"c:\Icecreamss.xml");

The previous example has one expanded name used with the Icecreamss element.
All other elements use the namespace defined as nspace. It is not that the entire
node should be part of the same namespace. They can be different from one another.
For example, change the namespace value nspace to http://yourcompany.com/
Icecream/, and see the difference in namespace value for the elements. It will be
as follows:

<?xml version="1.0" encoding="utf-8"?>
<IcecreamsList xmlns="http://yourcompany.com">
 <Icecream xmlns="http://yourcompany.com/Icecream">
 <Name>Rum Raisin Icecream</Name>
 <Ingredients>Rum, guar gum, nonfat milk, cream, alomnds, sugar,
 raisins, honey, chocolate, annatto color...
 </Ingredients>
 <Protein Iron="4g">6g</Protein>
 <TotalCarbohydrates>28g</TotalCarbohydrates>
 </Icecream>
</IcecreamsList>

Loading and Traversing XML
Now that we've seen how to create a basic XML tree and the basic classes of LINQ
to XML and its hierarchy, let's take a more detailed look at loading XML data and
finding our way through it.

LINQ to XML

[46]

Loading XML
There are different ways of loading XML data. The XML data can be in the form of
a file, or a string, or any other supported formats. Using LINQ to XML, we can load
XML data through the XElement object. For example, to load XML data from a file,
we can use the Load method of the XElement object, as given below:

// Loading XML
 XElement LoadIcecreams = XElement.Load(@"c:\Icecreams.xml");

If the XML data is in the form of a string, we can load it through XElement by using
the Parse method. For example, the code for loading Icecreams from string is
as follows:

XElement LoadIcecreamsfromString = XElement.Parse(
 @"<Icecream>
 <Name>Rum Raisin Icecream</Name>
 <Cholesterol>49mg</Cholesterol>
 <VitaminA type=""VitaminA"">2g</VitaminA>
 <VitaminC type=""VitaminC"">1g</VitaminC>
 <Iron type=""Iron"">4g</Iron>
 <TotalCarbohydrates>email@xyz.com</TotalCarbohydrates>
 </Icecream>");

Traversing XML
In this section, we will see how we can walk through the XML tree, which is also
called traversing through XML. There are several methods provided by LINQ to get
all the children of the XElement.

Nodes() is the method used mainly for traversing. This returns the
IEnumerable<object> because the XML can have a different type and it also gives
the sequential access to items in the collection. For example, let us have the following
XML file called Icecreams.xml.

<?xml version="1.0" encoding="utf-8"?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein VitaminA="3g" Iron="1g" Calcium="3g">5g</Protein>
 <TotalFat SaturatedFat="9g" TransFat="11g">20g</TotalFat>
 </Icecream>
<!-- This is the text added at the bottom of the XML file -->
</Icecreams>

Chapter 3

[47]

Load this Icecreams.xml file into an XElement object, and then using Nodes()
method, we will traverse through the XML to get the details. The following code
returns the node values from the XML file:

// Loading XML
 XElement LoadClassicIcecreamsFile =
 XElement.Load(@"C:\LoadClassicIcecreams.xml");
 // Traversing XML
 foreach (XNode nod in LoadClassicIcecreamsFile.Nodes())
 {
 Console.WriteLine(nod.ToString());
 }

The previous code gives the following output:

<?xml version="1.0" encoding="utf-8"?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein VitaminA="3g" Iron="1g" Calcium="3g">5g</Protein>
 <TotalFat SaturatedFat="9g" TransFat="11g">20g</TotalFat>
 </Icecream>
<!-- This is the text added at the bottom of the XML file -->
</Icecreams>

The code outputs all element values and the text added to the XML document at
the bottom. We can also filter the nodes using the name and type. For example, the
following code will bring only the nodes of the XElement type and displays the
XML value:

foreach (XNode nod in
 LoadClassicIcecreamsFile.Nodes()
 OfType<XElement>())
{
 Console.WriteLine(nod.ToString());
}

The equivalent of the above code is as follows:

foreach (XElement nod in
 LoadClassicIcecreamsFile.Elements())
{
 Console.WriteLine(nod.Value);
}

LINQ to XML

[48]

We can also get a particular element based on the name. We can use the overloaded
method Elements (XName), which takes XName as parameter. For example, the
following code is used for getting the Name element of the icecreams.xml file..

foreach (XElement nod in LoadClassicIcecreamsFile.
Elements("Icecream"))
{
 Console.WriteLine(nod.Element("Name").Value);
}

If the XElement node has more than one child element, we can use the Elements
method to traverse through the child elements. If we have only one child element,
we can directly point to that using the Element method. In the above code we are
looping through the Icecreams element as it has many children. Inside the loop, we
have directly used the Element method to get the Name element from the tree as there
is no child element for the Name. Following are some more examples of traversing
through the XML and getting information about the nodes:

foreach (XElement node in
 LoadClassicIcecreamsFile.Elements("Icecreams"))
{
 // Value of Protein element
 Console.WriteLine("Protein : " +
 node.Element("Protein").Value + "\n");
 // Parent to Parent of Protein element
 Console.WriteLine("GrandParent of Protein Element : "
 + node.Element("Protein").
 Parent.Parent.Name.ToString() + "\n");
 // Type of Protein Element
 Console.WriteLine("Protein : " + node.Element("protein")
 .NodeType.ToString() + "\n");
 // Next node to Last Name node
 Console.WriteLine("Next node after Protein : " +
 node.Element("Protein")
 .NextNode.ToString() + "\n");
 // Last node in the Icecream
 Console.WriteLine(@"Last node in the Icecream element
 : " + node.LastNode.ToString() + "\n");
 // Value of the type attribute in teh Phone element
 Console.WriteLine("Value of the type attribute in the
 TotalFat Element : " + node.Element("TotalFat")
 .Attribute("SaturatedFat")
 .Value.ToString() + "\n");
 // Are there any attributes to the Employee element
 Console.WriteLine("Icecream Element has any attributes : " +
 node.HasAttributes.ToString() + "\n");
 }

Chapter 3

[49]

In the above example, we have many child elements under the Icecreams element.
If we have to get all the elements after a particular element, or before a particular
element, then we can use ElementsAfterSelf and ElementsBeforeSelf methods.
For example, following is the code to get all elements after the Name element and all
elements before the Protein element under the Icecreams element:

// Using ElementsAfterSelf()
string afterName = "";
string beforeProtein = "";
IEnumerable<XElement> elementsAfterName =
 IcecreamsDocument.Element("Icecreams")
.Element("Icecream").Element("Name").ElementsAfterSelf();
foreach (XElement ele in elementsAfterName)
{
 afterName = afterName + ele.Value;
}
// Using ElementsBeforeSelf()
IEnumerable<XElement> elementsBeforeProtein =
 IcecreamsDocument.Element("Icecreams")
.Element("Icecream").Element("Protein")
.ElementsBeforeSelf();
foreach (XElement eleBefore in elementsBeforeProtein)
{
 beforeProtein = beforeProtein + eleBefore.Value;
}

The return value of ElementsAfterSelf() is of the type IEnumerable by which
we can enumerate over the elements that are siblings to this node and appear after
this node in terms of XML order. The final output of the afterName string will have
information of all elements after the Name element:

<Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
and diglycerides...</Ingredients><Cholesterol>50mg</Cholesterol><T
otalCarbohydrates>35g</TotalCarbohydrates><Protein>4g</Protein>

The final output of the beforeProtein string will have the following information of
all elements before the Protein element.

<Name>Chocolate Fudge Icecream</Name><Ingredients>cream, milk, sugar,
corn syrup, cellulose gum, mono and diglycerides...</Ingredients><Chol
esterol>50mg</Cholesterol><TotalCarbohydrates>35g</TotalCarbohydrates>

LINQ to XML

[50]

Data Manipulation
Data manipulation is one of the most important steps in the application development.
Whether we deal with the relational data or XML data, we do some kind of data
manipulation for keeping the information up-to-date. Normally, we insert, update,
and delete the information. LINQ to XML provides a lot of features and methods for
XML data manipulation. As we know XElement plays an important role in LINQ as
it has many methods to add, remove, or update a node in the XML tree. We should
take care of handling the NullreferenceExceptions that occur when we try to
manipulate an element which does not exist in the XML document.

Inserting or Adding Elements to XML
Let's use the following code to create the XML file, with the details of an ice-cream. It
consists of the ice-cream's name, dietary information, and ingredients.

XDocument IcecreamsDocument = new XDocument(
 new XDeclaration("1", "utf-8", "yes"),
 new XComment("XML data Manipulation using LINQ"),
 new XProcessingInstruction
 ("Instructions", "12345-67890"),
 new XElement("Icecreams",
 new XElement("Icecream",
 new XElement("Name", "Chocolate Fudge
 Icecream"),
 new XElement("Ingredients", "cream, milk,
 sugar, corn syrup, cellulose
 gum, mono and diglycerides..."),
 new XElement("Cholesterol", "50mg"),
 new XElement("TotalCarbohydrates", "35g"),
 new XElement("Protein","4g")
)
)
);

We will save the XML file using the Save method of the XElement object
IcecreamsDocument.Save(@"C:\IcecreamsDocument.XML"); and this would
produce the following XML file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--XML data Manipulation using LINQ-->
<?Instructions 12345-67890?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>

Chapter 3

[51]

 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein>4g</Protein>
 </Icecream>
</Icecreams>

Let us see how we can include new elements to the above given Icecream element.
We can do this by calling the Add method of the XElement, and pass the new
element information as a child to the Icecream element. The first step is to create
the new XElements such as Calcium, Iron, and VitaminA.

 XElement Calcium = new XElement("Calcium", "7g");
 XElement Iron = new XElement("Iron", "6g");
 XElement VitaminA = new XElement("VitaminA", "3g");

Then we need to add these elements to the existing elements in the Icecreams
element. This step adds the Calcium content of ice-cream as the new element to
the Icecream element, which is in the Icecreams element, which in turn is inside
the IcecreamsDocument document. The Calcium element will be added as the last
element to the Icecream element.

IcecreamsDocument.Element("Icecreams")
.Element("Icecream").Add(Calcium);

Now, let us add the next element, Iron content of ice-cream to the Icecream
element, but we shall not add this at the end of the Icecream element, but just before
the Calcium element. We need to use the AddBeforeSelf method on the Calcium
element by passing the Iron element as parameter.

IcecreamsDocument.Element("Icecreams").Element("Icecream").
Element("Calcium").AddBeforeSelf(Iron);

We have added the Iron and Calcium elements to the Icecream element. This time
we have to add the VitaminA content of Icecream as an element after the Calcium
element, so that the elements will be in order. Just like we called the AddBeforeSelf
method to the Clacium element, we have to call the AddAfterSelf method on the
Calcium element and pass the VitaminA element as parameter, so that it will get
added after the Calcium element.

IcecreamsDocument.Element("Icecreams").Element("Icecream").Element
("Calcium").AddAfterSelf(VitaminA);

LINQ to XML

[52]

After adding all the above elements, the resultant XML would be as follows:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--XML data Manipulation using LINQ-->
<?Instructions 12345-67890?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein>4g</Protein>
 <Iron>6g</Iron>
 <Calcium>7g</Calcium>
 <VitaminA>3g</VitaminA>
 </Icecream>

</Icecreams>

In the previous examples, we have one Icecream element present in the XML. If we
have to add details of one more ice-cream to the above XML, we can create a new
XElement, which contains the new ice-cream details, and then add it to the main
element IcecreamsDocument. For example, let us create a new element of type
Icecream with the following details:

XElement NewIcecreamtoAdd = new XElement("NewIcecream",
 new XElement("Name", "Vanilla Icecream"),
 new XElement("Ingredients", "vanilla extract,
 guar gum, cream, nonfat milk,
 sugar,locust bean gum, carrageenan,
 annatto color..."),
 new XElement("Cholesterol", "65mg"),
 new XElement("TotalCarbohydrates", "26g"),
 new XElement("Protein", "4g",
 new XAttribute("VitaminA", "1g"),
 new XAttribute("Calcium", "2g"),
 new XAttribute("Iron", "1g")),
 new XElement("TotalFat", "16g",
 new XAttribute("SaturatedFat", "7g"),
 new XAttribute("TransFat", "9g"))
);

Chapter 3

[53]

Add the previous element to the IcecreamsDocument document as:

IcecreamsDocument.Element("Icecreams").Add(NewIcecreamtoAdd);

Now the resulting XML will contain both the ice-creams details as shown below:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!--XML data Manipulation using LINQ-->
<?Instructions 12345-67890?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum, mono
 and diglycerides...</Ingredients>
 <Cholesterol>50mg</Cholesterol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Protein>4g</Protein>
 <Iron>6g</Iron>
 <Calcium>7g</Calcium>
 <VitaminA>3g</VitaminA>
 </Icecream>
 <NewIcecream>
 <Name>Vanilla Icecream</Name>
 <Ingredients>vanilla extract, guar gum, cream, nonfat milk,
 sugar, locust bean gum, carrageenan, annatto
 color...</Ingredients>
 <Cholesterol>65mg</Cholesterol>
 <TotalCarbohydrates>26g</TotalCarbohydrates>
 <Protein VitaminA="1g" Calcium="2g" Iron="1g">4g</Protein>
 <TotalFat SaturatedFat="7g" TransFat="9g">16g</TotalFat>
 </NewIcecream>
</Icecreams>

In all the examples that we have examined until now, for adding or inserting new
elements to the exisiting XML, we saw the way in which it succeeds every time. But
what if we do not have the parent element to which we are adding the new element?
For example, let us try to add the element Iron before the element VitaminE, which
does not exist in our XML example, above.

IcecreamsDocument.Element("Icecreams").Element("Icecream")
.Element("VitaminE").AddBeforeSelf(Iron);

LINQ will try to find the element VitaminE in the XML; if not found, a
NullReferenceException will be thrown. So we need to take care of handling the
NullRefernceException.

LINQ to XML

[54]

Inserting or Adding XML Attributes
Adding attributes is similar to adding elements to the XML tree. We can use the
same functional construction to add attributes. Let us take some different XML data,
instead of the same ice-creams we saw in the previous example. Let us take different
varieties of ice-creams. We can add new attributes to the elements using the same
functional construction method we used for adding elements. The code given below
shows an example of adding attributes to the elements using functional construction.
We will add the VitaminA attribute with value 2g, Iron attribute with value 1g
to the Protein element. Similarly, we also have two attributes under the element
TotalFat. All these attributes are added at the time of adding elements.

XElement ClassicIcecreams =
 new XElement("Icecreams",
 new XElement("IcecreamOne",
 new XElement("Name", "Chocolate Fudge Icecream"),
 new XElement("Ingredients", "cream, milk, sugar,
 corn syrup, cellulose gum..."),
 new XElement("Cholesterol", "50mg"),
 new XElement("TotalCarbohydrates", "35g"),
 new XElement("Protein",
 new XAttribute("VitaminA","3g"),
 new XAttribute("Iron", "1g")),
 new XElement("TotalFat",
 new XAttribute("SaturatedFat","9g"),
 new XAttribute("TransFat", "11g"))
)
);

Suppose we wanted to add a new attribute to an existing element in an existing XML
document. There is another method of adding attributes to the XML nodes. We can
create the attribute objects and then add it to the elements, as follows:

XAttribute attrTyp = new XAttribute("Calcium", "1g");
ClassicIcecreams.Element("IcecreamOne")
.Element("Protein").Add(attrTyp);

Or we can also add the attribute, as follows:

ClassicIcecreams.Element("IcecreamOne").Element("Protein")
.Add(new XAttribute("Calcium", "1g"));

Chapter 3

[55]

It is not guaranteed that we will always add attributes to the correct elements.
Sometimes, we may make the mistake of adding attributes to an element which does
not exists in the XML document. In the next example, I will try to add the Calcium
attribute to the TotalProtein element, which does not exist in our XML document.

ClassicIcecreams.Element("IcecreamOne").Element("TotalProtein")
.Add(new XAttribute("Calcium", "1g"));

When the code is executed, we will get an exception of type
NullReferenceException. So we need to take care of these exceptions when we
manipulate the data in the XML document.

Deleting XML
We have seen inserting the XML elements and attributes. We should also be able to
delete the existing elements and attributes. Let us say we have two more ice-creams
added to the above ClassicIcecreams XML document, which we saw earlier. We
will see how to delete the IcecreamTwo element from the ClassicIcecreams XML
document.

//Deleting Elements
ClassicIcecreams.Element("IcecreamTwo").Remove();

We can use the Remove method of the element to remove a particular element. If we
want to remove all elements under a particular element, we can use RemoveAll()

ClassicIcecreams.Element("IcecreamTwo").RemoveAll();

The above code will remove all the elements under the IceCreamTwo element, but
not the IcecreamTwo element.

We can also use RemoveContent() and RemoveAnnotation() to remove the content
and annotations from the XML.

Even if we delete elements, we should take care of the NullreferenceExceptions
that will occur when we try to remove an element which does not exists in the
XML document.

LINQ to XML

[56]

Updating XML
LINQ provides many different ways to update the existing XML data. We can use
the following methods to update the elements and element values. We can change
the value of an element by using the Value property of the Element object, as
shown below:

ClassicIcecreams.Element("IcecreamTwo")
.Element("Cholesterol").Value = "69mg";

Or we can also use SetElement method to change the value of the element as
follows:

ClassicIcecreams.Element("IcecreamOne")
.SetElementValue("Protein", "5g");

We can also create a new XElement and then replace that with the one that exists in
the XML document. For example:

XElement prc = new XElement("TotalCarbohydrates", "28mg");
ClassicIcecreams.Element("IcecreamTwo").ReplaceWith(prc);

The entire name of the element can also be changed using the Name property,
as follows:

ClassicIcecreams.Element("IcecreamOne").Name = "Icecream1";

Deleting XML Attributes
Similar to deleting the XML element, we can delete the attributes using the Remove
method of the attribute object.

//Deleting attributes
ClassicIcecreams.Element("IcecreamOne").Element("Protein").
Attribute("Calcium").Remove();

In the previous statement, the Calcium attribute for the Protein element in the
IcecreamOne element is removed by calling the Remove method.

Attributes can also be removed by using the RemoveAttributes method of an
element, which will remove all the attributes under that element. The following
example will remove all the attributes under the Protein element, which is under
the IcecreamOne element.

ClassicIcecreams.Element("IcecreamOne").Element("Protein")
.RemoveAttributes();

Chapter 3

[57]

Updating XML Attributes
Similar to updating the XML element, we can update the properties of the XML
attributes. For example, the code below shows the method of updating the value
Calcium attribute under the element Protein.

//Setting Attribute value
ClassicIcecreams.Element("IcecreamOne").Element("Protein")
.Attribute("Calcium").Value = "2g";

The following code is the equivalent of the previous code with a different value:

ClassicIcecreams.Element("IcecreamOne").Element("Protein")
.SetAttributeValue("Calcium", "3g");

Outputting and Streaming XML
For saving XML details in a file, we can directly use the Save method of XElement
by passing the name of the file in which the XML has to be stored. The Save method
requires the file parameter. To save the Icecreams XML tree created earlier in a
file, we can use the following method, which saves the XML tree data to the C:\
Icecreams.xml file.

ClassicIcecreams.Save(@"C:\IceCreams.XML");

We can also use the XmlWriter for outputting the XML data into a file. For example,
following is the code which writes the XML tree after the Icecreamone element
within the Icecreams element.

 XmlWriterSettings settings = new XmlWriterSettings();
 settings.OmitXmlDeclaration = true;
 settings.ConformanceLevel = ConformanceLevel.Auto;
 settings.CloseOutput = false;
 // Write out the Icecreamone node tree
 XmlWriter writer = XmlWriter.Create(@"C:\Ice.xml",
 settings);
ClassicIcecreams.Element("IcecreamOne").WriteContentTo(writer);
writer.Flush();
writer.Close();

First we need to create the XmlWriter object that points to the XML file in which
we have to store the XML data. If required, we can change the settings for the
writer according to your needs. We need to use the WriteContentTo method on the
element from which we want the XML data to be sent to the writer. The name of the
writer object is passed as parameter to the WriteContentTo method.

LINQ to XML

[58]

Streaming XML
XML streaming is very useful when serializing objects. For example, let us say we
have an array of instances of object of type Icecream. Let us see how we can serialize
some of the objects to XML.

IcecreamList[] ListofIcecreams;

LINQ to XML provides XStreamingElement for serializing the elements directly
instead of creating the tree and then serializing it. If we use use XElement in the
case of StreamingElement, it will create the XElement tree and iteraten through
the elements. The process of creating the tree and iterating through the elements is
eliminated by using XStreamingElement. Each XStreamingElement saves itself to
the output stream. But if you see the end result, it will be the same in the cases of
XElement and XStreamingElement.

Create the class, IcecreamList, as shown below:

class IcecreamList
{
 public string flavor;
 public string servingSize;
 public double price;
 public string nutrition;
 public IcecreamList(string flv, string srvS, double prc,
 string nut)
 {
 flavor = flv;
 servingSize = srvS;
 price = prc;
 nutrition = nut;
 }
};

Now declare an array of object of type IcecreamList class and initialize.

 IcecreamList[] ListofIcecreams = new IcecreamList[2];

 ListofIcecreams[0] = new IcecreamList("Vanilla", "Half
 Cup", 11, "Calories:250");
 ListofIcecreams[1] = new IcecreamList("Strawberry", "Half
 Cup", 15, "Calories:230");

Chapter 3

[59]

Now using the XStreamingElement, serialize the objects to XML and then save it to
a file.

 XStreamingElement str =
 new XStreamingElement("ListofIcecreams",
 from cre in ListofIcecreams
 select new XStreamingElement("Icecream",
 new XStreamingElement("Flavor", cre.flavor),
 new XStreamingElement("Price", cre.price)
));
 str.Save(@"C:\streamFile.xml");

Querying XML
Querying is a very important feature of LINQ when compared to the other XML
technologies. We might have used and written a lot of SQL queries to manipulate
and use the relational data. LINQ gives us the feature of querying XML. LINQ
provides different operators that are similar to the SQL queries. We will see more
details about the query operators in Chapter 7. LINQ provides the feature of
querying details from different data models in a single query. We will see some of
those through examples in the following sections.

In LINQ, methods can also be called to perform some operations. The query
operators are the methods which can be operated on any object that implements
the IEnumerable<T> class. This way of calling query methods can be referred to as
Explicit Dot Notation.

Query Operators
We have different types of operators that we can use in LINQ on XML. We will be
seeing more of these operators in Chapter 7. In that chapter, we will see the details of
classifications and what each one of these classifications mean and the usage of each
operator. Here we will see how we can make use of these operators against XML
data. These operators are classified as follows:

Projection operators
Partitioning operators
Join operators
Grouping operators
Conversion operators
Aggregate operators

•

•

•

•

•

•

LINQ to XML

[60]

Out of all these operators, there are a few operators which are common for all
queries. They are where, select, OrderBy, GroupBy, and SelectMany.

We will see more about each one of these operators in detail, with examples in
Chapter 7, Standard Query Operators.

Queries
Let us take an example of new XML data that has details of different ice-creams.ice-creams..

XElement Icecreams =
 new XElement("Icecreams",
 new XElement("Icecream",
 new XComment("Cherry Vanilla Icecream"),
 new XElement("Flavor", "Cherry Vanilla"),
 new XElement("ServingSize", "Half Cup"),
 new XElement("Price", 10),
 new XElement("Nutrition",
 new XElement("TotalFat", "15g"),
 new XElement("Cholesterol", "100mg"),
 new XElement("Sugars","22g"),
 new XElement("Carbohydrate", "23g"),
 new XElement("SaturatedFat", "9g"))));
 Icecreams.Add(
 new XElement("Icecream",
 new XComment("Strawberry Icecream"),
 new XElement("Flavor", "Strawberry"),
 new XElement("ServingSize", "Half Cup"),
 new XElement("Price", 10),
 new XElement("Nutrition",
 new XElement("TotalFat", "16g"),
 new XElement("Cholesterol", "95mg"),
 new XElement("Sugars","22g"),
 new XElement("Carbohydrate", "23g"),
 new XElement("SaturatedFat", "10g"))));

In the above XML, we have the details of two different ice-creams. Add
some more ice-creams' details for better understandable results of the following
queries. All of the operators that we use in queries are defined under the
System.Linq namespace.

We will build a query to fetch ice-creams from the above list that have a price value
equal to 10. We will also display the results by giving the flavours in order, and all
the names in uppercase letters. Following is the query to get the result using the
where, select, and OrderBy operators. We have also used the direct method

Chapter 3

[61]

ToUpper() to change all the letters to uppercase. The result will contain a list of
ice-creams, ordered according to the flavour, as the Orderby operator is used against
the element Flavour.

XElement IcecreamsList = new XElement("IcecreamsList",
(from c in Icecreams.Elements("Icecream")
where (c.Element("Price").Value == "10")
orderby c.Element("Flavour").Value select new XElement("Icecream",
 c.Element("Flavour").Value.ToUpper())));

Let us assume the above query returns ten records. Now, if I would like to take
records from second to fifth in order, leaving the other records, we would have to
make use of the Skip() and Take() operators. The following code, shows how weoperators. The following code, shows how we
can apply these operators in the above query.

XElement NewIcecreamList = new XElement("IcecreamsList",
(from c in Icecreams.Elements("Icecream")
where (c.Element("Price").Value == "10")
orderby c.Element("Flavour").Value
select new XElement("Icecream",
 c.Element("Flavour").Value.ToUpper().Skip(1).Take(4))));

The query operators are the methods that can be operated on any objects that
implement IEnumerable<T> class. We will see how we can create an object, make it
IEnumerable, and use query operators to query the XML.

First, we'll create the class and include variables corresponding to the elements in the
XML. We'll create a constructor to initialize all the variables of the class.

class NewIcecreamList
{
public string flavor;
public string servingSize;
public double price;
public string nutrition;
public IcecreamList(string flv, string srvS,
 double prc, string nut)
{
 flavor = flv;
 servingSize = srvS;
 price = prc;
 nutrition = nut;
}
};

LINQ to XML

[62]

After creating the class, we construct a query using the above class. The query
should hold the list of ice-creams, and their details. It should be of the type
IEnumerable<IcecreamList>.

// Simple Query
IEnumerable<IcecreamList> IcrmList =
from c in Icecreams.Elements()
select new IcecreamList(
(string)c.Element("Flavor"),
(string)c.Element("ServingSize"),
(double)c.Element("Price"),
(string)c.Element("Nutrition")
);

We retrieve details of ice-creams from the IcrmList variable, which is of type
IEnumerable<IcecreamList>, and display that in a rich text box, which is added
in the form. This code will give a list of ice-creams with details such as Flavour,
ServingSize, Price, and Nutrition.

foreach (IcecreamList p in IcrmList)
Console.WriteLine(p.flavor + ":" + p.servingSize +
 ":" + p.price + ":" + p.nutrition + "\n");

If we don't have values for any element in the XML, how do we handle it? For
example, in the previous XML data, the Nutrition value is missing and whenever
the Nutrition value is empty we should display null in that. In this case, the query
would be as follows:

XElement Icecreams2 = new XElement("Icecreams2",
from c in Icecreams.Elements("Icecream")
select new XElement("Icecream",
(string)c.Element("Flavor"),
(string)c.Element("ServingSize"),
(string)c.Element("Price"),
c.Elements("Nutrition").Any() ?
 new XElement("Nutrition", c.Elements("Nutrition").ToString()):null
)
);

The Any() operator is used here to check if the element is empty, or whether there is
any value in it. If the element is not empty then return the null value. If it is present,
return the element which is similar to Nutrition with the same name.

Chapter 3

[63]

Ancestors and Descendants
These are the methods to get particular element's ancestors and the descendants
in the XML tree structure. We can get this for any element, whatever its level may
be. The first line is to get the TotalFat element from the Icecreams tree. Using the
Ancestors methods, we can get the ancestors of the TotalFat element.

XElement Totalfat = Icecreams.Descendants("TotalFat").First();
foreach (XElement ele in Totalfat.Ancestors())
{
 Console.WriteLine(ele.Name.LocalName);
 Console.WriteLine("\n");
}

Similar to Ancestors, we can also get the list of elements which are descendant
to a particular element in an XML tree. In the above examples, we have seen a lot
of descendants to the Icecreams element and also we have many descendants to
the Nutrition element. Using the following code, we can retrieve the descendant
elements of the Nutrition element in the XML tree.

XElement Nutrition = Icecreams.Descendants("Nutrition").First();
foreach (XElement ele in Nutrition.Descendants())
{
 Console.WriteLine(ele.Name.LocalName);
}

The ancestors and descendants are a very interesting feature, which helps us to
retrieve a particular type of elements from the XML tree. For example, in our XML
tree, we have different types of ice-creams. Let us say the customer wants to know
all the flavours available. In that case, we can use a simple query to list the ice-cream
flavours available, shown in the following code:

IEnumerable<string> strList =
from flv in Icecreams.Descendants("Flavor")
select (string)flv;
foreach (string val in strList)
{
 Console.WriteLine(val + " \n");
}

The list will have values like Cherry Vanilla and Strawberry.

LINQ to XML

[64]

XML Transformation
The most common way of transforming XML in any programming language is to
use XSLT. In the case of LINQ to XML, the functional construction plays a major role
in transforming the XML data. We can easily build the XML tree by fetching
details from other XML or sources of data. We will take the Icecream
list example used in the Queries section. The Icecreams list has details of
ice-creams such as Flavour, ServingSize, Price, and Nutrition; with Nutrition
having many elements in it. Using these details, let's say we want to build
another list only having the flavour and the nutrition details, and let's call the list
IcecreamsNutritionDetails. Let us see how we can build this using the functional
construction and using the Icecreams XML.

XElement IcecreamsNutritionDetails =
 new XElement("IcecreamsNutritionDetails",
from c in Icecreams.Elements("Icecream")
orderby c.Element("Flavor").Value
select new XElement("Icecream",
 c.Element("Flavor"),
 c.Element("Nutrition"))));

This query builds the IcecreamsNutritionDetails list using the details in
Icecreams XML. We only extracted details like Flavour and Nutrition. In the
above example, the IcecreamsNutritionDetails element is root of the XML, which
holds element details. The next element in the XML tree is the Icecream element,
which holds details of individual ice-cream items.

In the above example, the query fetches details from the other XML for constructing
a new XML. There could be a possibility that the same details might be required in
another part of the application. Not only that; we might need more readability to the
code that we write. In this case, we can make use of functions in the queries. We have
to break up the query and move part of the query to a function. This will also break
the complex query into simpler functions. Let us break the above query as follows:

XElement IcecreamsNutritionDetails =
 new XElement("IcecreamsNutritionDetails",
 GetIcecreamsNutritionDetails(Icecreams));

Here the root element is the same, but the construction part is moved to a function
called GetIcecreamsNutritionDetails and is used in the query. Following is the
function which constructs the elements using the Icecreams XML.

public IEnumerable<XElement> GetIcecreamsNutritionDetails(
 XElement Icecreams)
{

Chapter 3

[65]

 return from c in Icecreams.Elements("Icecream")
 orderby c.Element("Flavor").Value
 select new XElement("Icecream",
 c.Element("Flavor"),
 c.Element("Nutrition"));
 }

The return type of the function is IEnumerable of type XElement. We can break
down the queries to any level depending on its complexity.

Dictionaries
Dictonaries in .NET represents a generic collection of key/value pairs. Each element
in a dictionary is a key/value pair where the key is the unique identifier.

Convert Dictionary to XML
It is possible to convert this kind of data structure to XML, and XML as back to a
different data structure. In this section, we will see some examples of converting
dictionaries to XML and XML to dictionaries.

Below is the code sample of a new dictionary that holds names of four different
varieties of ice-creams.

// Create a new Dictionary and add different types of Icecreams
 Dictionary<string, string> dictIcecream =
 new Dictionary<string, string>();
 dictIcecream.Add("Icecream1", "Cherry Vanilla Icecream");
 dictIcecream.Add("Icecream2", "Strawberry Icecream");
 dictIcecream.Add("Icecream3", "Chocolate Fudge Icecream");
 dictIcecream.Add("Icecream4", "Banana Split Icecream");

Using LINQ we can retrieve information from the dictionary and construct an XML.
For example, following is a query that fetches information from the above dictionary
and constructs an XML tree. The key in the key/value pair of the dictionary is used
as the name of the XML element, and the value in the key/value pair is used as the
XML element value. The value is taken from the dictionary using the key.

// Create XML using XElement and get details from the above dictionary
XElement Icecreams = new XElement("Icecreams",
 from key in dictIcecream.Keys
 select new XElement(key, dictIcecream[key])
);

LINQ to XML

[66]

The Icecream element will have the full XML details fetched by the query. Now the
following code displays the Icecream element:

// display the details of the Icecreams elements
Console.WriteLine(Icecreams.ToString());

When the above code is executed, the output will be the following XML:

<Icecreams>
 <Icecream1>Cherry Vanilla Icecream</Icecream1>
 <Icecream2>Strawberry Icecream</Icecream2>
 <Icecream3>Chocolate Fudge Icecream</Icecream3>
 <Icecream4>Banana Split Icecream</Icecream4>
</Icecreams>

Create Dictionary from XML
In the previous section, we have seen the construction of XML using dictionary
data. In this section we will see how we can create a dictionary from the XML data.
Following is the code that creates the XML element, containing four different
ice-cream varieties.

// XML element containing different Icecreams
 XElement Icecreams = new XElement("Icecreams",
 new XElement("Icecream1", "Cherry Vanilla Icecream"),
 new XElement("Icecream2", "Strawberry Icecream"),
 new XElement("Icecream3", "Chocolate Fudge Icecream"),
 new XElement("Icecream4", "Banana Split Icecream")
);

The following code creates a dictionary to hold the values.

// Create a new dictionary
Dictionary<string, string> dictIcecreams =
 new Dictionary<string, string>();

Now retrieve all the element details from the Icecream element and add them to the
dictionary one-by-one. The name of the element will be the key, and the value of the
element will be the value of the key in the dictionary.

// Retrieving the detail from the above XElement and add it to the
 dictionary foreach (XElement ele in Icecreams.Elements())
 dictIcecreams.Add(ele.Name.LocalName, ele.Value);

Chapter 3

[67]

Now loop through the dictionary according to the number of keys in the dictionary
and display their details.

// Get the details from dictionary and display it to view
foreach (string str in dictIcecreams.Keys)
 Console.WriteLine(str + ": " + dictIcecreams[str]);

The output of the above code will be as follows:

Icecream1: Cherry Vanilla Icecream
Icecream2: Strawberry Icecream
Icecream3: Chocolate Fudge Icecream
Icecream4: Banana Split Icecream

Writing XML as Text Files and CSV Files
As we saw in the previous section, we can convert XML to a different data structure
and different data structure to XML. For example, the following code creates an XML
tree with Icecreams as the root element:

// Create XML Tree using XElement
 XElement ClassicIcecreams =
 new XElement("Icecreams",
 new XElement("Icecream",
 new XElement("Name", "Chocolate Fudge Icecream"),
 new XElement("Cholesterol", "50mg"),
 new XElement("TotalCarbohydrates", "35g"),
 new XElement("Protein",
 new XAttribute("VitaminA", "3g"),
 new XAttribute("Iron", "1g")),
 new XElement("TotalFat",
 new XAttribute("SaturatedFat", "9g"),
 new XAttribute("TransFat", "11g"))
));
 // Add new type of Icecream to the existing XML
 ClassicIcecreams.Add(
 new XElement("Icecream",
 new XElement("Name", "Vanilla Icecream"),
 new XElement("Cholesterol", "65mg"),
 new XElement("TotalCarbohydrates", "26g"),
 new XElement("Protein", "4g",
 new XAttribute("VitaminA", "1g"),
 new XAttribute("Calcium", "2g"),
 new XAttribute("Iron", "1g")),

LINQ to XML

[68]

 new XElement("TotalFat", "16g",
 new XAttribute("SaturatedFat", "7g"),
 new XAttribute("TransFat", "9g"))
));
// Add new type of Icecream to the existing XML
ClassicIcecreams.Add(
 new XElement("Icecream",
 new XElement("Name", "Banana Split Icecream"),
 new XElement("Cholesterol", "58mg"),
 new XElement("TotalCarbohydrates", "24g"),
 new XElement("Protein", "6g",
 new XAttribute("VitaminA", "2g"),
 new XAttribute("Iron", "1g")),
 new XElement("TotalFat", "13g",
 new XAttribute("SaturatedFat", "7g"),
 new XAttribute("TransFat", "6g"))
));

After creating the XML element, save it as an XML file under a directory using the
code below:

// Save that as an XML file
ClassicIcecreams.Save(@"C:\ClassicIcecreamsList.xml");

Check if the text file we are going to create already exists in the directory. If the file
does not exist, we will proceed with constructing the query and fetching rows. Then
we can create a text file and write into it.

// Text file to store the xml content
string path = @"c:\ClassicIcecreamsList.txt";
if (!File.Exists(path))
{
 // Load the XML file into an XElement
 XElement LoadClassicIcecreamsList =
 XElement.Load(@"C:\ClassicIcecreamsList.xml");

Using LINQ, query the XML element to fetch the records one-by-one. On fetching
the records, we have to separate the fields or values using the comma delimiter so
that we can identify fields next time we read it. To convert the XML element into
delimited strings, we have used the formatting of String object. Pass all different
element values as parameters to the format method.

Note that the following code fetches even the attribute values of the XML elements,
and passes that as strings to the Format method. The last line in the Select
statement uses the Environment.NewLine method to include a line break at the
end of each record. The aggregate operator is used to append all values of the child
elements and then format it with a comma delimiter.

Chapter 3

[69]

// Using Linq query the XElement to fetch records with the comma
 delimiter string Ice = (from el in LoadClassicIcecreamsList.
 Elements("Icecream")
 select String.Format("{0}, {1}, {2}, {3}, {4}, {5}, {6} {7}",
 (string)el.Element("Name"),
 (string)el.Element("Cholesterol"),
 (string)el.Element("TotalCarbohydrates"),
 (string)el.Element("Protein").Attribute("VitaminA"),
 (string)el.Element("Protein").Attribute("Iron"),
 (string)el.Element("TotalFat").Attribute("SaturatedFat"),
 (string)el.Element("TotalFat").Attribute("TransFat"),
 Environment.NewLine
)
).Aggregate(
 new StringBuilder(),
 (sb, s) => sb.Append(s),
 sb => sb.ToString()
);

Now we have all the XML element values as delimited strings. Using the
StreamWriter, we can write the string into a text file.

We can also create the CSV file using the File.WriteAllText method by passing
the string containing the text.

// Add all the records stored in the string Ice to the text file
 using (StreamWriter sw = File.CreateText(path))
 { sw.WriteLine(Ice); }
// Create a csv file and write all the records stored in the string Ice
File.WriteAllText(@"C:\Icecreams.csv", Ice);
}

After writing the string into the text file, the text file will contain the following text:

Chocolate Fudge Icecream, 50mg, 35g, 3g, 1g, 9g, 11g
Vanilla Icecream, 65mg, 26g, 1g, 1g, 7g, 9g
Banana Split Icecream, 58mg, 24g, 2g, 1g, 7g, 6g

Reading from CSV Files
We have seen howto create text and CSV files and write XML elements into it. Now
we will see how to get details from the CSV file and construct an XML from it. Using
the functional construction of XElement, we can easily build the XML from the CSV
data source. The only thing is, we should know the field names for the values we
have in the CSV file. The sample code below explains how to read from a file and

LINQ to XML

[70]

construct the XML. The first thing is to load the CSV file into an array of strings.
Using the query, fetch records from the strings. On fetching each record, we have to
split the strings according to the comma delimiter. So the Split method is used for
spliting the string into a field array. Then from the field array, we can take individual
fields using the array index and assign them to the corresponding XML element.

// Read all the details from CSV to string array
string[] source = File.ReadAllLines(@"C:\Icecreams.csv");
// Using Query get all the field values and assign that to elements
XElement ice = new XElement("Icecreams",
 from str in source
 let fields = str.Split(‘,')
 select new XElement("Icecream",
 new XElement("Name", fields[0]),
 new XElement("Cholesterol", fields[1]),
 new XElement("TotalCarbohydrates", fields[2]),
 new XElement("Protein",
 new XAttribute("VitaminA", fields[3]),
 new XAttribute("Iron", fields[4])),
 new XElement("TotalFat",
 new XAttribute("SaturatedFat", fields[5]),
 new XAttribute("TransFat", fields[6]))
)
);
// Save the XML tree as xml file
ice.Save(@"c:\icecreamxml.xml");

Eexecuting this code will create the icecreamxml.xml file. The contents would be
as follows:

<?xml version="1.0" encoding="utf-8"?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <Cholesterol> 50mg</Cholesterol>
 <TotalCarbohydrates> 35g</TotalCarbohydrates>
 <Protein VitaminA=" 3g" Iron=" 1g" />
 <TotalFat SaturatedFat=" 9g" TransFat=" 11g " />
 </Icecream>
 <Icecream>
 <Name>Vanilla Icecream</Name>
 <Cholesterol> 65mg</Cholesterol>
 <TotalCarbohydrates> 26g</TotalCarbohydrates>

Chapter 3

[71]

 <Protein VitaminA=" 1g" Iron=" 1g" />
 <TotalFat SaturatedFat=" 7g" TransFat=" 9g " />
 </Icecream>
 <Icecream>
 <Name>Banana Split Icecream</Name>
 <Cholesterol> 58mg</Cholesterol>
 <TotalCarbohydrates> 24g</TotalCarbohydrates>
 <Protein VitaminA=" 2g" Iron=" 1g" />
 <TotalFat SaturatedFat=" 7g" TransFat=" 6g " />
 </Icecream>
</Icecreams>

LINQ to XML Events
LINQ to XML is mainly used for manipulating and navigating through XML tree.
There are chances that many queries may try to access the same XML tree. In this
situation, we always like to be notified about changes that happens to the XML data
on which our query depends. LINQ provides the feature of associating events to
the XML. There are two types of events that can be set to the XML when there is a
change to the XML tree.

Events can be added to any instance of an XObject. The event handler will receive
the events for modifications to that XObject and any of its descendants. The
following events are raised when the XML tree is modified.

Changing—occurs just before changing the XObject or any of its
descendants.
Changed—occurs when the XObject or any of its descendants have changed.

There are different objects and types used when we work with events. These
types are used for getting the event type, information about the change, and the
information about the object that's affected by the change.

XObjectChange, provides the event type when an event is raised for
an XObject.
XObjectChangeEventArgs, provides data for the changing and
changed events.
XObjectChangeEventHandler, represents the method that will handle
the events.

•

•

•

•

•

LINQ to XML

[72]

Following is the ClassicIcecreams XML element which contains information about
an ice-cream type.

// Create a sample XML
 XElement ClassicIcecreams =
 new XElement("Icecreams",
 new XElement("Icecream",
 new XElement("Name", "Chocolate Fudge Icecream"),
 new XElement("Ingredients", "cream, milk, sugar, corn
 syrup, cellulose gum..."),
 new XElement("Cholesterol", "50mg")
)
);

For this XML tree, we will associate the changing and changed event so that we
know about any change when it happens to the XML tree.

Create the new XObjectChangeEventHandler and associate it with the changing
event of the XML element. This handler has a delegate which takes two parameters—
one is of type object, and the other is of type XObjectChangeEventArgs. So if any
change occurs to the ClassicIcecreams XML tree, this changing event fires just
before the actual change. This event will display information like the sender's name
and the operation that is making the object change. The type of the operation is taken
from the XObjetChangeEventArgs argument.

// Create a Changing event for the ClassicIcecreams
element
// Show message with details that will be changing
ClassicIcecreams.Changing += new XObjectChangeEventHandler(
 delegate(object objSender, XObjectChangeEventArgs args)
 {
 XElement eleSend = (XElement)objSender;
 MessageBox.Show("XML is Changing " + " \n " +
 " Sender: " + eleSend.Name.LocalName +
 " Operation: " + args.ObjectChange.ToString(),,
 "Changing Event");
 }
);

Create another new XObjectChangeEventHandler with the similar parameters and
types as we used for the previous example. This event handler is for handling the
changed event of the XML tree. Assign this event to the Changed event property
of the XML. This event will be fired after changing the XML tree. Here, also, we are
displaying the sender's name and the change operation that caused the event to fire.

// Create a Changed event for the ClassicIcecreams element
// Show message with the details that got changed
ClassicIcecreams.Changed += new XObjectChangeEventHandler(

Chapter 3

[73]

 delegate(object objSend, XObjectChangeEventArgs args)
 {
 XElement eleSend = (XElement)objSend;
 MessageBox.Show(" XML Changed " + "\n " +
 " Sender: " + eleSend.Name.LocalName +
 " Change: " + args.ObjectChange.ToString(), "Changed Event");
 }
);

Now create a new XML element which has the same number of elements and
attributes. We will use this new element to raise events on the original
XML element.

// Create a new XML element
XElement NewIcecream = new XElement("Icecream1",
 new XElement("Name", "Vanilla Icecream"),
 new XElement("Ingredients", "vanilla extract, guar gum,
 cream, nonfat milk, sugar, locust bean gum, carrageenan,
 annatto color..."),
 new XElement("Cholesterol", "65mg")
);

Now add the new element to the existing ClassicIcecream element so the event
gets fired.

 // Add the new element to the ClassicIcecreams so that
 the events get fired
 ClassicIcecreams.Add(NewIcecream);

At once, when we try to add new elements to the existing ClassicIcecream
element, the changing event fires just before the change happens. The raised event
will show a message similar to the one below:

 // Remove an element from the ClassicIcecreams element so
 that the events get fired
 ClassicIcecreams.Element("Icecream").Remove();
}

XML Literals and Embedded Expressions
in Visual Basic
Visual Basic supports XML to be added to the code by XML literals. This makes it
easier to create XML elements, documents and fragments as we have the code and
XML together without any additional dependency. Visual Basic compiles the XML
Literals to LINQ to XML Objects. LINQ to XML provides a simple object model by
which we can manipulate the XML data.

LINQ to XML

[74]

The following code shows a sample of XML literals added to the Visual Basic code
which gives a LINQ to XML XElement object. We just have to type or copy the XML
directly to the code section. An XML literal does not require a line continuation
character. This helps us copy the XML into code without any changes or updates
to the XML. If we add the line continuation character to the XML, the compiler will
treat the line continuation character as part of the XML. In this example, we have not
used any line continuation character in the XML literal.

Dim raisinIcecream As XElement = _
<Icecream>
 <Name>Rum Raisin Ice Cream</Name>
 <Ingredients>Rum, guar gum, milk, alomnds, sugar,
 raisins, honey, chocolate, annatto color...</Ingredients>
 <Cholesterol>49mg</Cholesterol>
 <TotalCarbohydrates>28g</TotalCarbohydrates>
 <Protein VitaminA="2g" Iron="4g">6g</Protein>
 <TotalFat SaturatedFat="5g" TransFat="3g">8g</TotalFat>
</Icecream>

Visual Basic also provides an additional feature of adding expressions to XML
literals. This helps us to add dynamic content to the XML literal. For example, the
following XML literal uses embedded expressions to crate the XML element from the
parameter values passed to the method. When we add expression to the literal, we
also get the IntelliSense help from Visual Studio to easily select the elements.

Chapter 3

[75]

Following is the sample of an XML, created by passing the values to
CallIcecreamsEmbedded, which returns the XElement.

The expressions value can be a simple text, or it can be a query. The query can be
used to build the XML and the result can be an XML literal. The following code
shows a sample of an XML literal which uses the query in expressions to build XML
by fetching details from the Icecreams XML.

Dim Icecreams1 As XElement = _
<Icecreams>
 <%= From c In Icecreams.Elements("Icecream") _
 Select New XElement("Icecream", _
 c.Element("Name").Value.ToUpper()) %>
</Icecreams>

Summary
In this chapter, we saw information and examples on programming with LINQ to
XML. We have seen the advantages of Functional Construction in constructing the
XML tree and navigating through the XML tree. We also manipulated the XML data
in the XML tree using XElement and XAttribute object properties. We saw some
examples for querying the XML using LINQ provided query operators. We also
learned importing and exporting data from different data sources like dictionaries,
databases objects, and CSV files. Lastly we saw different events that can be fired
when modifying the XML tree. With all these features provided by LINQ to XML,
we can easily manipulate XML data through .NET code.

LINQ to SQL
LINQ to SQL takes care of translating LINQ expressions to equivalent T-SQL and
passing it on to the database for execution and then returning the results back to the
calling application by tracking changes made to the objects. LINQ to SQL reduces
a lot of programming time. It comes with two different design time tools which are
used for converting the relational database objects into object definitions.

LINQ to SQL, not only provides the feature of querying or referring to the relational
objects, but it also has the ability to create a database and database objects. In this
chapter, we'll examine some of the features that are involved in creating the entity
objects, populating data to the database tables, querying and manipulating data in
the database, and so on.

Working with Databases Using
DataContext
DataContext is an object that corresponds to the relational database object by which
all other objects are referred to or accessed. It takes a string or a connection object
that implements IDbConnection as the parameter to connect to a particular database
object. It takes care of translating the Language Integrated Queries into T-SQL
queries to execute against the SQL Server 2000 or 2005 database, and then translating
the results back to the calling application.

We can have the strongly typed DataContext, which has the definition of all objects
in the database. It's not only used for accessing existing tables of the database, but is
also for creating a new database. DataContext is a collection of all the objects of
the database.

LINQ to SQL

[78]

Following is the code example that refers to the Icecreams database and then points
to the Categories table:

DataContext dataCon = new DataContext("Data Source=.\sqlexpress;
Initial Catalog=IceCreams; Integrated Security=true");

This DataContext is not strongly typed; so, if we want to refer to a table in the
database, we should use the GetTable method of the DataContext, and then refer to
a table.

Table<Categories> categories = dataCon.GetTable<Categories>();

To avoid using this method of referring to the database table, we can use strongly
typed DataContext:

IceCreams dataBase = new IceCreams("Data Source=.\
sqlexpress;Initial Catalog=IceCreams;Integrated Security=true");

We can make use of the web.config or app.cofig, depending on whether the
application is web-based or desktop-based, to store the connection string and
referring to that for the connection string parameter. The dataBase data context as
shown in the above code, is a strongly typed DataContext which has all the table
collections declared in it. A sample of the DataContext would look like this:

public class IceCreams: DataContext
{
 public Table<Categories> Categories;
 public Table<Items> Items;
 public IceCreams(string connection) : base(connection) {}
}

The queries which use the above DataContext can directly point to the database
tables without using the GetTable method.

The Icecreams DataContext contains three different table collections declared in it.
All three tables should have it's definition with columns and it's attributes.

Before we go into details of other properties of DataContext, we will see what are
entity classes and how we can use that to refer to the database objects.

Entity Classes
Entity classes are the objects which represent the database tables. In the previous
example, the table collections of the Icrecreams data context, contain three tables for
which we need to add the definitions of each table with its columns and its attributes.

Chapter 4

[79]

System.Data.Linq.Mapping is the namespace that contains the definition for all the
attributes. We have to include this in the project to specify the attributes.

The definition of the Categories table would look like this:

[Table(Name = "Categories")]
 public class Categories
 {
 private int categoryID;
 private string category;
 private string description;
 [Column(Name= "CategoryID", IsPrimaryKey=true,
 IsDbGenerated=true, DbType="int NOT NULL
 IDENTITY",CanBeNull=false)]
 public int CategoryID
 {
 get { return categoryID; }
 set { categoryID = value; }
 }
 [Column(Name="Category", DbType="nvarchar(1000)")]
 public string Category
 {
 get { return category; }
 set { category = value; }
 }
 [Column(Name="Description", DbType="nvarchar(1000)")]
 public string Description
 {
 get { return description; }
 set { description = value; }
 }

 }

The class should be defined with the Table attribute with theattribute with the Name property. The
Name property value corresponds to the database table name. If not specified, it is
assumed that the table name is same as the class name. Once the table is defined, the
fields or columns of the table should be defined similarly. To define the columns,
a name should be given, and in addition to that, we should also specify the exact
type of the table column which corresponds to the T-SQL column declaration. There
are other properties like IsDbGenerated to mention the field value that is auto-
generated during record insertion.

All these properties are the same as the properties, declared by the T-SQL for the
database objects. Some properties like type o�� the column o�� the column and IsDbGenerated
should be specified only while creating a new database.

LINQ to SQL

[80]

The instances of classes declared as tables can be stored in the database. These
instances are called entities, and the classes are called entity classes.

We will define the Items entity as follows:

[Table(Name = "Items")]
 public class Items
 {
 [Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated =
 true, DbType = "int NOT NULL IDENTITY", CanBeNull = false)]
 public int ItemID;
 [Column(Name = "CategoryID")]
 public int CategoryID;
 [Column(Name = "Name", DbType = "nvarchar(1000)")]
 public string Name;
 [Column(Name = "Ingredients", DbType = "nvarchar(1000)")]
 public string Ingredients;
 [Column(Name = "ServingSize", DbType = "nvarchar(1000)")]
 public string ServingSize;
 [Column(Name = "TotalFat", DbType = "int")]
 public int TotalFat;
 [Column(Name = "Cholesterol", DbType = "int")]
 public int Cholesterol;
 [Column(Name = "TotalCarbohydrates", DbType = "int")]
 public int TotalCarbohydrates;
 [Column(Name = "Protein", DbType = "int")]
 public int Protein;
 }

All tables may not have auto-generated key fields. If the table has an auto-generated
field, the insert operation should not insert any value to the field which has the
IsDbGenerated property, set to true. In this case, we can restrict assigning values
to the table columns. All columns should be defined as properties of the entity
class. The identity or auto-generated column should not have any definition for
the set method which will avoid setting any values to the property. Following is
an example for creating the same Item class as above, but using smart properties.
Smart properties are auto-implemented properties that do not have any private fields
declared specifically.

[Table(Name = "Items")]
 public class Items
 {
 [Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated =
 true, DbType = "int NOT NULL IDENTITY", CanBeNull = false)]
 public int ItemID { get; private set;
 }
[Column(Name = "CategoryID")]

Chapter 4

[81]

 public int CategoryID { get; set; }
[Column(Name = "Name", DbType = "nvarchar(1000)")]
 public string Name { get; set; }
[Column(Name = "Ingredients", DbType = "nvarchar(1000)")]
 public string Ingredients { get; set; }
[Column(Name = "ServingSize", DbType = "nvarchar(1000)")]
 public string ServingSize { get; set; }
[Column(Name = "TotalFat", DbType = "nvarchar(1000)")]
 public string TotalFat { get; set; }
[Column(Name = "Cholesterol", DbType = "nvarchar(1000)")]
 public string Cholesterol { get; set; }
[Column(Name = "TotalCarbohydrates", DbType = "nvarchar(1000)")]
 public string TotalCarbohydrates { get; set; }
[Column(Name = "Protein", DbType = "nvarchar(1000)")]
 public string Protein { get; set; }
}

Attributes
We have seen some attributes and their properties for creating entity classes. There
are a lot of other attributes and properties that support the creation of entity classes.
These attributes are used by LINQ to SQL to create corresponding SQL queries in
the database that relate to the entity objects. All attributes are defined in the System.
Data.Linq.Mapping namespace.

Database Attribute
The database attribute is an attribute that specifies the database into which we
should look for the objects and data. The database can also be specified by the
connection. But if it is not specified by the connection, by default the name specified
by the attribute will be taken as the database. This attribute can be applied on
strongly-typed DataContext. Database attribute has a Name property which gives the
name for the database.

[Database(Name="Deserts")]
 public class Deserts: DataContext
 {
 public Table<Categories> Categories;
 public Table<Items> Items;

The Database attribute is optional here. Deserts is the name of the database. If this
attribute is not specified, by default the name of the Deserts DataContext class will
be taken as the name of the database.

It is always better to use a connection string to connect to a specific database. The
above example illustrates the usage of databasedatabase attribute in LINQ to SQL.

LINQ to SQL

[82]

Table Attribute
This is similar to database attribute. It refers to the individual table or view in the
database. It can be applied on the entity class, which can refer to the database table
or view.

[Table(Name="Categories")]
public class Categories
 {
 [Column(Name= "CategoryID", IsPrimaryKey=true,
 IsDbGenerated=true, DbType="int NOT NULL IDENTITY",
 CanBeNull=false)]
 public int CategoryID{ get ; private set ; }
 }

Categories is the entity class on which the Table attribute is applied, to specify the
corresponding database table objects. If the attribute is not specified, the class will be
taken by default as the table.

All classes that have the table attribute defined are considered as persistent classes
by LINQ to SQL. The mapping is done for a single table only. Each entity class must
be mapped to only one class. We cannot have multiple classes mapping to the same
table in the database.

It is always good practice to use the same name as the database table for the entity
class, or leave the name of the table attribute undefined and give the same class name
to the database table object.

Column Attribute
In the Categories entity class given previously, we have a CategoryID column
which represents the actual column of the database table. But to specify what type
of column it is and what the behaviour of the column should be, we have different
properties for the column attribute.

Property Description
Name This property is used to specify the name of the column. This

property is optional. It takes the class member name as default
if the name property is not mentioned.

Storage This property is used to specify the variable or the object in
which the column value is stored. By default, all the values
are set by the public property of the class member. Using this
property, we can directly access the storage member and can
override the access method.

Chapter 4

[83]

Property Description
DbType This specifies type of the database column. It is the same as the

text used to define the column using T-SQL. If not specified,
the same type will be taken as the one defined by the member
of the entity class. DLINQ will take care of converting it to the
equivalent T-SQL type.

IsPrimaryKey This is a boolean property that specifies whether the column
is a key column for the table or not. Each table will have a
primary key that is unique to identify the table rows. This
property is set to true if it is a part of the primary key. If more
than one member has this property set to true, it means that the
members are a part of the composite primary key.

IsDbGenerated Usually, primary key values of the tables are auto-generated. It
means that the value will be generated by the system whenever
there is a new row inserted to the table. This property can be
applied to the database column which has the primary key
property set to true.

IsVersion This is to specify the timestamp property of the column. The
column having the timestamp property shows the version of
the row. On every update that happens to a row of the table,
the timestamp will get updated with a new value.

updateCheck This is to detect the conflicts by optimistic concurrency. There
is a timestamp or IsVersion=true property which gives
the version of the row to identify the conflict. In case none
of the columns are specified as IsVersion=true, then the
version has to be identified by comparing the old value with
the current value of the column/member. To specify which
member should be used for detecting the conflicts by LINQ to
SQL, the member should be given an updateCheck value. It
has three different enumerated values.

Always—always use this column for conflict detection.
Never—never use this column for conflict detection.
WhenChanged—use this column only when the value
is changed by the application.

•
•
•

IsDiscriminator This boolean value determines if the member holds a
discriminator value for a LINQ to SQL inheritance hierarchy.

CanBeNull This value can be set to true or false to indicate whether the
column allows a null value or not.

TypeId This is used to get the unique identifier when implemented in
the derived class.

Expression This is used to define the column which is a computed column
in the database.

LINQ to SQL

[84]

We have used different attributes and properties for members of the entity classes to
define the database tables and the classes.

[Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated = true,
DbType = "int NOT NULL IDENTITY", CanBeNull = false)]
public int ItemID { get; private set;}

The previous code shows the definition of the class member ItemID. It defines the
ItemID as a primary key and is auto-generated. It also specifies that the member is
an identity column of type integer and is an identity.

The column can also be specified as a property of the entity class. The value is stored
in the private variable while the property is a public property. We can control the
access of the member value by defining the storage as private. The set method
definition for the property is present even though it is an auto-generated value.
This is because the auto-implemented properties should define both get and set
properties, shown as follows:

[Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated = true,
DbType = "int NOT NULL IDENTITY", CanBeNull = false)]

public int ItemID { get; private set}

Association Attribute (Foreign Keys)
The association attribute refers to the relationship between tables, using foreign keys.
Association property represents a single reference or collection of references to entity
classes. These properties are given as follows:

Property Description
Name This property specifies the name of the property. This is same as the

name that gets generated when we define the relationship between
the tables in SQL Server Database. This name distinguishes the
multiple relationships between the entity classes.

Storage This is similar to the storage of the column attribute. It is also used to
specify the name of the storage member for the property. It is used
to directly interact with the value instead of going through the
public property.

ThisKey This property has a list of names of one or more members of the
entity class that are a part of the relationship on this side of the entity
class. If the members are not specified, the primary key members are
taken as default for the relationship.

OtherKey This property is similar to the Thiskey property but on the other
side of the entity that makes up the relationship.

Chapter 4

[85]

Property Description
IsUnique This is to impose a unique constraint on the foreign key to have a

one-to-one relationship.
IsForeignKey This specifies the member as a foreign key in the association

relationship.

Relationships
In relational databases, tables are linked to each other by a relationship called
��oreign keys. This will bring the parent-child relationship between the tables. LINQ
to SQL supports the creation of foreign keys between tables with the attribute called
association. This association also brings the master detail relationship between
the tables.

In the earlier section Entity Classes, we saw the concept of creating entity classes
by creating Categories and Items classes. With these classes, we can create the
database. We can say that each item in the Item table comes under a particular
category. So here, Categories is the master for the Items detail table in the
database. To represent that, we have foreign key relationships between the tables in
the database. The same foreign key relationships should also be represented between
these two classes. This can be done using EntitySet and EntityRef properties.

Since the relationship is one-to-many between Categories and Items table, the
Categories entity class should have an EntitySet property for Items. EntitySet
is a property which represents the set of entities that is of the same entity type. Here,
Items is an entity set which represents the set of items that belongs to a category
entity. This property should have the association attribute defined. This attribute
defines the relationship between tables.

EntityRef is a property that represents the other end of a relationship. We have set
the Items as EntitySet within the Categories entity class. The other side of the
relationship, that is, the Items entity class, should also define its relationship
with the Categories entity. EntityRef is used for giving the reference between the
entity classes.

LINQ to SQL

[86]

[Table(Name="Categories")]
public class Categories
{
 [Column(Name = "CategoryID", Id=true, AutoGen=true,
 DBType="int NOT NULL IDENTITY")]
 public int CategoryID;

 [Column(Name = "Category", DBType="nvarchar(1000)")] //,
 UpdateCheck=UpdateCheck.Always)]
 public string Category;
 [Column(Name="Description", DBType="nvarchar(1000)")] // ,
 UpdateCheck=UpdateCheck.Always)]
 public string Description;
 private EntitySet<Items> _Items;

 [Association(Storage="_Items", OtherKey="CategoryID")]
 public EntitySet<Items> Items
 {
 get { return this._Items; }
 set { this._Items.Assign(value); }
 }
 public Categories() { this._Items = new EntitySet<Items>(); }
}
[Table(Name="Items")]
 public class Items
 {
 [Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated =
 true, DbType = "int NOT NULL IDENTITY", CanBeNull = false)]
 public int ItemID { get; private set; }
 [Column(Name = "CategoryID")]
 public int CategoryID { get; set; }
 [Column(Name = "Name", DbType = "nvarchar(1000)")]
 public string Name { get; set; }

 [Column(Name = "Ingredients", DbType = "nvarchar(1000)")]
 public string Ingredients { get; set; }
 …
 …
 …
 [Association(Storage = "_Categories", ThisKey = "CategoryID")]
 public Categories Categories
 {
 get { return this._Categories.Entity; }
 set { this._Categories.Entity = value; }
 }

 public Items() { this._Categories = new
EntityRef<Categories>(); }

Chapter 4

[87]

You can see the EntitySet<Items> private variable, which refers to the detail, entity
class Items. The definition for the entity set has the association attribute added to it.
This attribute has the property, OtherKey, added to it. It refers to the primary key in
the database table which corresponds to this entity class, and is compared with the
related entity class. There is also a property called ThisKey which refers to the key
field in the current table. If not specified, it automatically refers to the primary key of
the table.

The Items table, will refer back to the Categories table using the EntityRef class.
The association attribute of the Categories property has the ThisKey attribute
which refers to column on this entity class. The attribute also has a property called
Storage that shows which private member holds the value of the property. If not
specified, the public accessor will be used by default. This is also used by the
column property.

Both the entity classes have a constructor which is defined to create the EntitySet
object in the Categories class, and to initialize the EntityRef object in Items
entity class.

Function Attribute
This attribute is to specify the method in the DataContext which will be translated as
a call to a database stored procedure or a user defined function. This attribute has the
parameter which specifies the name of the actual database stored procedure or user-
defined function.

Property Description
IsComposable This is a boolean value.

False indicates mapping to a stored procedure in
the database.

True indicates mapping to a user-defined
function in the database.

Name This is of type string which represents the name
of the stored procedure or the user-defined
function in the database.

LINQ to SQL

[88]

Parameter Attribute
This attribute is used to refer to the parameters of the stored procedure or function in
the database. This attribute has two properties:

1. Name—specifies the name of the parameter, stored in a procedure or a
function in the database. If not specified, the parameter is assumed to have
the same name as the method parameter. In the example given under the
stored procedure attribute section, the method has the parameter attribute
with the name as Category and the method has a parameter Category.

2. DbType—this is to specify the type of the parameter. If not specified, it will be
translated according to the type specified by the method parameter.

Inheritance Mapping Attribute
This represents the inheritance hierarchy for the entity classes. Classes can inherit
from another class. Inherited classes, or derived classes, take advantage of gaining
all the non-private data and characteristics of the base class they are derived from.
A derived class also includes its own data and characteristics. Now the derived class
can be represented by its own type as well as by base class type. Following is an
example for inheriting a class from a base class.

public class BaseClass
{
 public BaseClass() { }
}

public class DerivedClass : BaseClass
{
 public DerivedClass() { }
}

The entity classes used in LINQ to SQL can have the same inheritance mapping to
achieve the previous inheritance facility. The InheritanceMapping attribute is used
for mapping classes for inheritance hierarchy.

Now let us say we have the Items table that can contain different item
types, like Cakes and Icecreams. If we want to keep the two items having
different characterestics separately in the base Items table, we can have the
InheritanceMapping attribute to map these classes in the inheritance hierarchy. to map these classes in the inheritance hierarchy.

[Table(Name="dbo.Items")]
[InheritanceMapping(Code="Icecreams", Type=typeof(Icecream))]
[InheritanceMapping(Code="Cakes", Type=typeof(Cake))]
public partial class Item : INotifyPropertyChanging,
INotifyPropertyChanged

Chapter 4

[89]

 {
 [Column(Storage="_CategoryName", DbType="NVarChar(50)",
 IsDiscriminator=true)]
 public string CategoryName
 {
 get{}
 set{}

}

In the previous code, the Table attribute shows the name of the base class which
is the base table. The InheritanceMapping attribute, maps the classes which are
derived or inherited from the base Item class. All classes that are mapped to the
inheritance hierarchy must be mapped to a single table.

There is a property called IsDiscriminator set to true for the column
CategoryName in the base classin the base class Item. This is to denote the base class property which
discriminates the inherited classes. It means that the value of the CategoryName
field denotes which class to instantiate at runtime. There is another property called
IsDefault which can be set to true and assigned to any of the classes. It means that
whichever class has this default property set to true, will be the default class if
the discriminator value does not match with any of the expected values for the
derived classes.

Creating and Deleting Databases
In the above section, we have seen the usage of DataContext and the Table
collections for the DataContext. In the previous examples, we have named the
DataContext as Deserts with two different table collections as Categories and
Items. The entity classes represent these two tables and columns through the
properties, types and attributes used. Using these details, we can easily create a
new database and delete the existing database with the methods supported by
DataContext object. While creating the database, it is not possible to create all types
of the database objects, like user defined functions and stored procedures. LINQ
to SQL does not support creation of stored procedures and functions, but it can
reference it and execute it. Creating these kinds of databases is useful in situations
like creating the database objects while deploying the application. We can also have
runtime entity classes and create the equivalent database object using LINQ to SQL.
DataContext has a method called CreateDatabase, which will create a database at
the location specified by the connection string, which is passed as a parameter to the
DataContext object. For example, create the typed DataContext object that points to
the local SQL server and has the table collections.

LINQ to SQL

[90]

private void btnCreateDatabase_Click(object sender, EventArgs e)
{
 Deserts db = new Deserts("Data Source=.\sqlexpress;Initial
 Catalog=Deserts;Integrated
 Security=true");
 if (!db.DatabaseExists())
 {
 db.CreateDatabase();
 }
}
public class Deserts: DataContext
{
 public Table<Categories> Categories;
 public Table<Items> Items;
 public Deserts(string connection) : base(connection) {}

}

Define the tables the same way as the one given in the previous section.
DatabaseExists is a method, used to check if any database with the same
name already exists in the server or not. The CreateDatabase method takes the
responsibility of creating the new database in the server specified in the connection
string. DeleteDatabase is a method of the DataContext which deletes the existingDataContext which deletes the existing which deletes the existing
database from the server.

if (db.DatabaseExists())
{
 db.DeleteDatabase();

}

DataContext Methods
Using DataContext, we not only can refer to the databases, but also to many of the
objects within the database. There are different methods which support
this feature.

Chapter 4

[91]

Method Description
DeleteDatabase Deletes an existing database from the server. The database is

identified by the connection string used in the DataContext.DataContext..
CreateDatabase Creates a new database in the server.
DatabaseExists Returns true if the database already exists and if the attempt to

open the database succeeds.
ExecuteCommand This method is very useful for executing any command at the

database server. It returns the number of rows affected. The
signature of the ExecuteCommand looks like this:

public int ExecuteCommand(string command, params
object[] parameters);

Parameters can be passed to ExecuteCommand in the form of
parameter objets if the database object requires any parameters for
execution.
An exception is thrown if the number of parmeters in the
parameter array is less than what is expected by the
command string.
If any of the parameters is null, it is converted as DBNull value

ExecuteQuery This method is used for executing an SQL Query. It returns output
as objects which match to the entity objects. Parameters can also
be passed to the Query.

public ExecuteQuery<Object>(string command,
params object[] parameters);

GetChangeSet This returns the modified objects from the collection of objects
in DataContext. This operation returns three different read-onlyDataContext. This operation returns three different read-only. This operation returns three different read-only
collections such as:

public IList<object> AddedEntities { get; }
public IList<object> RemovedEntities { get; }
public IList<object> ModifiedEntities { get; }

The disadvantage is that the returned collections will have the
following constraints:

It will not return database-generated values like
timestamps, primary and foreign keys. It requires a
separate command execution.
The changed object set is computed at the time of
the call only.

•

•

LINQ to SQL

[92]

Method Description
GetCommand This command provides IDbCommand with its parameters.

This method is to get the command. It does not affect the
DataContext state. state.
Argument exception is thrown if the argument is null. It returns
only the first query command and it does not return additional
commands.

GetHashCode This method is useful for hashing algorithms and data structures
as hash tables. It returns an integer for the current object it is
called from, but does not guarantee to be unique.
Objects used as keys in the Hashtable object must override the
GetHashCode method.

GetType Returns the runtime type of the current instance of the object.
GetTable This method is to refer to any of the database table. It returns the

result as an object which corresponds to the entity object defined.
This method is very useful for strongly typed DataContext.DataContext..

Refresh This method refreshes the state of the object with the data in the
database. It refreshes the fields and properties of the object.

SubmitChanges Any changes made using the entity objects through the
DataContext object should be sent back to the database server object should be sent back to the database server
to restore the data. This SubmitChanges method takes care of
sending the modified objects to be inserted, updated, deleted, and
executes the appropriate command to update back to the database.

After creating the database, the table object would look like the following:

Chapter 4

[93]

Data Manipulation
We have seen how to create the tables for storing data. LINQ to SQL supports data
manipulation through entity classes. Assigning values or changing values are similar
to what we do with normal classes. LINQ to SQL tracks all the changes that happen
to entity class objects and sends the data back to the database. For the tables we
created in the above sections, we will try to insert records one-by-one. First, we will
see how to insert records to the Categories table. As we named the database as
Deserts, they are of a different category such as Icecreams, Cakes and Snacks. The
following method shows the sample code for inserting these three desert categories
into the Categories table:

// Create different varieties of deserts such as Icecreams, Cakes and
snacks
private void CreateCategories()
 {
 Deserts dataBase = new Deserts("Data Source=.\sqlexpress;Initial
 Catalog=Deserts;Integrated
 Security=true");
// Icecreams
Categories icecreams = new Categories
{
 Category = "Icecreams",
 Description = "Icecreams Varieties"
};
dataBase.Categories.Add(icecreams);
// Cakes
Categories cakes = new Categories
{
 Category = "Cakes",
 Description = "Cakes Varieties"
};
dataBase.Categories.Add(cakes);
// Snacks
Categories snacks = new Categories
{
 Category = "Snacks",
 Description = "Snacks Varieties"
};
dataBase.Categories.Add(snacks);
dataBase.SubmitChanges();

LINQ to SQL

[94]

the above method, CreateCategories first creates a DataContextDataContext dataBase
object of type Deserts and points to the existing database in the server. Using the
Categories entity class, define the categories of Deserts and add it to the dataBase
data context. After adding all the categories, submit it to the database using the. After adding all the categories, submit it to the database using the
SubmitChanges method, which converts these entity objects to the equivalent SQL
commands and executes at the database level.

We have created categories, and inserted records into the database. Now we have to
create items for each category, which makeup the details table for the Categories
master table. While creating the item table, we should also pass the corresponding
categoryID, which is the auto-generate field of the Categories table. In order to
get the categoryID, we have to create the Category entity class using the dataBase
data context by comparing the category value. Following is an example for creating
items for the category Icecreams:

private void CreateItemsforIcecreams()
 {
 Deserts dbDeserts = new Deserts("Data Source=.\sqlexpress;Initial
 Catalog=Deserts;Integrated
 Security=true");
// Query for a specific category
string category = "Icecreams";
var icecreams = dbDeserts.Categories.Single(c => c.Category ==
 category);
// Add Item1
Items item1 = new Items
{
 CategoryID = icecreams.CategoryID,
 Ingredients = "cream, milk, sugar, corn syrup, cocoa and chocolate
 liquor, whey, cellulose gum, mono and diglycerides,
 carrageenan, polysorbate 80,
 carob bean gum, guar gum",
 Name = "Chocolate Fudge Icecream",
 ServingSize = "4oz Scoop (113 grams)",
 Protein = "4g",
 TotalCarbohydrates = "35g",
 TotalFat = "15g",
 Cholesterol = "50mg"
};
icecreams.Items.Add(item1);
// Add Item2
Items item2 = new Items
{
 CategoryID = icecreams.CategoryID,

Chapter 4

[95]

 Ingredients = "corn syrup, vanilla extract, guar gum, cream,
 nonfat milk, sugar, mono & diglycerides,
 locust bean gum, carrageenan, annatto color",
 Name = "Vanilla Icecream",
 ServingSize = "4oz Scoop (113 grams)",
 Protein = "4g",
 TotalCarbohydrates = "26g",
 TotalFat = "16g",
 Cholesterol = "65mg"
};
icecreams.Items.Add(item2);
dbDeserts.SubmitChanges();
}

In the above example, we have a variable called category initialized with the value
Icecreams. This value is used for filtering the record from theThis value is used for filtering the record from the Categories table.
The record in which the value of the field category equals the value of the variable
category will be returned to the caller and is stored in the object icecreams. Using
this object, we can easily retrive all the column values including the CategoryID,
which got generated during the insertion of this category record. Now using this
CategoryID and the Item entity class, we can easily insert records into the
Items table.

It is not that we will be inserting records to the tables, all the time. Many times we
might need to modify the column values or delete the entire record itself. Let us see
how we can update the value of a column in the Category table and delete an item
from the Item table.

The following example picks the category from the Categories table where the
value of the field category is equal to Icecreams. After picking the value of the
entity object, the description of the object is modified to a new value. Similar to this,
the item which has the name Vanilla Icecream is taken into the entity object of
type Items and then removed from the list of items available for this category. After
making the changes, all the changes are sent back to the database for updating using
the SubmitChanges method. Refer to the following code:

private void ModifyIcecreamCategoryandDeleteanItem()
{
 Deserts dbDeserts = new Deserts("Data Source=.\sqlexpress;Initial
 Catalog=Deserts;Integrated
 Security=true ");
 // Query for a specific category
 string category = "Icecreams";
 Categories icecreams = dbDeserts.Categories.Single
 (c => c.Category == category);

LINQ to SQL

[96]

 icecreams.Description = "Modified Description for
 Icecream Category";
 foreach (Items item in icecreams.Items)
 {
 if (item.Name == "Vanilla Icecream")
 icecreams.Items.Remove(item);
 }
 dbDeserts.SubmitChanges();
}

LINQ to SQL Queries
We have created the database, and database tables using entity classes and LINQ to
SQL. We have also seen how to manipulate data using database table objects. Using
the same database, we will see how to query the database. We have seen a lot of SQL
queries in day-to-day programming for fetching records from the database objects.
These queries would have been written using the SQL stored procedures, or as
strings in .NET and passed as text command to the database server for execution and
returning the result.

For example, fetching the items information from the database requires writing
SQL statements, creating a command object and executing the SQL query through
command objects. An SQL query is not LINQ query, but it is a T-SQL query. We
have to depend on so many .NET objects to fetch the information from a database.
The developer who writes code should also be aware of the T-SQL statements.
Following is the code to fetch the item information from the database using T-SQL:

{
 string queryString =
 "SELECT CategoryID, Name, ItemID, Ingredients, ServingSize,
 TotalFat, Cholesterol, TotalCarbohydrates, Protein FROM Items
 WHERE (CategoryID = 1)";
 using (SqlConnection connection = new SqlConnection(
 "Data Source=.\sqlexpress;Initial Catalog=
 Deserts;Integrated Security=true"))
 {
 SqlCommand command = new SqlCommand(
 queryString, connection);
 connection.Open();
 SqlDataReader reader = command.ExecuteReader();
 try
 {
 while (reader.Read())
 {

Chapter 4

[97]

 Console.WriteLine(String.Format("{0},
{1}", reader[0], reader[1]));
 }
 }
 finally
 {
 reader.Close();
 }
 }
 }

LINQ to SQL queries can be used in situations where we have to build and execute
a query from the front end application. By this, we can avoid building SQL query
strings. For example, the following code fetches records from the Items table were
the category is equal to Icecreams. This is an equivalent of the previous example for
fetching the items' information using T-SQL queries in .Net 1.1 and
2.0 Framework.

private void SampleQueries()
 {
 Deserts db = new Deserts("Data Source=.\sqlexpress;Initial
 Catalog=Deserts;Integrated Security=true ");
 var icecreams = from ice in db.Items
 where ice.CategoryID == 1
 select ice;
 foreach (var itms in icecreams)
 {
 System.Console.Writeline(itms.Name) ;
 }

 }

CategoryID for the icecreams category items is passed as the parameter to the
where clause of the query where it will match the items and then retrieve the records.
The query is just an expression against the variable of type Items. Here the variable
icecreams is actually of type Item. The actual query will get executed when theThe actual query will get executed when the
foreach statement is called. This is similar to the command object in ADO.NET. First
the command text will be passed as a parameter to the command object. The actual
execution of the command takes place only when any of the execution methods like
ExecuteNonQuery or ExecuteScalar is called against the command object. The
query object returns results as an IEnumerable<Items>.

LINQ to SQL

[98]

The following figure shows the query assignment and execution:

The following figure shows a query expression assigned to the variable:

As it is said that the execution will take place only when the foreach statement
executes, that is, when the actual enumeration takes place, it is also true that
the execution will take place as many number of times as we have the foreach
statement, which refers to the variable in which the query has returned the result-set
which is the set, of table rows returned by the query that has been executed.

var icecreams = from cat in db.Items
 where cat.CategoryID == 1
 select new { cat.Name, cat.Categories.Description };
 foreach (var itms in icecreams)
 Console.WriteLine(itms.Name);
 foreach (var itms in icecreams)
 Console.WriteLine(itms.Name);
 foreach (var itms in icecreams)
Console.WriteLine(itms.Name);

This example displays item name values from the rows returned by the query.
The query returned the result-set into the variable icecreams, which is of type
Items. The three foreach loops use the same variable to get the items information
display. Here the query gets executed three times, one each at the foreach statement
execution. This process is time consuming, and also the execution gives poor
performance. This execution is called de��erred execution.

Chapter 4

[99]

There is a way to eliminate this process of multiple executions for the same query.
Just convert the results into an array or a list using the operators ToList and
ToArray. So the previous code will look like this:

var icecreams = from cat in db.Items
 where cat.CategoryID == 1
 select new { cat.Name, cat.Categories.Description };
 var lst = icecreams.ToList();
 foreach (var itms in lst)
 Console.WriteLine(itms.Name);
 foreach (var itms in lst)
 Console.WriteLine(itms.Name);
 foreach (var itms in lst)
 Console.WriteLine(itms.Name);

Here the execution takes place only once when the resultant rows in the variable
icecreams is converted to a list using the ToList operator, and assigned to the
variable, lst. Now we can use this variable lst in the future, any number of times.
This avoids the multiple execution of the query or de��erred execution.

Identifying Objects
In object-oriented programming, all objects have references. So, if we assign an object
to two different variables, the value is not assigned to the variables. The variables
will refer to the same object using the object identity. When we execute queries, the
data is returned in the form of rows from the relational database. If we execute the
same query, another set of same rows is returned from the database because the rows
do not have any key to identify them. The primary key which exists in the database
is to identify the rows for uniqueness. So, whenever the same data is fetched from
the database multiple times from the front end application, it comes as different
instances. If I execute the same query three times, it will return the three result-sets
with three instances.

In LINQ to SQL, we use DataContext for referring to the database objects. Here,
DataContext is an object which is supposed to have object identity. Whenever
a new row is fetched from the database through DataContext, it is logged in an
identity table and a new object will be created. If the same row is fetched again, the
DataContext will take care of sending the same instance of the object created at the
first time. So the identity table is a cache table which will provide the object instances
if the same object has already been created.

LINQ to SQL

[100]

Queries with Multiple Entities
In the previous examples, we have seen classes with a collection of classes. For
example, the Categories entity class has a collection of Items class. This kind of
relationship builds the foreign key relationship at the database level. Normally in
SQL queries, we have to refer to these two objects when we need a join operation for
the query. As we have the collection of classes referred in the main class, we can refer
to the objects easily. For example, we would be writing the query as follows to join
two tables for the query without using the relationship.

var qry = from cat in db.Categories
join items in db.Items on cat.CategoryID equals item.CategoryID
where cat.Category == "Icecreams"
select new { itms.Name, itms.Categories.Category };

If we have table collections defined inside the class, the same query will look like
this:

var query = from itms in db.Items
where itms.Categories.Category == "Icecream"

select new { itms.Name, itms.Categories.Category };

This query uses the table collection defined in the entity classes, and we use the
object members directly in the query where clause. Following is the query built by
LINQ to SQL for both the query expressions.

query = {Select [t0].[Name], [t1].[Category]
from [Items] as [t0]
inner join [Categories] as [t1] ON [t1].[CategoryID] =
[t0].[CategoryID]
where [t1].[Category] = @p0}

Remote Queries and Local Queries
We have seen some query expressions like this:

string category = "Icecreams";
Categories icecreams = dbDeserts.Categories.Single
(c => c.Category == category);
foreach (Items item in icecreams.Items.Where
(itm => itm.Protein = "4g"))
 {
 Console.WriteLine(item.Name) ;
 }

Chapter 4

[101]

The first statement fetches the category details for category that equal to Icecreams.
The second is the foreach loop, which takes care of executing the query that fetches
all items falling under that category. This execution takes place at the server and then
the result comes to the client application.

LINQ to SQL has a new feature called remote queries for EntitySet. In the previous
example, the query would have returned the EntitySet of all rows from the table
first, and then the filtering is applied using the where clause. It is not required to
bring in all the records to the local application place and then to filter the records.
EntitySet implements IQueryable<T>, and these queries can be executed remotely.
If EntitySet is already loaded, the subsequent queries are executed locally. This
helps us in keeping the EntitySet local and running the queries multiple times.
Unnecessary database calls and data transfer is avoided, and also, the EntitySet can
be serialized.

The drawback in this type of query and having the EntitySet local is that, data
will not be the latest. This means that the local copy of data may not be the same
as the one on the server. Someone might have changed the records after creation
of the local EntitySet. The local execution is an in-memory collection which is
IEnumerable<T>. The remote queries reflect the database changes. If the database
tables are involved in concurrent changes, then different execution of the same query
will result with different EntitySets.

Deferred Loading
LINQ to SQL supports a process called de��erred loading which means that the data
loading, or fetching the data, happens only when it is required. For example, in a
query, we might have used an object which has some related objects also; but we
may not be using the related objects all the time and we will be using the main object
only. So the data is fetched only for the main object, but not for the related object.

Following is an example for deferred loading. The query contains the object
Categories, which refer to the entity object which refer to the entity object Categories which has a related object
Items. The query uses only the Categories object. The following figures show the
deferred loading process in details. The query has only a select statement for the
categories. The query expression assigned by LINQ to SQL to the variable also has
only the select statement for the Categories table.

// Deferred Loading
var DefQuery = from cats in db.Categories
where cats.Category == "Icecreams"
select cats;
Console.WriteLine("--Deferred Loading--");
foreach (Categories categ in DefQuery)

LINQ to SQL

[102]

{
 foreach (Items itm in categ.Items)
 {
 Console.WriteLine(itm.Name);
 }
}

In the foreach loop, we refer to the Items table which is related to the Categories
table and also the categories entity has the entity collection for the items. When we
refer to the related object Items, LINQ to SQL assigns the query expression as given
below and then executes it query to fetch records from the table.

The deferred query allows us to reduce the time and cost involved in executing the
queries. We can have a join between entities to fetch records, but in that case, the
result would be a projection which brings a huge amount of data and not an entity
result set. Entities are objects which have an identity and the results can be persisted.
Projections are not entities and cannot be persisted.

Chapter 4

[103]

Immediate Loading
It is not that we don't require related table records all the time. Sometimes we might
have to fetch rows from related tables also. In certain applications, we might want to
show both, master and details table records together. For example, if you want to list
down the items information for a particular category you selected, you should get
all the information from the table. You cannot wait for the items to get loaded after
selecting the category. This kind of retrieval of data from both the tables together
is called immediate loading. It is exactly the opposite to deferred loading. LINQ to
SQL provides a LoadWith operator that allows us to load the related table's data also.
The following query expression fetches the records from the Categories table, as
well as the records from the related table Items that matches with categoryID.

using (Deserts DesertsContext = new Deserts("Persist Security
 Info=False;Initial Catalog=Deserts;Integrated
 Security=SSPI;server=(local)"))
 {
 DataLoadOptions options = new DataLoadOptions();
 options.LoadWith<Categories>(c => c.Category);
 options.LoadWith<Items>(c => c.Name);
 DesertsContext.LoadOptions = options;
 Categories cat = DesertsContext.Categories.Single<Categories>
 (c => c.CategoryID == 1);
 }

In the previous example, we used DataLoadOptions which defines the DataContextwhich defines the DataContextDataContext
load options. It loads all the tables that have a relationship with the main table.
Here, Categories entity class has an association with the Items entity. So whenever
the Categories entity gets loaded, the Items entity will also get loaded for the
corresponding category.

LINQ to SQL

[104]

The following image shows the data loaded in the cat variable of type Categories. It
clearly shows that three Items in the Icecreams category are also loaded along with
the category. You can see the option IsDe��erred, which is ��alse. It shows that the
loading is not deferred loading.

There is a disadvantage in using immediate loading or loading of any entity object
with respect to performance. As there are some fields like Category description,
Item Ingredients and other fields that may not be required immediately. These
fields can be loaded with a delay, or maybe fetched whenever required.

This option can be set to the entities using the Object Relational Designer also. We
will see more details about this later in this chapter, but for now, consider entities
and the Properties page for each property in the entity. There is a property called
Delay Loaded, which can be set to True, in case, delay loading is required for the in case, delay loading is required for the
entity object field, or False in case immediate loading is required for the field. By
setting the property to True, the field data will be loaded with a delay.

Chapter 4

[105]

Projections
All the queries that we have seen previously are for entity objects, for fetching
records from the database tables. There are situations where we may not require
all columns of the tables. We might require only two or three columns out of many
columns in the tables. LINQ to SQL query supports this feature for getting values of
only one or more columns.

For example, we might want to know the name of the ice-creams and their
ingredients. We may not be interested in any other details about the ice-creams. So,
the query will look like this:

var projItems = from itms in db.Items
where itms.CategoryID == 1

select new {itms.Name, itms.Ingredients};

The equivalent query expression that is assigned to the variable would be like this:

LINQ to SQL

[106]

You can also construct new objects with the use of projection queries. For example,
if you want to create a new object which has only the names and ingredients of
ice-creams, then the query would be as follows:

var projectionItems = from itms in db.Items
where itms.CategoryID == 1
select new {Itemname = itms.Name, itms.Ingredients}
into newTable orderby newTable.Itemname
select newTable;

This query has a new object called newTable, which will get created based on the
Select statement, which selects Name and Ingredients of the items. We can also
order the result-set using one of the column values.

Constructing XML
We have used projections for fetching data from the database tables in different
ways. Queries should be flexible enough to get the data in whichever format we like.
Getting data as XML is another important requirement in applications nowadays.
Using LINQ to SQL, we can easily build XML elements. The following code shows
how to get data from the Items table into an XML file:

var IcecreamsasXML =
 new XElement("Icecreams",
 from itms in db.Items
 where itms.CategoryID == 1
 select new XElement("Icecream",
 new XElement("Name", itms.Name),
 new XElement("ServingSize", itms.ServingSize),
 new XElement("Protein", itms.Protein),
 new XElement("TotalCarbohydrates", itms.TotalCarbohydrates),
 new XElement("TotalFat", itms.TotalFat),
 new XElement("Cholesterol", itms.Cholesterol)
)
);
IcecreamsasXML.Save(@"c:\demo\Icecreams.xml");

XElement is an object of LINQ to XML, which is the main object to create an XML
file. The previous query is a mix of LINQ to XML and LINQ to SQL to fetch records
and present it in XML format. The XElement has the direct method to save its value
as XML file. The XElement takes care of creating the XML tree while the LINQ to
SQL query takes care of fetching records for the XML tree. The final output of the
above XML file will be as follows:

Chapter 4

[107]

<?xml version="1.0" encoding="utf-8"?>
<Icecreams>
 <Icecream>
 <Name>Chocolate Fudge Icecream</Name>
 <ServingSize>4oz Scoop (113 grams)</ServingSize>
 <Protein>4g</Protein>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <TotalFat>15g</TotalFat>
 <Cholesterol>50mg</Cholesterol>
 </Icecream>
 <Icecream>
 <Name>Vanilla Icecream</Name>
 <ServingSize>4oz Scoop (113 grams)</ServingSize>
 <Protein>4g</Protein>
 <TotalCarbohydrates>26g</TotalCarbohydrates>
 <TotalFat>16g</TotalFat>
 <Cholesterol>65mg</Cholesterol>
 </Icecream>
 <Icecream>
 <Name>Black Walnut Icecream</Name>
 <ServingSize>4oz Scoop (113 grams)</ServingSize>
 <Protein>6g</Protein>
 <TotalCarbohydrates>25g</TotalCarbohydrates>
 <TotalFat>19g</TotalFat>
 <Cholesterol>50mg</Cholesterol>
 </Icecream>
 <Icecream>
 <Name>Cotton Candy Icecream</Name>
 <ServingSize>4oz Scoop (113 grams)</ServingSize>
 <Protein>4g</Protein>
 <TotalCarbohydrates>32g</TotalCarbohydrates>
 <TotalFat>12g</TotalFat>
 <Cholesterol>45mg</Cholesterol>
 </Icecream>
</Icecreams>

Joins
When we say joins, the first thing we think about is the foreign key relationship
between the database tables, which is very useful when we join the tables using
queries. For example, to get all the items that belong to a particular category in
the Categories table, we usually join both the tables using the query and fetch
the details. However in LINQ to SQL, it is not always the case. We can joinjoin

LINQ to SQL

[108]

tables irrespective of their relationship. For example, we can fetch records from the
Categories and Items table in which CategoryID is a key field in the Category
table, and is the foreign key in the Items table, which identifies the corresponding
items. The following code fetches the category from the Categories table and
the corresponding item name from the Items table having a join on the
CategoryID field.

var QryCategory =
from s in db.Categories
join c in db.Items on s.CategoryID equals c.CategoryID
select new {catgry = s.Category,itemname = c.Name};

The variable, QryCategory, in the query will contain query text which is shown
as follows:

The following query is another example of a join query which extracts information
from both the tables and inserts the rows into a new runtime table.

var QueriesCategory =
from s in db.Categories
join c in db.Items on s.CategoryID equals c.CategoryID into
categoryitems
select new { s, categoryitems };

The following screenshot shows a query that is generated by LINQ to SQL and is
assigned to the variable QueriesCategory:

Chapter 4

[109]

Raw SQL Query
In some cases, we may feel that the DLINQ query is not sufficient enough to handle
a query or we may just want to have a direct SQL query to be performed against
the database. We used to perform this using the SQLCommand object, having the
command type as text and the command text will have the raw SQL query as text.
This way of executing the raw SQL, directly against the database is also possible
using DataContext. DataContext has a method, ExecuteQuery, which takes the
query text as a parameter, and converts the results to objects.

IEnumerable<Items> results = db.ExecuteQuery<Items>
(@"select c1.category as Category, c2.Name as ItemName
from category as c1, Items as c2
where c1.categoryID = c2.categoryID");

The output of the query will be assigned to the Items object.

Query Result
We can visually see the query text that actually gets executed at the database. LINQ to
SQL takes the query expression and converts it to a database equivalent query. This
tool helps us to see the query generated by LINQ to SQL for the query expression.

For example, consider the following simple query and try to execute it.

// Normal way of writing joins between two tables
var qry = from cat in db.Categories
join items in db.Items on cat.CategoryID equals items.CategoryID
where cat.Category == "Icecreams"
select items;

After assigning the query expression to the qry variable, if you place the mouse
pointer over qry, we will get the query text, shown as follows:

LINQ to SQL

[110]

The full text of the T-SQL query generated by LINQ to SQL would be this:

{SELECT [t1].[ItemID], [t1].[CategoryID], [t1].[Name],
[t1].[Ingredients], [t1].[ServingSize], [t1].[TotalFat],
[t1].[Cholesterol], [t1].[TotalCarbohydrates], [t1].[Protein]
FROM [Categories] AS [t0]
INNER JOIN [Items] AS [t1] ON [t0].[CategoryID] = [t1].[CategoryID]
WHERE [t0].[Category] = @p0

If we expand the query that is shown for the qry variable, we can see an option to, we can see an option to we can see an option to
view the results of the query. We can see the description against the Results View
option saying Expanding the Results view will enumerate the IEnumerable. It It
means that the value assigned to qry will only contain the query text. It will not have
the result of the query execution as long as it is enumerated.

This is how the result is shown when the Results View is expanded.

Stored Procedures
Similar to database and database tables, LINQ to SQL also supports stored
procedures. We can map the entity and DataContext classes to the database and
tables which give strongly typed access to the database table objects. In the same
way, LINQ to SQL also supports the feature of having methods which can be
mapped to the database stored procedure. This will give a strongly typed access
method and the IntelliSense feature to the stored procedures. The result-set returned
by the stored procedure is also a strongly typed collection. We can create entity
methods for the stored procedure manually and map it to the corresponding stored
procedure or we can use the Object Relational Designer tool to map the
stored procedures.

Chapter 4

[111]

LINQ to SQL maps stored procedures to the methods using the functionfunction attribute,
and if required, it uses the parameter attribute. The function attribute supports nameparameter attribute. The function attribute supports nameattribute. The function attribute supports namename
property which specifies the name of the method that corresponds to the database
stored procedure object.

Let us create a simple stored procedure using entity classes, created in the previous
examples. This stored procedure will take Category as a parameter and return
the number of items present in the database for the category. Let us name the
stored procedure as GetNumberofItemsforCategory. The SQL text for the stored
procedure will look like the following:

CREATE PROCEDURE [dbo].[GetNumberofItemsforCategory]
@Category nvarchar(50)
AS
BEGIN
declare @itemCount int
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

Select @itemCount = count(Items.Name) from Items, Categories
Where Items.CategoryID = Categories.CategoryID
and Category = @Category
Return @itemCount
END

The stored procedure takes one input parameter, @Category, which takes the
category value, and returns the @itemCount that contains the number of items
present in the database for the category.

The equivalent method for the above stored procedure will be as follows:

[Function(Name = "dbo.GetNumberofItemsforCategory")]
public int GetNumberofItemsforCategory([Parameter(DbType =
"NVarChar(50)")] string Category)
{
 IExecuteResult result = this.ExecuteMethodCall(this,
 (MethodInfo)(MethodInfo.GetCurrentMethod())), category);
 return ((int)(result.ReturnValue));
}

The above method has the Function attribute with the name which is same as the
GetNumberofItemsforCategory database stored procedure. This method also. This method also
defines the parameters with the Parameter attribute which has the property Name
that has a parameter name Category assigned to it. The function uses an

LINQ to SQL

[112]

ExecuteMethodCall execution method, which actually takes care of executing the
stored procedure. There is a MethodInfo class that executes the stored procedure
using the GetCurrentMethod method, by passing the parameter to the stored
procedure. The result which is of type IExecuteResult has a property RetunValue
that actually returns the value returned by the stored procedure.

The above method GetNumberofItemsforCategory, should be a part of the
DataContext entity class. The DataContext class will look like the this:

[Database(Name = "Deserts")]
public class Deserts : DataContext
{
 public Table<Categories> Categories;
 public Table<Items> Items;
 public Deserts(string connection) : base(connection) { }

 [Function(Name = "dbo.GetNumberofItemsforCategory")]
 public int GetNumberofItemsforCategory([Parameter(DbType =
 "NVarChar(50)")] string category)
 {
 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), category);
 return ((int)(result.ReturnValue));
 }
}

By using the method, GetNumberofItemsforCategory inside the DataContext
object, the stored procedure directly gets mapped to the method in the
DataContext class.

Following is the code to access and execute the stored procedure. The method is a
strongly typed method which can be accessed directly using the DataContext object,
and the resultant value is returned by the method.

Let us create another stored procedure which will return a result-set. Here, the
result-set is not pre-defined. Let's see how we can define and access the stored
procedure through LINQ to SQL. The text for the stored procedure is as follows:

CREATE PROCEDURE [dbo].[SelectItemDetails](@param nvarchar(50))
AS
SELECT * FROM Items where ([Name] = @param)

Chapter 4

[113]

This stored procedure, returns all the rows from the Items table for the passed
parameter value which should be the name of the item in the Items table.

The equivalent DataContext class method for the previous stored procedure would
be as follows:

[Function(Name = "dbo.RuntimeShapesforResults")]
public ISingleResult<Items> RuntimeShapesforResults([Parameter(DbType
 = "NVarChar(20)")] string param)
{
 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), param);
 return ((ISingleResult<Items>)(result.ReturnValue));
}

The previous method used the ISingleResult interface, which is of type, Items.
Using the above method, we can execute stored procedure by passing the parameter
value, shown as follows:

// Stored procedure which returns single resultset
ISingleResult<Items> result =
 db.SelectItemDetails("Chocolate Fudge Icecream");
foreach (Items item in result)
{
 Console.WriteLine(item.Name + item.CategoryID);
}

ISingleResult, which is of the type Items is used here to store the result that is
returned by the stored procedure. Then we can use a variable of type Items and loop
through the returned result to get the output as we want. The following screenshot
shows you this:

LINQ to SQL

[114]

We will have another stored procedure that returns two result-sets. We will use the
DataContext method and the entity classes to access the stored procedure result-sets.
The stored procedure is like this. The stored procedure will return two result-sets;
one is from the Categories table, and the other from the Items table. Following is
the SQL syntax for the stored procedure:

CREATE PROCEDURE [dbo].[MultipleResults]
AS
select * from Categories
select * from Items

The corresponding DataContext method for this stored procedure would be
as follows:

[Function(Name = "dbo.MultipleResults")]
[ResultType(typeof(Categories))]
[ResultType(typeof(Items))]
public IMultipleResults MultipleResults()
{
 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())));
 return ((IMultipleResults)(result.ReturnValue));
}

In the previous method declaration, note the ResultType attribute used for the
number of results expected from the output and their type. In the stored procedure,
we are using two SQL queries; one for returning the categories and the other for
returning the items.

To access the results after execution, we have to use the GetResult method of
MultipleResults, shown as follows:

IMultipleResults results = db.MultipleResults();
// First Result set which is of type Categories
foreach (Categories Cats in results.GetResult<Categories>())
{
 Console.WriteLine("Cateegory:" + Cats.Category);
}
// Second result set which is of type Items
foreach (Items itms in results.GetResult<Items>())
{
 Console.WriteLine("Item Name:" + itms.Name +" Category:" +
 itms.Categories.Description);
}

Chapter 4

[115]

The first foreach loop will refer to the first result-set of the stored procedure, and
the second, will return the second result-set of the stored procedure.

Let us create another stored procedure which will return a result-set. Here the
result-set is not pre-defined. It is based on the value passed to the input parameter.
Let us see how we can define and access a stored procedure through LINQ. The text
for the stored procedure is as follows:

CREATE PROCEDURE [dbo].[RuntimeShapesforResults](@param nvarchar(20))
AS
IF(@param = ‘Items')
SELECT * FROM Items
ELSE IF(@param ='Categories')
SELECT * FROM Categories

The stored procedure returns all the rows from the Items table if the passed
parameter value is equal to Items, and it returns all data from the Categories table
if the parameter value is equal to Categories.

The equivalent DataContext class method for the previous stored procedure wouldDataContext class method for the previous stored procedure would class method for the previous stored procedure would
be as follows:

[Function(Name = "dbo.RuntimeShapesforResults")]
[ResultType(typeof(Categories))]
[ResultType(typeof(Items))]
public IMultipleResults RuntimeShapesforResults
([Parameter(DbType = "int")] System.Nullable<int> param)
{
 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), param);
 return ((IMultipleResults)(result.ReturnValue));
}

LINQ to SQL

[116]

Following is the code for calling the stored procedure and getting the results by
passing the parameter value. If we pass the value 1 to the parameter, the result
would be the list of Categories, and if the parameter value is 2 then the result
would be the list of Items.

IMultipleResults runtimeResultforItems = db.RuntimeShapesforResults(2
);
foreach (Items itm in
runtimeResultforItems.GetResult<Items>())
{
 Console.WriteLine(itm.Name);
}
IMultipleResults runtimeResultforCategories =
db.RuntimeShapesforResults(1);
foreach (Items itm in
runtimeResultforCategories.GetResult<Items>())
{
 Console.WriteLine(itm.Name);
}

The result view for the previous code would look like this:

User-Defined Functions
User defined functions are similar to stored procedures. We can map the method
defined on a class to a user-defined function by using the function attribute. The
body of the method constructs the expression and passes it to the DataContext,
which executes the function expression and returns the result.

Chapter 4

[117]

For example, following is a function that returns the ItemName for the
passed itemID.

CREATE FUNCTION GetItemName(@itemID int)
RETURNS nvarchar(100)
AS
BEGIN
DECLARE @itemName nvarchar(100)
Select @itemName= [Name] from Items where IItemID = @itemID
RETURN @itemName
END

The equivalent method for the DataContext would be as follows:DataContext would be as follows: would be as follows:

[Function(Name = "dbo.GetItemName", IsComposable = true)]
[return: Parameter(DbType = "VarChar(100)")]
public string GetItemName([Parameter(Name = "itemID",
DbType = "int")] int @itemID)
{
 return ((string)(this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 @itemID).ReturnValue));
 }

If you see the attribute for the method, it is the same one used for the stored
procedure. Only the name is the difference here. The execution is also similar to the
stored procedure. We can call the function as follows:

 string itemName = db.GetItemName(1);

Class Generator Tool
In all the previous examples, we have seen different ways of creating database
objects using LINQ to SQL support. This is fine while creating a new database and
its objects, and mapping the same with the entity classes. If we have a database that
already exists for our application to use, we will end up creating corresponding
class objects, which will consume a lot of our time. In order to avoid this, LINQ to
SQL comes with a new tool called SQLMetal, which takes care of creating the entity
class objects for the existing database. The same thing can also be done using the
Object Relation Designer, which we are going to see later in this chapter. However
the advantage of using SQLMetal is that it is a command line tool that can be used
in the automated build process. All we have to do is to use the tool and provide the
database name, location and format in which we want the objects. It is a command
line utility that automates the task. To see the different options available with
SQLMetal, type sqlmetal / at the command prompt.

LINQ to SQL

[118]

Chapter 4

[119]

SQLMetal supports two different formats for objects. One is the entity classes in
different languages like Visual Basic or C# and the other is the XML format. Then
functionality involved in SQLMetal is of two steps, explained as follows:

1. Extracting the information format from the database and creating a .dbml
file. This is the intermediate file generated for customization. From this
DBML file, we can generate code and mapping attributes.

2. Generating a code output file.

This advanced feature comes with some exceptions. SQLMetal cannot extract aSQLMetal cannot extract a cannot extract a
stored procedure that calls itself. The nesting level of the database objects, like views,
functions, and stored procedures, should not exceed 32.

For creating the entity classes for the Deserts database that we created through the
previous examples, the command would look like this:

sqlmetal /server:.\SQLExpress /database:c:\demo\Deserts.mdf
/pluralize/namespace:Deserts /code:Deserts.cs

The above command will create the Deserts.cs file which contains the entity
classes, and their relationship and definitions for the objects. This will create the
classes using C# language. If you want to get the classes in VB, just rename the code
as Deserts.vb instead of Deserts.cs to identify the language to be used. SQLMetalSQLMetal
also has an option to specify the language. We can use that as well for creating the
entity classes.

Using SQLMetal, we can create the DBML as follows:SQLMetal, we can create the DBML as follows: we can create the DBML as follows:

sqlmetal /server:.\SQLExpress /database:c:\demo\Deserts.mdf /dbml:
Deserts.dbml

We can also use this:

Sqlmetal /dbml:deserts.dbml c:\demo\Deserts.mdf

The same entity objects created above can also be created in XML format. The
command for that is as follows:

sqlmetal /server:.\SQLExpress /database:c:\demo\Deserts.mdf /pluralize
/namespace:Deserts /code:Deserts.xml

LINQ to SQL

[120]

This code will produce an XML file containing all the entity objects. The output of
this would look like this:

Either class file or XML which is generated by the tool may not have proper names
for the classes which we might want to rename or modify for better understanding.
This cannot be done directly while creating classes. To achieve this, we have to first
generate the XML file. In the XML file we can modify or annotate it with a class and
property attribute to modify the attributes of tables and columns. After doing this,
we can use this modified XML file to generate the object model. This can be done
using the following command:

SqlMetal /namespace:Deserts /code:Deserts.cs Deserts.xml

The SQLMetal takes all the information from the XML file and generates the classSQLMetal takes all the information from the XML file and generates the class takes all the information from the XML file and generates the class
file. The XML file acts as the metadata for generating the class file. It contains
attributes that can be set to change the behaviour of the tables or columns. For
example, the attributes for the columns are as follows:

<Column
Name = "Column-Name"
Hidden = "true|false"
Access = "public|private|internal|protected"
Property = "property-name"

Chapter 4

[121]

DBType = "database-type"
Type = "CLR-type"
Nullable = "true|false"
IsIdentity = "true|false"
IsAutoGen = "true|false"IsVersion = "true|false"
IsReadOnly = "true|false"
UpdateCheck = "Always|Never|WhenChanged" />

The Table has attributes such as:

<Table
Name = "Table-Name"
Hidden = "true|false"
Access = "public|internal"
Class = "element-class-name"
Property = "context-or-schema-property-name" >

Some of the attributes are very common to many of the elements and some are
specific to some elements. For example, Name and Hidden are very common to all
the elements.

Transactions
Transaction is a service in which, a series of actions either succeed or fail. If it fails,
all the changes made by the transaction are undone automatically. The DataContext
takes care of handing transactions. It makes use of the transaction if one is already
created, otherwise it creates one transaction on its own for all the updates that
happen through the DataContext.

LINQ to SQL is a new feature supported by ADO.NET. So LINQ to SQL should be
able to make use of other features of ADO.NET. ADO.NET uses a connection object
which takes the connection string as parameter for connecting to the database. When
we create a DataContext, we can make use of the connection created by
ADO.NET. LINQ to SQL will use the same connection for its queries and updates to
the database. For example, the ADO.NET connection to the database Deserts in the
local server will be as follows:

SqlConnection connection = new SqlConnection("PersistSecurity

Info=False;Initial Catalog=Deserts;
Integrated Security=SSPI;server=(local)");
connection.Open;

LINQ to SQL

[122]

The Deserts DataContext can use the connection object for the queries and updates
to the database. After performing the task, the connection should be closed by the
DataContext object.

Deserts db = new Deserts(connection);
var icecreams = from cat in db.Items
where cat.CategoryID == 1
select cat;
db.Connection.Close();

The different ways of handling transactions, are stated as follows:

1. Explicit Local Transaction: When SubmitChanges method is called, and if
the transaction property is set, then the SubmitChanges method is executed
in the same transaction context.

2. Explicit Distributed Transaction: LINQ to SQL queries can also be called
within the scope of the transaction. The SubmitChanages method can be
called for submitting the execution of the queries.

3. Implicit Transaction: When the SubmitChanges method is called, LINQ
to SQL checks to see if the call is within the scope of a transaction or if the
transaction property is set. If it is present, it executes within the transaction,
otherwise it starts a local transaction and executes the commands.

Handling Concurrency Conflicts
We have seen how to save data to the database and use transaction objects to save
the data safely into multiple databases. When we save the changes back to the
database, it is not guaranteed that the data will remain the same, since we read it the
last time. There are chances that other users might be using the same application and
will be updating the same information that we are also trying to update.

Optimistic concurrency conflict occurs when we attempt to submit the changes we
made, and at the same time another user has updated the same record. To resolve
this, LINQ to SQL has some properties for the members by which we can easily
find out the members in conflict and then handle it. To detect conflicts when the
application has changed the value of the member, we have to use the property
called UpdateCheck associated with the ColumnAttribute of the member. We can
include the members for detecting the optimistic concurrency conflicts using this
ColumnAttribute with UpdateCheck property. This UpdateCheck property has
three enumerated values—Always, Never, and WhenChanged. Following are the
different scenarios where we use the different properties of UpdateCheck.

Chapter 4

[123]

UpdateCheck.Always: Always use this member to detect conflicts.
UpdateCheck.Never: Never use this member to detect conflicts.
UpdateCheck.WhenChanged: Use this member for detecting conflicts only
when the application has changed the value of the member.

The following code is an example that represents, the Description column, and it
should never be used for checking the update conflicts:

[Column(Name="Description", DbType="nvarchar(1000)",
UpdateCheck= UpdateCheck.Never)]
public string Description
{
 get; set;
}

Object Relational Designer
(O/R Designer)
LINQ to SQL object relational designer is the visual design surface to create the
entity objects and bind the controls to the LINQ to SQL objects with relationships.
O/R designer is used to create an object model in an application that maps to the
database objects. Database object not only means that it can map to database tables,
but we can map stored procedures and user-defined functions too. For objects
like stored procedures and functions, the DataContext cannot have an entity class
created, but has corresponding methods to create the expressions. The designer has
its surface split into two different areas. Entities Pane on the left and the Methods
Pane on the right of the surface. The Entities Pane , is the main pane, which displays
the entity classes that adds to the DataContext. The Methods Pane lists the methods
of the DataContext, which are mapped to the databasestored procedures and
user-defined functions.

•
•
•

LINQ to SQL

[124]

Now we shall see how we can create a new application and create entity classes and
methods of the DataContext.DataContext..

Create a new project and add a new class Item of type LINQ to SQL Classes to
the project. Now you can see the DataClasses1 file getting added to the project. It
has two files named—DataClasses1.dbml, and DataClasses.cs, associated with
the project. The .dbml file is the surface for the designer which will be empty in the
beginning. The DataClasses.cs is the file that contains the corresponding code
for the entity objects and the methods added to the DataContext. Now open the
Server Explorer and expand the database that you want to use, and locate the table
and stored procedure objects. Now drag-and-drop the table objects from the list of
database objects shown in the Server Explorer to the surface of the designer. As soon
as the first object is dropped onto the surface, the DataContext is configured with the
connection information using the database connection information. The entity class
for the object dropped on the surface also gets added to the DataContext. In this way,
we can create all entity classes for the database tables and views.

Similar to the tables and views, we can add stored procedures and functions to the
surface. As soon as we drop the stored procedure or function, the designer creates
the corresponding method and adds it to the DataContext. These methods are listed
in the Methods Pane, which is on the right side of the designer. In LINQ to SQL,
both stored procedures and functions are mapped to the entity classes using the
function attribute. It shows all the methods added to the designer. We can hide
or unhide the Methods Pane using the option given when you right-click on the
designer surface.

Drag-and-drop of stored procedures and functions into the design surface makes a
lot of difference depending on where we drop it on the surface. The return type of
the generated DataContext method differs based on the place it is dropped.

1. If the stored procedure or function is dropped on the empty surface of the
designer, the designer creates the DataContext method with the return type,DataContext method with the return type, method with the return type,
automatically generated. This automatically generated type has the name,
which is that of the stored procedure or the function with the name of the
return field used by the stored procedure or function.

2. If the object is dropped on the entity class, then the designer creates the
DataContext method with the return type, which is the same as that of the method with the return type, which is the same as that of the
entity class.

We can modify the return type of the method after adding it to the DataContext. TheDataContext. The. The
method code generated for the DataContext would be as follows:DataContext would be as follows: would be as follows:

[Function(Name = "dbo.SelectItemDetails")]
public ISingleResult<Items> SelectItemDetails
([Parameter(DbType ="NVarChar(50)")] string param)

Chapter 4

[125]

{
 IExecuteResult result = this.ExecuteMethodCall(this,
 (MethodInfo)(MethodInfo.GetCurrentMethod())), param);
 return ((ISingleResult<Items>)(result.ReturnValue));
}
[Function(Name = "dbo.MultipleResults")]
[ResultType(typeof(Categories))]
[ResultType(typeof(Items))]
public IMultipleResults MultipleResults()
{
IExecuteResult result = this.ExecuteMethodCall(this,
(MethodInfo)(MethodInfo.GetCurrentMethod())));
return ((IMultipleResults)(result.ReturnValue));
}
[Function(Name = "dbo.RuntimeShapesforResults")]
[ResultType(typeof(Categories))]
[ResultType(typeof(Items))]
public IMultipleResults RuntimeShapesforResults([Parameter(DbType =
"int")] System.Nullable<int> param)
{
IExecuteResult result = this.ExecuteMethodCall(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())), param);
return ((IMultipleResults)(result.ReturnValue));
}
[Function(Name = "dbo.GetItemName", IsComposable = true)]
[return: Parameter(DbType = "VarChar(100)")]
public string GetItemName([Parameter(Name = "itemID",
DbType = "int")] int @itemID)
{
 return ((string)(this.ExecuteMethodCall(this,
 (MethodInfo)(MethodInfo.GetCurrentMethod())),
 @itemID).ReturnValue));
}

There are two types of methods:

1. One which just executes the stored procedure or the function and returns
the result.

2. The second type is used for database operations like insert, update and delete
for an entity class. This is called to store the modified records of the entities
to the database.

We have seen the usage of the first option in our previous examples. Now let us try
to use the second option of creating a stored procedure for insert operation of an
entity class and map that to the corresponding entity class in the DataContext.

LINQ to SQL

[126]

Let's create the database stored procedure for inserting records into the category
table as follows:

CREATE PROCEDURE [dbo].[InsertintoCategory]
(@category nvarchar (100) = NULL,
 @description nvarchar (100) = NULL
)
AS
INSERT into Categories (CategoryName, Description)
VALUES (@category, @description)

Now expand the server explorer and locate the stored procedure. Drag-and-drop the
stored procedure on the designer surface to create the corresponding DataContext
method. The generated DataContext method would look like this:

[Function(Name="dbo.InsertintoCategory")]
public int InsertintoCategory([Parameter(DbType="NVarChar(100)")]
string category, [Parameter(DbType="NVarChar(100)")] string
description)
{
 IExecuteResult result = this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), category,
 description);
 return ((int)(result.ReturnValue));
}

Now select the entity object and open Properties of the entity class. Entity class has
properties like Insert, Update, and Delete, as shown in the following screenshot:

Chapter 4

[127]

In the Properties window, click on the Use Runtime option against Insert property
for the Category entity class. The Configure Behavior window opens for mapping
the stored procedure to the entity class.

LINQ to SQL

[128]

There are two options, Use runtime and Customize. If we select the Use runtime
option, the system automatically generates the logic for Insert, Update, and Delete
at runtime. If we select the Customize option, then we have to select the stored then we have to select the stored
procedure from the list and configure the properties as follows:

Like this, we can create stored procedures for update and delete also, and then map
them to the entity class which will simplify the operation of updating the modified
records of the entity to the database.

Chapter 4

[129]

We can easily create the windows form with data bound controls using the designer.
For the database and the tables created in the previous sections, we will see how we
can create a windows application with entity classes and controls bounded using
the Relational Designer. By using this designer, we can reduce a lot of our time in
creating the forms with controls. We can use LINQ to SQL queries for fetching the
records and filtering them. We can also bind the controls to the data source that is
created using the objects built by the designer.

Choose the menu option Data, and then Add New Data Sources. From the selected From the selected
data sources select the Object option and click on the and click on the Next button.

LINQ to SQL

[130]

In the next window, select the Category entity table to add the corresponding
data source and then click on the Finish button, so that the data source gets added
to the project.

You can add as many entities to the project as you need in the application. Now open
the windows form and open the available Data Sources list in the project using the
Data Sources explorer.

Chapter 4

[131]

Now open Form1.cs [Design]. Select the Data menu option, then Show Data Sources
which will open the Data Sources explorer and display the Category data source
that we created. You can see a drop-down next to the Category data source name
which gives two options—Details and DataGridView. Let us choose the Details
view option and then drag-and-drop the fields we need to place on the form.

We do have display options for each field as shown in the following screenshot.
Before placing the field onto the form, we can choose the control type.

On placing the fields on the surface, we can also see a navigation bar and the editing
controls getting added to the form. This automatic placement of editing controls
reduces our design time for designing the form.

LINQ to SQL

[132]

We have created the data source object and placed all the controls on the form. Now
we need to get the data from the database through the data source and bind it to
the controls. The important thing required for this is the connection to the database.
We know that we have the connection DataContext which has the connection
information. Add the following code to the form:

public partial class Form1 : Form
{
 private DataClasses1DataContext connection = new
 DataClasses1DataContext();
 public Form1()
 {
 InitializeComponent();
 }
 private void Form1_Load(object sender, EventArgs e)
 {
 categoryBindingSource.DataSource = connection.Categories;
 }
}

We are assigning the same connection created by the DataContext to the data source
and setting the Categories object as the source of data. Now save the application
and execute it. We can see a form with controls, with editing facility attached to it.
The save option is disabled as we have not enabled it and we have not added any
code for saving.

Before we look at the editing features, we will add another data source with
detailed view for the items in each category that we select in the form. Now stop the
execution and open the design surface of the designer.

Chapter 4

[133]

Add the data source for the second object Items, similar to the one we created for the similar to the one we created for the
Category entity object. Now open the Data Sources explorer. We can see the Items
data source added to the Category data source as it is the related detail table for the
categories. There is a separate Item data source added for the entity Item.

Open the form design surface using the Data Sources explorer, and select the
DataGridView option for the Item details entity within the Category data
source. Drag-and-drop the Item data source on the form, which will create the
DataGridView to display the items which are linked to the category selected.

LINQ to SQL

[134]

Now save the application and execute it. You can see the form working with the
navigation feature. On selecting the category, you can see the related items displayed
in the items data grid.

Now we have one more thing left. The Save button is still disabled.

Click on the Save button in the navigation bar and enable it. Then select the Onclick
event and write the following code:

connection.SubmitChanges();

Now execute the application and navigate through the records. Edit the records and
try saving it using the save option. We have other options such as insert and delete
which we can enable by adding additional code to it. This is the simplest way of
creating the application using the relational designer.

We have seen how we can create the classes and their relationship using the
database objects and the object relation designer. Now we will see how we can
create inheritance mapping using the relation designer. For the sake of inheritance
mapping, let us add a new column to the Items table called CategoryType, which
will hold the different types of items and act as the discriminator for the derived
classes. Now let us see how we can drive two classes such as Cake and Icecream
from the Items class using the object relation designer.

Chapter 4

[135]

Open the designer surface and add two new classes to it by choosing the option to
add classes as shown below:

LINQ to SQL

[136]

Adding the classes will not add any tables to the database, or there is no table
that exists with the same name in the database. These are new entities which are
empty and which are going to be derived from the entity class, Item. Now select
the Item class and right-click to choose the option Inheritance. Once you choose
the Inheritance option, you can find the dialog to select the base class and the new
derived class as shown as follows. Select Item as base class and Icecream as derived
class. Select the Item class again, and choose the option Inheritance, then select Item
as base class and Cake as the derived class.

You can see the Inheritance association link between the base class and derived
classes and also the derived classes are empty without any properties or methods.
These classes will make use of the members of the base class.

Chapter 4

[137]

Now select the Inheritance arrow of one of the derived class, right-click and select
the properties. In the Properties window, you can see different properties like
Derived Class Code, Discriminator Property, and Inheritance Default.

LINQ to SQL

[138]

Select the Discriminator field CategoryType, which we added to the entity
class Item. The corresponding database column value of this field is used for
discriminating the derived entity classes. The Derived Class Code property
denotes the descriminator field value used to specify the derived class type.
Inheritance Default is the property used to denote the default class if the value
does not match the discriminator values.

Follow the same thing to set the properties for the second derived class Cake. Save
the file and build the project once.

To cross-check the code that is created by the object relational designer, open the
class file of the designer. Following is the code for the Item entity.

[Table(Name="dbo.Items")]
[InheritanceMapping(Code="Icecream", Type=typeof(Icecream))]
[InheritanceMapping(Code="Cake", Type=typeof(Cake))]
public partial class Item : INotifyPropertyChanging,
INotifyPropertyChanged
{
// the members definition goes here
}

Chapter 4

[139]

The code generated for the derived classes would look like this:

public partial class Icecream : Item
{
 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 #endregion
 public Icecream()
 {
 OnCreated();
 }
}

public partial class Cake : Item
{
 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 #endregion
 public Cake()
 {
 OnCreated();
 }
}

The derived class does not have any specific members in it. It shares the same
members defined by the base class Item. We can override the members, or include
the class-specific members to the derived class. By doing this, we can achieve the
Inheritance feature on the entities level.

LINQ to SQL

[140]

Summary
In this chapter, we have seen different features of LINQ to SQL. We have seen how
to create and manipulate the database objects using the DataContext object of LINQ
to SQL. We have also seen the different members of the data context and how we
can make use of the DataContext members to work with database data. Also, we
covered the different query features, working with stored procedures, working
with user-defined functions and handling concurrency conflicts using LINQ to SQL.
There are some good class generator tools like SQLMetal and object relation designer
which support and provide easy ways of creating, manipulating, and working with
entity objects. We have also seen some examples of creating derived classes from the
base class using the inheritance mapping attribute, and also through object relation
designer. Whatever we covered so far in this chapter is to give you an understanding
of how we can make use of the LINQ to SQL feature for some of our database-related
operations through applications. There are a lot of other features supported by LINQ
to SQL, like constructing XML, lots of other queries, and handling transactions
during database updates.

LINQ over DataSet
ADO.NET provides components to access and manipulate data from the database.
These components are as follows:

.NET framework data providers
DataSet

There are different components in ADO.NET which provide facility to fetch and
manipulate data from different data sources as per the need of the application.
Connection object provides a connection to the data source, Command object gives
the flexibility of executing SQL commands and other database objects, like stored
procedures and user defined functions. DataReader provides a stream of data from
the data source, DataAdapter acts as a bridge between the data source and DataSet.
DataAdapter takes care of retrieving data from the source as well as sending data
back to the source after data manipulation through DataSet. It uses Command object
for executing SQL commands.

The ADO.NET DataSet provides a disconnected data source environment for the
applications. It can be used with multiple data sources. DataSet has the flexibility to
handle data locally in cache memory where the application resides. The application
can continue working with DataSet as it is disconnected from the source and not
dependent on the availability of a data source. DataSet maintains information
about the changes made to data so that updates can be tracked and sent back to the
database as soon as the data source is available or reconnected.

DataSet is a collection of DataTable objects, which contains rows and columns
similar to the database tables. DataSet also holds primary key and foreign keys.
DataSets can be typed or un-typed. Typed DataSets derive the schema for table
and column structure, and are easier to program. Even though a DataSet has lots
of capabilities, they are fairly limited. It provides methods for selecting, sorting and
filtering data, and provides methods like GetChildRows and GetParentRows for
navigation. However, for complex data manipulation, a developer has to write

•

•

LINQ over DataSet

[142]

custom queries in the form of T-SQL and then execute it, which adds additional
maintenance. Queries are represented in the form of string-based expressions which
do not provide compile time checking for validity of expressions.

.NET 3.0 has support for LINQ over DataSet. There are many operators thatDataSet. There are many operators that. There are many operators that
LINQ provides for querying and manipulating data in DataSets. DataSet exposesDataSets. DataSet exposes. DataSet exposesDataSet exposes exposes
DataTable as enumerations of DataRow objects. The LINQ query operators execute
queries on the enumeration of DataRow objects. All these are contained in theobjects. All these are contained in the
namespace, System.Data.Extensions.

Before we use the LINQ to DataSet queries against DataSet, it should be populatedDataSet queries against DataSet, it should be populated queries against DataSet, it should be populated
with data. This can be done using DataAdapter class or other features supported by
LINQ to SQL. After loading the data into DataSet, LINQ queries can be run on
the data in DataSet. LINQ queries can be performed on a single table or multiple
tables using join and GroupJoin query operators. In addition to standard query
operators, LINQ to DataSet adds several DataSet-specific extensions to queryDataSet adds several DataSet-specific extensions to query adds several DataSet-specific extensions to query
DataSet objects.

Loading Data into DataSets
Before we go into the details of querying DataSets and DataTables, we have to
fill the DataSet with some data. One of the basic ways of filling data in DataSet
in ADO.NET is by using DataAdapter. Following is the code for loading data from
the Categories and Items tables in the Deserts database, which we have
already created:

//SQL Connection
SqlConnection conn = new SqlConnection
("Data Source=(local);Database=Deserts;Integrated Security=SSPI;");
//create Data Adapters
SqlDataAdapter categoriesAdapter = new SqlDataAdapter();
SqlDataAdapter itemsAdapter = new SqlDataAdapter();
// Create Command objects
SqlCommand categoriesCommand = new SqlCommand("Select * from
 Categories", conn);
categoriesCommand.CommandType = CommandType.Text;
SqlCommand itemsCommand = new SqlCommand("Select * from
 Items", conn);
itemsCommand.CommandType = CommandType.Text;
//Table mappings for Adapter
categoriesAdapter.TableMappings.Add("tableCategories", "Categories");
itemsAdapter.TableMappings.Add("tableItems", "Items");
// Set the DataAdapter's SelectCommand.
categoriesAdapter.SelectCommand = categoriesCommand;

Chapter 5

[143]

itemsAdapter.SelectCommand = itemsCommand;
// Fill the DataSet.
categoriesAdapter.Fill(dataSetDeserts, "tableCategories");
itemsAdapter.Fill(dataSetDeserts, "tableItems");

The loading of data into DataSets can also be done using LINQ queries. For
example, following is the code which loads the data from the Categories table into
DataSet's DataTable. First, let us define Connection, DataTable, and entity classes
to hold DataRows, and define the entity structure. Entity classes are not shown here
as it is similar to the one discussed in LINQ to SQL Chapter.

Deserts db = new Deserts(@"C:\demo\LINQToDataSets\Deserts.mdf");
DataSet dataSet = new DataSet();
DataTable dt = new DataTable();
DataColumn dc1 = new DataColumn();
dc1.DataType = System.Type.GetType("System.Int32");
dc1.Caption = "CategoryID";
dt.Columns.Add(dc1);
DataColumn dc2 = new DataColumn();
dc2.DataType = System.Type.GetType("System.String");
dc2.Caption = "CategoryName";
dt.Columns.Add(dc2);
DataColumn dc3 = new DataColumn();
dc3.DataType = System.Type.GetType("System.String");
dc3.Caption = "Description";
dt.Columns.Add(dc3);

Now write the LINQ query to fetch information from Categories using the
Categories entity class.

var query = (from c in db.Categories
select new { c.CategoryID, c.CategoryName, c.Description});

Now execute the query and loop through the result and add the DataRows to the
DataTable we defined earlier.

foreach (var result in query)
{
 dt.Rows.Add(new object[] { result.CategoryID, result.CategoryName,
 result.Description });
}
dataSet.Tables.Add(dt);
int count = dataSet.Tables[0].Rows.Count;
Console.WriteLine(" Number of Categories :" + count);

LINQ over DataSet

[144]

DataSet comes with a visualizer, to visualize the tables in DataSet, and DataRows
within DataTables. For example, following is the visualization of DataRows in
DataTables of DataSet, loaded using DataAdapter.

You can see DataTables listed in the DataSet Visualizer. On selecting DataTable,
DataRows are listed in the grid that is shown in the visualizer. This is another way of
verifying DataSet content.

Querying Datasets
LINQ provides many query operators and custom operators with which we can
query DataSets. When we say querying DataSets, we actually mean querying
DataTables inside DataSets. We cannot directly query DataTables, as it returns as it returns
DataRow objects. To be a part of LINQ queries, DataTables should be enumerable
and the source for the LINQ query should be IEnumerable<T>. Querying can be
done on enumeration of DataRow objects so that we will have all DataColumns
available for the query expressions.

Chapter 5

[145]

var categories = dataSetDeserts.Tables[0].AsEnumerable();
var items = dataSetDeserts.Tables[1].AsEnumerable();
var rowCategories = from p in categories
where p.Field<int>("CategoryID") == 1
select p;
foreach (var cat in rowCategories)
{
 Console.WriteLine(cat[0] + " " + cat[1] + " " + cat[2]);
}

In the above example, dataSetDeserts has two tables which have details of
different categories and items for each category. To query these details, we need to
get the enumeration of data rows from these tables. LINQ queries work on sources
which are IEnumerable<>. The new ADO.NET provides a feature for getting the
rows enumerated by applying AsEnumerable() on DataTables. Then we can write
queries based on enumeration of DataRows. The query then uses the enumerable
DataRow object categories and retrieves the records for the category, which has
CategoryID equal to 1. Using Categories, the value of the each field is fetched
and displayed in the list box. Field<> method, which avoids casting is used here to
access CategoryID field. We can also use the column accessor to fetch column values
from the data row, but it requires casting of the columns to return values. The Field
accessor is a generic method, which avoids casting, and supports null able types.

Following is another example of a query which involves two data tables with a join:

var rowItemCategories = from cats in categories
join item in items
on cats.Field<int>("CategoryID") equals
item.Field<int>("CategoryID")
where cats.Field<int>("CategoryID") == 1
select new
{
 itemID = item.Field<int>("IItemID"),
 category = cats.Field<string>("CategoryName"),
 itmName = item.Field<string>("Name")
};
foreach (var itmcat in rowItemCategories)
{
 Console.WriteLine("ItemID:" + itmcat.itemID + " Category:" +
 itmcat.category + " Name:" + itmcat.itmName);
}

LINQ over DataSet

[146]

The join operator used in the previous query, to fetch details from two different
tables by relating a column in each table, can be avoided by introducing a relation
between the tables in DataSet itself. This is shown in the following code:

// Data Relation
DataRelation CatItem = new DataRelation("CategoryItems",
dataSetDeserts.Tables[0].Columns["CategoryID"], dataSetDeserts.
Tables[1].Columns["CategoryID"], true);
dataSetDeserts.Relations.Add(CatItem);
//Now try to fetch the records as below
foreach (var cat in rowCategories)
{
 foreach (var item in cat.GetChildRows("CategoryItems"))
 {
 Console.WriteLine("ItemID:" + item["IItemID"] + " Category:" +
 cat["CategoryName"] +" Name:" + item["Name"]);
 }
}

The rowCategories is the same query used in the earlier single table query methods.
The first foreach loop is to loop through each category in the Categories table.
The second loop refers to the Detail table which is related to the main table used
in the query and fetches the Detail table records also. This can be obtained by
executing the GetChildrows method on the main query. Then, we can refer to any
of the columns in the main query as well as the corresponding records in the Detail
table. The GetChildRows method uses the name of the foreign key relation created
between the tables. The CategoryItems is the name that corresponds to the relation
between the Categories and Items tables.

Sequence Operator
We can also use sequence operator to replace the above queries. For example, we can
have the following query, which produces the sequence for categories:

// Sequence
var categoriesDetails = categories.Select(n => new
 {
 CategoryID = n.Field<int>("CategoryID"),
 Category = n.Field<string>("CategoryName"),
 Description = n.Field<string>("Description")
 });
foreach (var categoryDetails in categoriesDetails)
{
Console.WriteLine("CategoryID:" + categoryDetails.CategoryID + "
Category:" + categoryDetails.Category + " Description:" +
categoryDetails.Description);
}

Chapter 5

[147]

We can also apply the sequence on joins between tables. For example, following is an
equivalent query for the join query we saw earlier.

// Sequence on Joins
var rowItmCategories = categories.Where(cat => cat.
Field<int>("CategoryID") == 1)
.SelectMany(cat => cat.GetChildRows("CategoryItems")
.Select(itms =>new
 {
 itemID = itms.Field<int>("IItemID"),
 categoryType = itms.Field<string>("CategoryType"),
 itmName = itms.Field<string>("Name")
 }));
foreach (var rowItemcats in rowItmCategories)
{
 Console.WriteLine("itemID:" + rowItemcats.itemID + " Category
 Type:" +
 rowItemcats.categoryType + " ItemName:" + rowItemcats.itmName);
}

Querying Typed DataSets
The structure of DataSets is similar to that of a relational database; it exposes a
hierarchical object model of tables, rows, columns, constraints, and relationships.
Typed DataSets derive the schema, which is the structure of the tables and columns,
and are easier to program. An un-typed DataSet has no corresponding schema.
Un-typed DataSets also contain tables, rows, and columns, but they are exposed as
collections. Typed DataSet class has an object model in which its properties take on
the actual names of the tables and columns. If we are working with typed DataSets,
we can refer to a column directly as follows:

var categoryID = dataSetDeserts.Tables[0].CategoryID;

The following query uses un-typed DataSets:

var itemCategories = from cats in categories
join item in items
on cats.Field<int>("CategoryID") equals
item.Field<int>("CategoryID")
where cats.Field<int>("CategoryID") == 1
select new
{
 itemID = item.Field<int>("IItemID"),
 category = cats.Field<string>("CategoryName"),
 itmName = item.Field<string>("Name")

LINQ over DataSet

[148]

};
foreach (var itmcat in itemCategories)
{
 Console.WriteLine("ItemID:" + itmcat.itemID + " Category:" +
 itmcat.category + " Name:" + itmcat.itmName);
}

If it is a typed DataSet, the previous query is written as follows:

var rowItemCategories = from cats in categories
join item in items
on cats.CategoryID equals
item.CategoryID
where cats.CategoryID == 1
select new
{
 itemID = item.IItemID,
 category = cats.CategoryName,
 itmName = item.Name
};
foreach (var itmcat in rowItemCategories)
{
 Console.WriteLine("ItemID:" + itmcat.itemID + " Category:"
 + itmcat.category + " Name:" + itmcat.itmName);
}

With this query, we can avoid referencing the column using a field and casting it to
the type of the database column. We can directly refer to a column in the table using
the database column name.

DataSet Query Operators
LINQ to DataSet adds several DataSet-specific operators to the standard query
operators available in System.core.dll. This is to make DataSet query capabilities
easier. Once DataSets are loaded with data, we can begin querying them just as we
do against the database tables using database queries. It is just another source of data
for LINQ, similar to an XML data source. We can query a single table or multiple
tables in a DataSet using join and groupby operators. If the schema of DataSet
is known at the application design time, we can use typed DataSet for the queries
which will be easier and will be more readable.

Chapter 5

[149]

Some of the DataSet query operators used, are explained in the following sections.

CopyToDataTable
This operator is used for creating a new DataTable from the query. The propertiesDataTable from the query. The properties from the query. The properties
are taken as DataColumns, and the field values are iterated and converted as dataDataColumns, and the field values are iterated and converted as data and the field values are iterated and converted as data
values for the columns. Following is the query which refers to dataSetDeserts in
the Items table in the DataSet. CopyToDataTable operator is applied on the query is applied on the query
to convert it to a DataTable.

var items = dataSetDeserts.Tables[1].AsEnumerable();
var query = from item in items
select item;
DataTable results = query.CopyToDataTable();

LoadDataRow
This operator adds DataRows to the existing DataTable. The following query iterates
through the Categories table and adds rows one-by-one to a new DataTable which
has DataColumns of the same type. This operator takes two parameters. The first one
is an object that is a collection of DataColumns, and the second parameter is boolean
for accepting the changes.

//LoadDataRow
var itemrows = dataSetDeserts.Tables[1].AsEnumerable();
var rowItems = from p in itemrows
where p.Field<int>("CategoryID") == 1
select new Items { IItemID = p.Field<int>("IItemID"), Name =
 p.Field<string>("Name"), Ingredients = p.Field<string>("Ingredients
") };
DataTable dt = new DataTable("TestTable");
dt.Columns.Add(new DataColumn("IItemID", typeof(int)));
dt.Columns.Add(new DataColumn("Name", typeof(string)));
dt.Columns.Add(new DataColumn("Ingredients", typeof(string)));
foreach (var row in rowItems)
{
 dt.LoadDataRow(new object[] { row.IItemID, row.Name,
 row.Ingredients }, true);
}

LINQ over DataSet

[150]

Intersect
The Intersect operator produces an intersection of sequence of two different sets
of DataRows. It returns enumerable DataRows. Following is an example of the
Intersect operator. The first DataTable, tblcategoriesIntersect, intersects
with the second table, tblcategoriesMain, and returns the common DataRows of
the two DataTables. The first DataTable, dtIntersect, takes the enumerable data
rows of Categories from the dataSetDeserts DataSet, which we created at the
beginning of this chapter. The Intersect operator takes the distinct enumerable
DataRows from the source DataTable and then iterates through the second set of
DataRows and compares them one-by-one. The comparison is done on the number
of DataColumns and their types. The second parameter is the compare option for
intersecting DataRows.

// To retrive rows which are common in both the tables
DataTable dtIntersect = new DataTable("TestTable");
dtIntersect.Columns.Add(new DataColumn("CategoryID", typeof(int)));
dtIntersect.Columns.Add(new DataColumn("CategoryName",
typeof(string)));
dtIntersect.Columns.Add(new DataColumn("Description",
typeof(string)));
var drIntersect = new { CategoryID = 1, CategoryName = "Icecream",
Description = "Icecreams Varieties" };
dtIntersect.Rows.Add(new object[] { drIntersect.CategoryID,
drIntersect.CategoryName, drIntersect.Description });
var tblcategoriesIntersect = dataSetDeserts.Tables[0].AsEnumerable();
var tblcategoriesMain =
tblcategoriesIntersect.Intersect(dtIntersect.AsEnumerable(),
DataRowComparer.Default);
foreach (var rows in tblcategoriesMain)
{
 Console.WriteLine("CategoryID:" + rows[0] + " ItemCategory:" +
 rows[1] + " Description:" + rows[2]);
}

Union
The Union operator returns the union of two different sequences of DataRows. The
operator first yields the first sequence of DataRows and then the second sequence. It
will yield the elements that are common to both only once. Following is an example
of the Union operator; dtUnion is a new table with three columns, which is the same
type as in the Categories table, retrieved from the dataSetDeserts DataSet we
built at the beginning of this chapter. The dtUnion table has one DataRow added to
it. The Union operator is applied on the categories1 DataTable with the new table
created. The resultant table, categoriesUnion, is the union of both these tables.

Chapter 5

[151]

DataTable dtUnion = new DataTable("TestTable");
dtUnion.Columns.Add(new DataColumn("CategoryID", typeof(int)));
dtUnion.Columns.Add(new DataColumn("CategoryName", typeof(string)));
dtUnion.Columns.Add(new DataColumn("Description", typeof(string)));
var catsNew = new { CategoryID = 5, Category = "NewCategory",
Description = "NewDesertType" };
dtUnion.Rows.Add(new object[] { catsNew.CategoryID, catsNew.Category,
catsNew.Description });
var categories1 = dataSetDeserts.Tables[0].AsEnumerable();
var categoriesUnion = categories1.Union(dtUnion.AsEnumerable(),
DataRowComparer.Default);
foreach (var row in categoriesUnion)
{
 Console.WriteLine("CategoryID:" + row[0] + " ItemCategory:" +
row[1]
+ " Description:" + row[2]);
}

Except
The Except operator produces non-common DataRows from two different sets of
sequences of DataRows. It is the exact opposite of the Intersect operator. This
operator first takes distinct rows from the first sequence, then enumerates over
DataRows of the second sequence and compares with the first result. It eliminates the
rows that are common to both the sequences. The following code is an example of
the Except operator.

var tblcategoriesMainExcept = tblcategoriesIntersect.
Except(dtIntersect.AsEnumerable(), DataRowComparer.Default);
foreach (var rows in tblcategoriesMainExcept)
{
 Console.Writeline("CategoryID:" + rows[0] + " ItemCategory:" +
 rows[1] + " Description:" + rows[2]);
}

Field<T>
When we query data for comparison, there could be a chance that the value is null. If
we do not handle nulls when we retrieve data, we could end up getting exceptions.
For example, following is the query for checking and handling nulls for the category
description. The where clause checks for the category, and also checks if categoryID
is not equal to null. The column value will be null if the column value is returned as
DbNull from the database.

var rowItemsCategories = from cats in categories
join item in items
on cats.Field<int>("CategoryID") equals
item.Field<int>("CategoryID")

LINQ over DataSet

[152]

where (int)cats["CategoryID"] == 1
&& !cats.IsNull("CategoryID")
select new
{
 itemID = item.Field<int>("IItemID"),
 category = cats.Field<string>("CategoryName"),
 itmName = item.Field<string>("Name")
};

Checking the null value of the column value can be avoided by using the Field
operator. The Field method takes care of checking the null value of the column.

var rowsItemsCategories = from cats in categories
join item in items
on cats.Field<int>("CategoryID") equals
item.Field<int>("CategoryID")
where cats.Field<int>("CategoryID") == 1
select new
{
 itemID = item.Field<int>("IItemID"),
 category = cats.Field<string>("CategoryName"),
 itmName = item.Field<string>("Name")
};

In addition to handling null values, the Field operator provides access to the
column values of the DataRows.

SetField<T>
This method is used to set the value of DataColumns in DataRows. The advantage
here is that we do not have to worry about null values in the DataSet.

public static void SetField (this DataRow first,
 System.Data.DataColumn column, T value);

Both Field and SetField are generic methods that do not require casting of the
return type. The name of the column specified by Field and SetField should
match the name of the column in DataSet, otherwise the ArgumentException
will be thrown.

Projection
LINQ provides a select method for projecting each element of a sequence.
Following is an example of the projection applied to the Categories table.

var tblCategories = db.Categories.AsEnumerable();
var qqry = tblCategories.Select(category => new { cID = category.

Chapter 5

[153]

CategoryID, cCategory = category.Category, cDesc = category.
Description })
OrderBy(e => e.cCategory);
foreach (var cats in qqry)
{
 Console.WriteLine("Id:" + cats.cID + " Desc:" + cats.cDesc);
}

The query, qqry, is built by the projection operator on the Categories table. The
select method projects DataColumn elements into a new form of DataRows. The
OrderBy operator is applied on the Category DataColumn, which is responsible for
ordering the resultant data rows.

Join
This is an operator that joins the elements of two different sequences based on the
matching keys. This is similar to the join operator that we have in database queries.
The following example has two different tables, tblCategoriesforJoin and
tblItemsforJoins having a common DataColumn. The join can be applied on the
key column CategoryID of both the sequences.

var tblCategoriesforJoin = dataSetDeserts.Tables[0].AsEnumerable();
var tblItemsforJoins = dataSetDeserts.Tables[1].AsEnumerable();
var categoryItems = tblCategoriesforJoin.Join(tblItemsforJoins, o =>
o.Field<int>("CategoryID"), c => c.Field<int>
("CategoryID"),(c, o) => new
{
 CategoryID = c.Field<int>("CategoryID"),
 ItemID = o.Field<int>("IItemID"),
 Name = o.Field<string>("Name")
});

foreach (var itm in categoryItems)
{
 Console.WriteLine("CategoryID:" + itm.CategoryID + " ItemID:" +
 itm.ItemID + " Name:" + itm.Name);
}

A join is applied on the first DataTable. It takes four parameters: name of the other
table, which participates in the join; outerKeySelector; innerKeySelector; and the
actual result of the join operation.

LINQ over DataSet

[154]

SequenceEqual
This operator is used for comparing two different sequences. It returns a boolean
value, which says yes or no. It takes only one argument, which is the second set of
enumerable DataRows. Following is an example for checking the equality of two
different sequences, tblCategoriesforJoin and tblItemsforJoins.

var categoryItems =
 tblCategoriesforJoin.SequenceEqual(tblItemsforJoins);

Skip
This operator is useful when we want to skip some of the rows from a DataTable.
For example the following statement shows a way to skip the first two rows from the
tblCategoriesforJoin table.

var categoryItems2 = tblCategoriesforJoin.Skip(2);

Apart from the operators covered so far in this chapter, there are many other
operators which can be applied on DataTables and DataSets for querying, such as
SelectMany(), Reverse(), Sum(), ToList(), TakeWhile(), and so on.

Distinct
This Distinct operator produces a distinct set of rows from a given sequence of
rows. It removes repeated rows from a set. The result is an enumerable DataTable
which contains distinct DataRows from the source table. For example, the following
code produces distinct rows from the Categories table. If it contains any duplicate
rows, they will be removed and the resultant table will not have any duplication.

var distinctCategories = categories.Distinct();

Summary
In this chapter, we saw different ways of taking advantage of LINQ to query
DataRows in typed, as well as un-typed, DataSets. We have also seen different
DataSet-specific query operators that make it easier to query DataRow objects. Some
of these operators are not only used for comparing a sequence of rows, but also for
accessing the column values of DataRows. In addition, we have seen some of the
queries used for querying a single table in a DataSet, as well as multiple tables.
So LINQ to DataSet makes it easier and faster to query cached data. Queries are
not represented as string literals in the code; instead, they are the programming
language itself. LINQ also provides compile time syntax checking, static typing and
IntelliSense support, which increases a developer's productivity.

LINQ to XSD
LINQ to XSD enhances XML programming by adding the feature of typed views
on un-typed XML trees. A similar type of feature is available for DataSets in ADO.
NET programming where we have typed DataSets. LINQ to XSD gives a better
programming environment by providing the object models generated from XML
schemas. This is called typed XML programming.

LINQ to XSD is an incubation project on typed XML programming. This product
is not released yet. All examples and information in this chapter are based on this
incubation project and are tested with Visual Studio 2008 Beta 1.

This LINQ to XSD project should reference System.Xml.XLinq and Microsoft.Xml.
Schema.Linq libraries. Following is an example of accessing un-typed XML elements
using LINQ query.

from c in LoadIcecreams.Elements("Icecream")
select new XElement("Icecream",
c.Element("Price"),
c.Element("Name")));

An equivalent LINQ query for the above un-typed XML as a typed XML would be
as follows:

from Icecream in chapter6.Icecream
select new {Icecream.Price, Icecream.Name};

In this chapter we will see how to create typed XML, the features supported by typed
XML, and how it helps in development.

The XML element that has been assigned a data type in an XML schema is called
typed XML. This data type is used by the XML parser to validate the XML element
value against the data type. The data type definition resides either in the same XML
file, or in a separate schema file.

LINQ to XSD

[156]

Let us consider the following XML in all our examples. It contains a namespace
called http://www.Sample.com/Items. The XML has details of three different ice-
creams. The root element of the XML is Chapter6. The first line in the XML shows
details like version, and encoding for the XML.

<?xml version="1.0" encoding="utf-8"?>
<Chapter6 xmlns="http://www.Sample.com/Items">
 <Icecream>
 <!--Chocolate Fudge Icecream-->
 <Name>Chocolate Fudge Icecream</Name>
 <Type>Chocolate</Type>
 <Ingredients>cream, milk, sugar, corn syrup, cellulose gum...</
Ingredients>
 <Cholestrol>50mg</Cholestrol>
 <TotalCarbohydrates>35g</TotalCarbohydrates>
 <Price>10.5</Price>
 <Protein>
 <VitaminA>3g</VitaminA>
 <Calcium>1g</Calcium>
 <Iron>1g</Iron>
 </Protein>
 <TotalFat>
 <SaturatedFat>9g</SaturatedFat>
 <TransFat>11g</TransFat>
 </TotalFat>
 </Icecream>
 <Icecream>
 <!--Cherry Vanilla Icecream-->
 <Name>Vanilla Icecream</Name>
 <Type>Vanilla</Type>
 <Ingredients>vanilla extract, guar gum, cream, nonfat milk, sugar,
locust bean gum, carrageenan, annatto color...</Ingredients>
 <Cholestrol>65mg</Cholestrol>
 <TotalCarbohydrates>26g</TotalCarbohydrates>
 <Price>9.5</Price>
 <Protein>
 <VitaminA>1g</VitaminA>
 <Calcium>2g</Calcium>
 <Iron>1g</Iron>
 </Protein>
 <TotalFat>
 <SaturatedFat>7g</SaturatedFat>
 <TransFat>9g</TransFat>
 </TotalFat>

Chapter 6

[157]

 </Icecream>
 <Icecream>
 <!-- Chocolate Icecream-->
 <Name>Banana Split Chocolate Icecream</Name>
 <Type>Chocolate</Type>
 <Ingredients>Banana, guar gum, cream, nonfat milk, sugar, alomnds,
raisins, honey, locust bean gum, chocolate, annatto color...</
Ingredients>
 <Cholestrol>58mg</Cholestrol>
 <TotalCarbohydrates>24g</TotalCarbohydrates>
 <Price>11</Price>
 <Protein>
 <VitaminA>2g</VitaminA>
 <Calcium>1g</Calcium>
 <Iron>1g</Iron>
 </Protein>
 <TotalFat>
 <SaturatedFat>7g</SaturatedFat>
 <TransFat>6g</TransFat>
 </TotalFat>
 </Icecream>
</Chapter6>

Un-typed XML
Following is a sample query for accessing data from an un-typed XML, shown
pereviously:

XNamespace ns = "http://www.sample.com/Items";
return
(
 from icecreams in Items.Elements(ns + "Icecreams")
 from item in icecreams.Elements(ns + "Icecream")
 select item.Element(ns + "Price"),
 item.Element(ns + "Name")
);

The query uses a namespace, ns. This namespace is used to uniquely identify the
XML elements. It is prefixed with all the elements used in the query. Each element of
the XML is accessed using Element object. The select statement in the query above
uses Element object to access the value of Price and Name of each Icecream in the
XML document.

LINQ to XSD

[158]

Typed XML
The following code is the XML Schema (XSD) contract for the sample XML that we
have in the previous section. This schema defines a namespace for the XML, a type
for the XML element and its maximum and minimum occurrences. It also describes
the name and type for each element in the XML.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="IcecreamsSchema"
 targetNamespace="http://www.Sample.com/Items"
 elementFormDefault="qualified"
 xmlns="http://www.Sample.com/Items"
 xmlns:mstns="http://www.Sample.com/Items"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Chapter6">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Icecream"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Icecream">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="Ingredients" type="xs:string"/>
 <xs:element name="Cholestrol" type="xs:string"/>
 <xs:element name="TotalCarbohydrates" type="xs:string"/>
 <xs:element name="Price" type="xs:double"/>
 <xs:element ref="Protein"
 minOccurs="0" maxOccurs="1"/>
 <xs:element ref="TotalFat"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Protein">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VitaminA" type="xs:string"/>
 <xs:element name="Calcium" type="xs:string"/>
 <xs:element name="Iron" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TotalFat">

Chapter 6

[159]

 <xs:complexType>
 <xs:sequence>
 <xs:element name="SaturatedFat" type="xs:string"/>
 <xs:element name="TransFat" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

LINQ to XSD automatically creates classes from the XML schema used for the XML.
These classes provide typed views of XML elements. Instances of LINQ to XSD
types are referred to as XML Objects. Instances of LINQ to XSD classes are
wrappers-around instances of the LINQ to XML class, XElement. All LINQ to
XSD classes have a common base class, XTypedElement. This is contained in the
Microsoft.Xml.Schema.Lin library.

public class XTypedElement
{
 private XElement xElement;
 /*
 Remaining class definition
 */
}

The element declaration is mapped to a subclass of XTypedElement, shown
as follows:

public class Icecream : XTypedElement
 {
 //
 }

These classes contain a default constructor, and properties for the elements and
attributes. It also provides methods like Load, Save, Clone, etc. When XML is typed,
the XML tree is readily loaded into the instance of the generated classes. Here, the
type casting of the elements is not required for querying the XML elements.

Creating Typed XML using Visual Studio
Visual Studio gives IDE support for the LINQ to XSD feature. It automates the
mapping of schemas to classes. The following example is based on LINQ to XSD,
Preview Alpha 2.0 with Visual Studio Beta 1.

LINQ to XSD

[160]

Using the New Project option, create a LINQ to XSD Console Application.

Using the Add New Item dialog, select the option to create an XML file under the
project. If you have an XML file already, add it to the project using Add Existing
Item option or copy-paste the contents of the available XML into the new XML file
that is added to the project.

Chapter 6

[161]

Similarly add the XML schema file to the project. After adding the schema file, copy
the schema content given in the typed XML section into the file.typed XML section into the file.section into the file.

Now we have an XML file and an XML schema file, but we need a tool to generate
an object model for the schema. Open the Properties window of the XML schema
file and select LinqToXsdSchema under Build Action. This is to instruct the tool to
consider the schema file in its build process.

LINQ to XSD

[162]

The object model for the XML schema will get generated only after the build process.
This build process also enables the IntelliSense for the generated classes, and also
displays the information in the Object Browser window. To view the object browser,
select the menu option View | Object Browser from the Visual Studio IDE. This will
display the hierarchy of all the objects present in the current project.

Now we can code with objects using IntelliSense, as shown in the following screenshot:

Chapter 6

[163]

We can also get a list of objects with the use of IntelliSense, as shown in the
following screenshot:

Object Construction
LINQ to XML provides a powerful feature called ��unctional construction, which is
the ability to create an XML tree in a single statement. All attributes and elements
are listed as arguments of XElement constructor. XElement constructor takes various
types of arguments for content. The argument can be an XElement, XAttribute,
or an array of objects, so that we can pass any number of objects to the XElement.
The functional construction feature is mainly used for navigating and modifying the
elements and attributes of an XML tree. It actually transforms one form of data into
another, instead of manipulating it.

LINQ to XSD

[164]

The following code shows how to build an un-typed XML tree using functional
construction. Here, we use XElement to build a new Icecream element and add it to
the existing Icecream element. For adding each element, we have to use XElement
with the element name and value as parameters.

Icecream.Add
(
new XElement("Icecream",
new XElement("Name", "Rum Raisin Ice Cream"),
new XElement("Ingredients", "Rum, guar gum, nonfat milk, cream,
alomnds,
 sugar, raisins, honey, chocolate, annatto color..."),
new XElement("Cholesterol", "49mg"),
new XElement("TotalCarbohydrates", "28g"),
new XElement("Protein",
new XElement("VitaminA", "2g"),
new XElement("Calcium", "1g"),
new XElement("Iron", "4g")),
new XElement("TotalFat", "16g",
new XElement("SaturatedFat", "5g"),
new XElement("TransFat", "3g"))
)
);

Now we will see how to add a new element to the typed XML, without using
XElement. We can directly use the objects to add the elements.

var newObj = new Icecream
{
 Name = "Rum Raisin Ice Cream",
 Ingredients = "Rum, guar gum, nonfat milk, cream, alomnds, sugar,
 raisins, honey, chocolate, annatto color...",
 Cholestrol = "49mg",
 TotalCarbohydrates = "28g",
 Protein = new Protein {VitaminA = "2g", Iron = "4g",
 Calcium = "1g"},
 Price = 10.25,
 TotalFat = new TotalFat {SaturatedFat = "5g", TransFat = "3g"}
};
chapter6.Icecream.Add(newObj);

Chapter 6

[165]

Load Method
This is similar to the Load method that we saw for LINQ to XML, but the difference
is that the Load method here is the typed version of the LINQ to XML's Load method.
Below is a sample which loads the xml file.

var chapter6 = Chapter6.Load("Icecreams.xml");

Here chapter6 is a specific type which is already defined. The un-typed loading in
LINQ to XML can be made typed by casting the un-typed loading with the type that
is required.

In this example, you can see the casting of Chapter6 done to the XElement, used for
loading the XML document into chapterSix, which is a variable equivalent to the
typed XML, chapter6.

Parse Method
This method is the typed version of the Parse method used in LINQ to XML. Parsing
is used to convert a string containing XML into XElement and cast that instance to a
type required. Following is an example which parses a string containing XML, and
types it to Chapter6.

var chapter6Parse = Chapter6.Parse(" <Chapter6 xmlns='http://www.
Sample.com/Items'> <Icecream> " +
" <!--Chocolate Fudge Icecream--> " +
" <Name>Chocolate Fudge Icecream</Name> "+
" <Type>Chocolate</Type> "+
" <Ingredients>cream, milk, sugar, corn syrup, cellulose gum...</
Ingredients> " +
" <Cholestrol>50mg</Cholestrol> " +
" <TotalCarbohydrates>35g</TotalCarbohydrates>" +
" <Price>10.5</Price> " +
" <Protein> " +
" <VitaminA>3g</VitaminA> " +

LINQ to XSD

[166]

" <Calcium>1g</Calcium> " +
" <Iron>1g</Iron> " +
" </Protein> " +
" <TotalFat> " +
" <SaturatedFat>9g</SaturatedFat> " +
" <TransFat>11g</TransFat> " +
" </TotalFat> " +
" </Icecream></Chapter6> "
);

Save Method
This method is the typed version of the Save method used by LINQ to XML. This
method outputs the XML tree as a file, a TextWriter, or an XmlWriter.

// Save as xml file
 chapter6.Save(@"c:\LINQtoXSDSave.xml");
// or output as TextWriter
 chapter6.Save(TextWriter testTextWriter);
// or output as XmlWriter
 chapter6.Save(XmlWriter testXmlWriter);

The above code saves the XML tree in chapter6 object to a file named
LINQtoXSDSave.xml.

Clone Method
The XTypedElement base class used for all the generated classes defines a Clone
method. The result of the clone operation is weakly typed, as the clone is applied to
the underlying un-typed XML tree. So, to get a specific type, a casting must be used
while cloning.

// Load xml
var chapter6 = Chapter6.Load("Icecreams.xml");
// Create a Clone of chapter6 xml
var chapter6Clone = (Chapter6)chapter6.Clone();
var Qry1 = from Icecream in chapter6Clone.Icecream
select new { Icecream.Price, Icecream.Name };
Console.WriteLine(" ");
Console.WriteLine("Clone Sample ");
foreach (var itm in Qry1)
 Console.WriteLine("Price of {0} is : {1}", itm.Name , itm.Price);

Chapter 6

[167]

In the above example, we are loading the XML into chapter6 variable, and then
creating a clone for it. We are type casting the new clone of the type Chapter6, and
then assigning the resultant clone to chapter6Clone. Even though we have not
assigned any XML to chapter6Clone, the query produces the same result as that of
the same query applied on chapter6 XML. Internally, the XML is the same for both
objects, as chapter6Clone is just a clone of chapter6.

Default Values
Default is the value returned for the elements in the XML, in case the value of the
XML element is empty in the XML tree. The same applies to the attributes also, but
in case of attributes, they may not be present in the XML tree. The default value is
specified in the XML fragment.

 <xs:element name="Protein">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VitaminA" type="xs:string" default="0g"/>
 <xs:element name="Calcium" type="xs:string" default="0g"/>
 <xs:element name="Iron" type="xs:string" default="0g"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

In the above example, the elements VitaminA, Calcium, and Iron are the three
elements that have a default value of 0g. So if the XML tree does not have any value
specified for these elements, the resulting value for these elements would be 0g.

Customization of XML Objects
The various types of customizations used in LINQ are explained in the
following subsections.

Mapping Time Customization
There is a configuration file that controls the LINQ to XSD mapping details. XML
namespaces can be mapped to CLR namespaces. For example, the default mapping
for http://www.Sample.com/Items would be www.Sample.com.Items. The
following example maps http://www.Sample.com/Items to LinqToXsdExample.
Schema.Items:

<Configuration xmlns="http://www.microsoft.com/xml/schema/linq">
 <Namespaces>
 <Namespace
 Schema="http://www.Sample.com/Items"

LINQ to XSD

[168]

 Clr="LinqToXsdExample.Schema.Items"/>
 </Namespaces>
</Configuration>

This is also used for systematic conversion of nested, anonymous complex types into
complex type definitions.

A configuration file is:

An XML file with a designated namespace.
Used by the command line processor of LINQ to XSD.
Used in Visual Studio for LINQ to XSD project. The build action can be
specified as LinqToXsdConfiguration.

We can map the Schema without a target namespace to a CLR namespace.

Compile Time Customization
LINQ to XSD generates classes, and provides the object model which can be
customized using .NET. It is not so easy to customize the generated code as it
requires a lot of understanding. Even if we customize the generated code, the
customization will be lost if the code gets regenerated. The best option is to use
sub-classing or extension of partial classes by which we can add methods to the
generated class by LINQ to XSD.

Following is the object model for our chapter6 XML where chapter6, Icecream,
Protein, and and TotalFat are all generated as classes.

•
•
•

Chapter 6

[169]

Now we can create a partial class for the corresponding classes, and add methods to
override the base class functionality.

The LINQ to XSD Visual Studio projects use the obj\Debug\LinqToXsdSource.cs
file to hold the generated classes.

Post Compile Customization
For customizing the classes at compile time, we can use partial classes. If the object
models are available in compiled format, and we do not have the source for the
generated classes, we can use the extension methods to add the behaviour to the
compiled objects. The LINQ to XML annotation facility can be used for this.

Using LINQ to XSD at Command Line
There is a command line tool called LinqToXsd.exe which is an XSD to class
mapper. This tool provides two options to convert XSD:

Generating a .dll from XSD.
Generating a .cs file from XSD, which is a default.

For example, following is the command to generate a DLL from an XSD from theDLL from an XSD from the from an XSD from theXSD from the from the
location where the LINQ to XSD is installed:

LinqToXsd.exe Items.xsd /lib: Items.dll

Summary
In this chapter, we have seen the different features that are going to come up with
LINQ to XSD. We have also seen examples for some of the features supported by
LINQ to XSD. This makes the programmer's job easier by turning the un-typed
XML to typed XML. LINQ to XSD generates the classes for XML elements, and also
provides an object model, which the programmer can directly access, just as he or
she would do with .NET objects.

•

•

Standard Query Operators
Standard query operators provide querying capabilities on objects in the .NET
Framework. It is a set of methods which can operate on objects whose type
implements the IEnumerable<T> or IQueryable<T> interface. IEnumerable
exposes the enumerator which iterates over a collection of a specified type. There
are different sets of methods that operate on static members of Enumerable and
Queryable classes. Each query can have any number of methods within it. The more
number of methods in a query, the more complex it is. The query operators are
useable with any .NET language that support generics.

There are some differences in the query execution timings, depending on the value
that the query returns. If the query returns a single value, like an average or a sum,
it executes immediately and returns the value. If it is a sequence of values, the query
would be deferred and would return an enumerable object.

In this chapter we will see types of standard query operators provided by LINQ and
how we can use some of those against different data sources.

Whenever we create a new project, we get default namespaces added to the project.
The namespace that takes care of importing the query operators is:

using System.Linq;

We shall see examples of some of these query operators that are used in many
applications. Before going into the details of operators, we have to define the classes
and objects on which we can apply the queries. We will create the following classes
in our project.

Standard Query Operators

[172]

public class Categories
{
 public string Category {Get; Set;}
 public string Description {Get; Set;}
}
public class Item
{
 public string Category {Get; Set;}
 public string Name {Get; Set;}
 public string Ingredients {Get; Set;}
 public string TotalFat {Get; Set;}
 public string Cholesterol {Get; Set;}
 public string TotalCarbohydrates {Get; Set;}
 public string Protein {Get; Set;}
 public double Price {Get; Set;}
 public FatContent FatContents {Get; Set;}
}
public class FatContent
{
 public string SaturatedFat {Get; Set;}
 public string TransFat {Get; Set;}
 public string OtherFat {Get; Set;}
}

The Categories class holds different categories of items like ice-creams and pastries.
The Items class contains the properties that hold information about different
catagories. The third class, FatContent, holds detailed information about fat content
in each item.

Following is a table that lists operators provided by LINQ:

Operators Description
Aggregation operators Aggregation operators are used to compute a single

value from a collection of values. For example, getting the
average or sum of numbers from the collection.

Projection operators Projection operators are useful for transforming elements.
Concatenation operators This operator performs the operation of concatenating one

sequence to another.
Element operators Element operators return a single element from a sequence

of elements. For example, returning the first, last, or an
element at a specific index from a list.

Conversion operators These operators change the type of the input object.

Chapter 7

[173]

Operators Description
Equality operators These operators check for equality of two sequences.

For example, two sequences having the same number of
elements are considered equal.

Generation operators These operators are used for generating a new sequence
of values.

Grouping operators These operators are for grouping elements together that
share a common attribute.

Join operators These operators are used to associate objects from one
data source with objects in another data source, based on a
common attribute.

Partitioning operators These operators are used to divide an input sequence into
two or more sections, and then return the one section that
is required.

Quantifiers These operators perform the operation of checking
whether some or all of the elements in a sequence satisfy
a condition.

Restriction operators These operators restrict the query result to contain
elements that satisfy the specific condition.

Set operators This is to get the result sets based on the presence or
absence of equivalent elements in the same or another
collection.

Ordering operators These operators are used for ordering elements in a
sequence based on one or more attributes. We can also
specify the order within the group of elements to be sorted.

Restriction Operators
Filtering is an operation to restrict the result of a query to contain elements that
satisfy a specific condition. We will cover restriction operators in detail in the
following sub-sections.

Where
The Where operator filters a sequence, and the declaration would be as follows:

For IEnumerable elements:

public static IEnumerable<TSource> Where<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

Standard Query Operators

[174]

For IQueryable elements:

public static IQueryable<TResult> OfType<TResult>
(
 IQueryable source
)

The Where operator returns an enumerable object from the arguments passed in.
When the returned object is enumerated, the enumeration takes places on the
sequence and returns those elements for which the predicate function returns true.
In the above declaration, the first argument is the source to be tested and the second
argument is optional, and if present it represents the elements in the source.

The following example returns the items with price less than 10.

IEnumerable<Item> lowPricedItems =
from item in items
where item.Price < 10
select item;

An equivalent translation for the previous query, is given as follows:

IEnumerable<Item> itemsWithLessPrice = items.
Where(I => I.Price < 10);

The following example shows the usage of the IQueryable method to filter elements
in a sequence.

IQueryable<Item> qryItemsWithLessPrice = items.AsQueryable().
Where(I => I.Price < 10);

If the source or predicate is null in the Where clause, then an
ArgumentNullException will be thrown.

OfType
This operator filters elements based on the type of elements in the collection.
Following is a list that contains different objects, like String and Icecreams, within
the same ArrayList:

private static ArrayList GetStringsandIcecreams()
{
 System.Collections.ArrayList arrList = new
 System.Collections.ArrayList(4);
 arrList.Add("String value One");
 arrList.Add("String value Two");
 arrList.Add("String value Three");

Chapter 7

[175]

 arrList.Add(new Icecreams
 {Category="Icecreams", Name="Chocolate
 Fudge Icecream", Ingredients="cream, milk,
 mono and diglycerides...",
 Cholesterol="50mg", Protein="4g",
 TotalCarbohydrates="35g",
 TotalFat="20g", Price=10.5
 });
 arrList.Add(new Icecreams
 {Category="Icecreams", Name="Vanilla Icecream",
 Ingredients="vanilla extract, guar gum, cream...",
 Cholesterol="65mg", Protein="4g",
 TotalCarbohydrates="26g", TotalFat="16g",
Price=9.80});
 return arrList;
}

Now from this list, if we want to get a list of strings, we can use the OfType operator
to filter the objects.

ArrayList arrList = GetStringsandIcecreams();
// Apply OfType() to the ArrayList.
IEnumerable<string> query1 = arrList.OfType<string>();
Console.WriteLine("Elements of type 'string' are:");
foreach (string str in query1)
Console.WriteLine(str);

If we want to extract the objects of type Icecream from the list, we filter for the
Icecream object.

// Call the type OfType() and then the Where() operator
// to filter the types from the list with a condition
IEnumerable<Icecreams> query2 =
arrList.OfType<Icecreams>().Where(icecrms => icecrms.Name.
Contains("Vanilla Icecream"));
Console.WriteLine("\nThe Icecream object that contains the name
 'Vanilla Icecream':");
foreach (Icecreams ice in query2)
Console.WriteLine(ice.Name);

Standard Query Operators

[176]

Projection Operators
These operators are used for transforming one form of elements into another. For
example, we can project one or two properties of an object to create a new type. We
can also project the original object without any change. We will cover projection
operators in detail in the following sub-sections:

Select
This select operator is implemented using deferred execution. This query gets
executed only when the return object in the query is enumerated using looping
statements or by calling the enumeration methods. The enumeration happens
by calling the GetEnumerator method, which is called implicitly when using the
foreach loop. Shown below are the syntaxes for using the select operator.

public static IEnumerable<TResult> Select<TSource, TResult>
(
 IEnumerable<TSource> source,
 Func<TSource, TResult> selector
)

public static IQueryable<TResult> Select<TSource, TResult>
(
 IQueryable<TSource> source,
 Expression<Func<TSource, TResult>> selector
)

The first argument is the element to process and the second argument represents
the index of the element in the source of the first argument. The element returned
from the selector method could be an object or a collection. If it is a collection, the
programmer has to take care of reading the collection and returning the values.

The following example creates a sequence of the names of all items:

IEnumerable<string> icecreamNames = items.Select(itm => itm.Name);

Following is an equivalent query of the above expression:

IEnumerable<string> icecreamsNames = from itm in items
select itm.Name;

The following code returns items with a price less than 10:

IEnumerable<Item> lowPricedItems =
from item in items
where item.Price < 10
select item;

Chapter 7

[177]

Console.WriteLine("Items with low price:");
foreach (var item in lowPricedItems)
{
 Console.WriteLine("Price of {0} is {1} ", item.Name, item.Price);
}

The following expression is another example to retrieve items and their prices where
the price is less than 10:

var IcecreamsPrices = items.Where(itm => itm.Price < 10)
.Select(itm => new { itm.Name, itm.Price })
.ToList();
foreach (var ices in IcecreamsPrices)
{
 Console.WriteLine("The price of {0} is {1}", ices.
 Name, ices.Price);
}

If the source or the selector in the above methods is null then exception of type
ArgumentNullException will be thrown.

SelectMany
The SelectMany operator performs a one-to-many projection on sequences. This
operator enumerates the source and maps each element to an enumerable object.
It also enumerates these enumerable objects, and retrieves elements. The first
argument is the source element to process, and if the second element is preset, then it
represents the elements within the source sequence.

The syntaxes for using the SelectMany operator are as follows:

public static IEnumerable<TResult> SelectMany<TSource, TResult>
(
 IEnumerable<TSource> source,
 Func<TSource, IEnumerable<TResult>> selector
)

public static IQueryable<TResult> SelectMany<TSource, TResult>
(
 IQueryable<TSource> source,
 Expression<Func<TSource, IEnumerable<TResult>>> selector
)

Standard Query Operators

[178]

The following code example shows how to use SelectMany to perform a one-to-
many projection. Let us define a new item object with properties including a list,
which contains the list of ingredients for the item.

public class NewItem
{
 public string Category { get; set; }
 public string Name { get; set; }
 public List<string> Ingredients { get; set; }
 public double Price { get; set; }
}

Now define a method to create a list of items using the new object.

private static List<NewItem> GetNewItemsList()
{
 List<NewItem> itemsList = new List<NewItem> {
 new NewItem
 {
 Category="Icecreams", Name="Chocolate Fudge Icecream",
 Ingredients = new List<string> {"cream", "milk", "mono and
 diglycerides"},
 Price=10.5
 },
 new NewItem
 {
 Category="Icecreams", Name="Vanilla Icecream",
 Ingredients= new List<string> {"vanilla extract", "guar gum",
 "cream"},
 Price=9.80
 },
 new NewItem
 {
 Category="Icecreams", Name="Banana Split Icecream",
 Ingredients= new List<string> {"Banana", "guar gum", "cream"},
 Price=7.5
 }
};
return itemsList;
}

In the above method you can see a list of strings, Ingredients, within the
itemsList. Now using the SelectMany operator, collect all the distinct Ingredients
required for all items.

Chapter 7

[179]

List<NewItem> itemss = GetNewItemsList();
IEnumerable<string> ingredients = itemss.
SelectMany(ing => ing.Ingredients);
Console.WriteLine("List of all Ingredients for the Icecreams");
foreach (string str in ingredients.Distinct())
{
 Console.WriteLine(str);
}

The output of this code would be a collection of ingredients for each item.

Join Operators
A join is an association of objects from different data sources that share a common
attribute. These operators perform the same operations that are performed by the
database queries. Each data source will have certain key attributes by which we can
compare the values, and collect information. The different join operators are covered
in detail in the following sub-sections.

Join
This operator joins two sequences, based on matching keys extracted from elements
in sequences.

public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>
(
 IEnumerable<TOuter> outer,
 IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, TInner, TResult> resultSelector
)
public static IQueryable<TResult> Join<TOuter, TInner, TKey, TResult>
(
 IQueryable<TOuter> outer,
 IEnumerable<TInner> inner,
 Expression<Func<TOuter, TKey>> outerKeySelector,
 Expression<Func<TInner, TKey>> innerKeySelector,
 Expression<Func<TOuter, TInner, TResult>> resultSelector
)

Standard Query Operators

[180]

The IEqualityComparer is used to compare keys. This is shown in the
following code:

public static IEnumerable<TResult> Join<TOuter, TInner,
 TKey, TResult>
(
 IEnumerable<TOuter> outer,
 Enumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, TInner, TResult> resultSelector,
 IEqualityComparer<TKey> comparer
)
public static IQueryable<TResult> Join<TOuter, TInner, TKey, TResult>
(
 IQueryable<TOuter> outer,
 IEnumerable<TInner> inner,
 Expression<Func<TOuter, TKey>> outerKeySelector,
 Expression<Func<TInner, TKey>> innerKeySelector,
 Expression<Func<TOuter, TInner, TResult>> resultSelector,
 IEqualityComparer<TKey> comparer
)

This is similar to inner join in relation database terms. These operators join
two different sequences and collect common information from the sequences
with the help of matching keys in the sequences. The outerKeySelector and
innerKeySelector arguments specify functions that extract the join key values
from elements of the outer and inner sequences, respectively. The resultSelector
argument specifies a function that creates a result element from two matching outer
and inner sequence elements. It first enumerates the inner sequence and collects
the elements and their keys using innerKeySelector. It then enumerates the
outer sequence to collect the elements and their keys using the outerKeySelector
function. Using these selections, the resultSelector is evaluated for the resulting
sequence. It also maintains the order of the elements in sequences.

The following code is an example for joining categories with items having
category as the key between these two sequences. The result is a combination of
categories, items, and ingredients.

List<Item> items = GetItemsList();
List<Categories> categories = GetCategoriesList();
var CategoryItems = categories.Join(items,
category => category.Category,
item => item.Category,
(category, item) => new { Category = category.Category, Item =

Chapter 7

[181]

item.Name, Ingr = item.Ingredients });
foreach (var str in CategoryItems)
{
 Console.WriteLine("{0} - {1} - {2}", str.Category, str.Item,
 str.Ingr);
}

Following is an equivalent query for the example above:

List<Item> items = GetItemsList();
List<Categories> categories = GetCategoriesList();
var CategoryItemJoin = from Cat in categories
join Itm in items on Cat.Category equals Itm.Category
select new { Cat.Category, Itm.Name, Itm.Ingredients };
Console.WriteLine("Join using Query :");
foreach (var elements in CategoryItemJoin)
{
 Console.WriteLine("{0} - {1} - {2}", elements.Category,
 elements.Name, elements.Ingredients);
}

An ArgumentNullException is thrown if any of the argument is null.

GroupJoin
The GroupJoin operator groups the results of a join between two sequences based on
equality of keys. The default equality comparer is used to compare keys.

public static IEnumerable<TResult> GroupJoin<TOuter, TInner, TKey,
 TResult>
(
 IEnumerable<TOuter> outer,
 IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, IEnumerable<TInner>, TResult> resultSelector
)
public static IEnumerable<TResult> GroupJoin<TOuter, TInner, TKey,
 TResult>
(
 IEnumerable<TOuter> outer,
 IEnumerable<TInner> inner,
 Func<TOuter, TKey> outerKeySelector,
 Func<TInner, TKey> innerKeySelector,
 Func<TOuter, IEnumerable<TInner>, TResult> resultSelector,
 IEqualityComparer<TKey> comparer
)

Standard Query Operators

[182]

All the arguments are very similar to those we saw under the Join operator. The
resultSelector function is called only once for each outer element together with a
collection of all the inner elements that match the outer elements. This differs from
the Join operator, in which the result selector function is invoked on pairs that
contain one element from outer and one element from inner. This is similar to the
inner joins and left outer joins in relational database terms.

The following code is an example of grouping items under various categories:

List<Item> items = GetItemsList();
List<Categories> categories = GetCategoriesList();
var categoriesAndItems = categories.GroupJoin(items,
category => category.Category,
item => item.Category,
(category, categoryItems) => new { Category = category.Category,
Items = categoryItems.Select(item => item.Name) });
foreach (var value in categoriesAndItems)
{
 Console.WriteLine("{0} : ", value.Category);
 foreach (string nam in value.Items)
 {
 Console.WriteLine(" {0} ", nam);
 }
}

The same group join can also be achieved through the following query. In this case
we are grouping the items according to the category and get the total price of all the
items under that category. The keyword, into, is used here for grouping the result.

List<Item> items = GetItemsList();
List<Categories> categories = GetCategoriesList();
var CategoryItemgroup = from Cat in categories
join Itm in items on Cat.Category equals Itm.Category into CustItem
select new { Cat.Category, TotalPrice=CustItem.Sum(prc => prc.Price)};
Console.WriteLine("GroupJoin using Query :");
foreach (var elements in CategoryItemgroup)
{
 Console.WriteLine("{0} - {1} ", elements.Category,
 elements.TotalPrice);
}

An ArgumentNullException is thrown if any argument is null.

Chapter 7

[183]

Concatenation Operator
Concatenation is the operation of appending one sequence to another. Concat is the
operator used for concatenating.

Concat
Concatenation operator combines two different collections into one. When the
returned object is enumerated, it first enumerates the first sequence yielding the
elements and then it enumerates the second sequence and yields the elements in it.
Following is the declaration syntax of this operator:

public static IEnumerable<TSource> Concat<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second
)

Following is the query which uses the concatenating operator to concatenate an
item's name, ingredients and price.

List<Item> items = GetItemsList();
IEnumerable<string> itemslist =
 items.Select(itm => itm.Name).
 Concat(items.Select(itms => itms.Ingredients)).
 Concat(items.Select(itm => itm.Price.ToString())).
 Distinct();
 foreach (var itms in itemslist)
 {
 Console.WriteLine("{0}", itms);
 }

If the first or the second arguments are null, ArgumentNullException is thrown.

Ordering Operators
Ordering operators are useful when we want the result of a select statement in a
particular order. The ordering could be ascending or descending. The declaration
syntax for ordering operators is given below:

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>
(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)
public static IOrderedEnumerable<TSource>
 OrderByDescending<TSource, TKey>

Standard Query Operators

[184]

(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)
ThenBy<TSource, TKey>
(
 IOrderedSequence<TSource> source,
 Func<TSource, TKey> keySelector
)
public static IOrderedSequence<TSource>
 ThenBy<TSource, TKey>
(
 IOrderedSequence<TSource> source,
 Func<TSource, TKey> keySelector,
 IComparer<TKey> comparer
)
public static IOrderedSequence<TSource>
 ThenByDescending<TSource, TKey> (
 IOrderedSequence<TSource> source,
 Func<TSource, TKey> keySelector
)
public static IOrderedSequence<TSource>
 ThenByDescending<TSource, TKey>
(
 IOrderedSequence<TSource> source,
 Func<TSource, TKey> keySelector,
 IComparer<TKey> comparer
)
public static IEnumerable<TSource> Reverse<TSource>
(
 IEnumerable<TSource> source
)

All operators can be composed to order a sequence by multiple keys. The initial
ordering is done by the first OrderBy or OrderByDescending operator. The second
sorting is done by the first ThenBy or ThenByDescending operator. The second
ThenBy or ThenByDescending operators forms the third level of sorting and it goes
on like this:

Source
OrderBy(….)
ThenBy(….)
ThenBy(….)

The OrderBy and ThenBy methods establish an ascending ordering while the
OrderByDescending and ThenByDescending are used for sorting in descending
order. There is an optional comparer for comparing the key values. If no comparer is
specified or if the comparer is null, the default comparer is used.

Chapter 7

[185]

An ArgumentNullException is thrown if the source or keySelector argument is
null. All these sorting operators return an enumerable object.

If one of the sorting operators' resultant objects are enumerated, it first enumerates
the source and collects the elements. Then evaluates the keySelector function once
for each element, collecting the key values of OrderBy and then sorts the elements
according to the collected key values.

List<Item> items = GetItemsList();
IEnumerable<Item> itms =
items.OrderBy(itm => itm.Name).
ThenByDescending(itm => itm.Protein).
ThenBy(itm => itm.TotalFat);
foreach (var item in itms)
{
 Console.WriteLine("(Ascending) {0} (ThenByDescending) {1} (ThenBy)
 {2}", item.Name, item.Protein, item.TotalFat);
}

This example creates a sequence of all items ordered by item Name first, the Protein
value of item as second in descending order, and the TotalFat value, as the third in
ascending order.

The previous example is equivalent to the following query:

IEnumerable<Item> itmsQry =
from itm in items
orderby itm.Name, itm.Protein descending, itm.TotalFat
select itm;

The Reverse operator reverses the sequence of elements. When the source object
is enumerated, it enumerates the source sequence collecting the elements and then
yielding the elements of the source sequence in reverse order.

Consider the same query for selecting the item with some of its elements in the order.
Using the same query, the following code shows how we can reverse the name of
each item.

foreach (var item in itmsQry)
{
 char[] name = item.Name.ToArray().Reverse().ToArray();
 foreach (char cr in name)
 {
 Console.Write(cr + ""); }
 Console.WriteLine();
 }

If any of the source argument is null, the execution returns
ArgumentNullException.

Standard Query Operators

[186]

Set Operators
Results of set operations are based on the presence or absence of equivalent elements
in the same or other collection. For example, the Distinct operator removes
repeated elements from collections, and the Union operator returns a unique union
of elements from different collections. The various set operators are explained in
detail in the following sub-sections:

Distinct
The Distinct operator is used for retrieving distinct elements from a sequence.
Following is the declaration of the Distinct operator which uses default equality
comparer to compare values:

public static IEnumerable<TSource> Distinct<TSource>
(
 IEnumerable<TSource> source
)

The following declaration the Distinct operator, uses the specified
IEqualityComparer<T> to compare values.

public static IEnumerable<TSource> Distinct<TSource>
(
 IEnumerable<TSource> source,
 IEqualityComparer<TSource> comparer
)

Following is the sample code for retrieving the categories from a list of items. The
actual execution of the operator takes place when the object is enumerated in the
looping statement.

List<Item> items = GetItemsList();
IEnumerable<string> icecreamNames = items.
 Select(itm => itm.Category).Distinct();
Console.WriteLine("Distinct Icecream categories :");
foreach (var itm in icecreamNames)
{
 Console.WriteLine("{0}", itm);
}

If the source is null, and does not contain any values in it, an
ArgumentNullException will be thrown.

Chapter 7

[187]

Except
This operator returns the differences between two different sequences. The sequence
is the concatenation of items into a single sequence using comma separation. A
sequence can contain duplicate values. It can be nested and collapsed. Here, the
Except operator is used to returns those elements in the first sequence that do not
appear in the second sequence. Also, it does not return those elements in the second
sequence that also appear in the first. The declaration of the Except operator using
the default comparer is given as follows:

public static IEnumerable<TSource> Except<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second
)

Following is the declaration of the Except operator using the specified comparer to
compare values:

public static IEnumerable<TSource> Except<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second,
 IEqualityComparer<TSource> comparer
)

Let us consider, we have two collections of strings where the string values present in
the second array are also present in the first. The following code shows how to use
the Except operator to fetch the values from the first string array whose values are
not present in the second array:

string[] stringsOne = { "Icecreams", "Pastries", "Buiscuits",
 "Chocolates", "Juices", "Fruits" };
string[] stringsTwo = { "Icecreams", "Pastries" };
IEnumerable<string> stringsOnlyInFirst =
 stringsOne.Except(stringsTwo);
Console.WriteLine("Except Operator Example :");
foreach (string str in stringsOnlyInFirst)
{
 Console.WriteLine("{0}", str);
}

If the source does not have any value in it or if the source is null, the operator throws
an ArgumentNullException error.

Standard Query Operators

[188]

Intersect
This Intersect operator returns items that are common two sequences. Given
below are the declarations for the Intersect operator.

The declaration of the Intersect operator, using default comparer, is given below:

public static IEnumerable<TSource> Intersect<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second
)

The declaration that uses the specified comparer for comparing the values is
as follows:

public static IEnumerable<TSource> Intersect<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second,
 IEqualityComparer<TSource> comparer
)

This operator first fetches the elements from the first sequence and then compares
it with the elements present in the second sequence. It keeps the element, if it is also
present in the second sequence. In this manner, it compares all the elements of the
first sequence with that of the second sequence and then fetches the common ones.

The following code shows an example of fetching the common elements from two
sequences using the Intersect operator.

string[] stringsOne = { "Icecreams", "Pastries", "Buiscuits",
 "Chocolates", "Juices", "Fruits" };
string[] stringsTwo = { "Icecreams", "Pastries"};
IEnumerable<string> stringsOnlyInFirst =
 stringsOne.Intersect(stringsTwo);
Console.WriteLine("Intersect Operator Example :");
foreach (string str in stringsOnlyInFirst)
{
 Console.WriteLine("{0}", str);
}

If the source does not have any value, or has a null value, an
ArgumentNullException is thrown.

Chapter 7

[189]

Union
The Union operator is for combining the elements of two different sequences. This
is useful for collecting distinct values of different sequences. Given below is the
declaration for the Union operator, which uses the default equality comparer.

public static IEnumerable<TSource> Union<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second
)

Following is the declaration of the Union operator which uses the specified
equality operator:

public static IEnumerable<TSource> Union<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second,
 IEqualityComparer<TSource> comparer
)

This operator first enumerates the first sequence and collects the elements. It then
enumerates the second sequence and collects the elements that are not collected
already. At the end of enumeration, the operator returns all the distinct elements
from both the sequences.

Following is an example for collecting the elements from two different sequences:

string[] stringsOne = { "Icecreams", "Pastries", "Buiscuits",
 "Chocolates", "Juices", "Fruits" };
string[] stringsTwo = { "Icecreams", "Coffee", "Tea" };
IEnumerable<string> stringsOnlyInFirst =
 stringsOne.Union(stringsTwo);
Console.WriteLine("Union Operator Example :");
foreach (string str in stringsOnlyInFirst)
{
 Console.WriteLine("{0}", str);
}

The values returned from this example, will have the Icecreams value returned only
once, as it is already there in the first sequence.

If the source does not have any value, or has a null value, an
ArgumentNullException will be thrown.

Standard Query Operators

[190]

Grouping Operators
This operator is useful for grouping similar elements, based on a common attribute.
GroupBy and ToLookUp are operators used for grouping elements together.

GroupBy
This operator groups all the elements in a sequence with a common key. This
operator returns a collection of objects, which are grouped, based on a distinct key
in a sequence. The order is maintained based on the order of elements in source.
Elements in each group are in the same order they appear in source.

GroupBy<(Of TSource,
TKey>)(IEnumerable<(Of TSource>),
Func<(Of TSource, TKey>))

Groups the elements according to a specified
key selector function.

GroupBy<(Of TSource,
TKey>)(IEnumerable<(Of TSource>),
Func<(Of TSource, TKey>),
IEqualityComparer<(Of TKey>))

Groups the elements according to a specified
key selector function and compares the keys
by using a specified comparer function.

GroupBy<(Of TSource, TKey, TElement>
)(IEnumerable<(Of TSource>), Func<(Of
TSource, TKey>), Func<(Of TSource,
TElement>))

Groups the elements according to a
specified key selector function and selects
the resulting elements by using a specified
function.

GroupBy<(Of TSource, TKey, TElement>)
(IEnumerable<(Of TSource>), Func<
(Of TSource, TKey>), Func<(Of TSource,
TElement>), IEqualityComparer<
(Of TKey>))

Groups the elements of a sequence according
to a key selector function. The keys are
compared by using a comparer function and
the resulting elements are selected using a
specified function.

The following code is an example that groups the items based on the category using
the GroupBy operator.

List<Item> items = GetItemsList();
IEnumerable<IGrouping<string, string>> Items = items.
 GroupBy(itm => itm.Category, itm => itm.Name);
foreach (IGrouping<string, string> itm in Items)
{
 Console.WriteLine("{0}", itm.Key);
 foreach (string nam in itm)
 {
 Console.WriteLine(" {0}", nam);
 }
}

Chapter 7

[191]

The following is an equivalent of the previous:

IEnumerable<IGrouping<string, string>> CatItems = from Itm in items
group Itm.Name by Itm.Category;
foreach (IGrouping<string, string> itm in CatItems)
{
 Console.WriteLine("{0}", itm.Key);
 foreach (string nam in itm)
 {
 Console.WriteLine(" {0}", nam);
 }
}

ToLookup
This operator puts elements into a one-to-many dictionary, based on a key selector
function. The functionality of Lookup should not be confused with the dictionary
functionality. A dictionary performs a one-to-one mapping of key value pairs, where
as, a Lookup is the grouping of keys to a collection of values. Refer to page number
26 for more examples and explanations regarding ToLookup.

Conversion Operators
These conversion operators are mainly used for converting the data type of the input
objects. Some of these operators can be used to force immediate query execution,
instead of deferring it until enumeration.

AsEnumerable
This operator returns an input as an IEnumerable<T>. It just changes the compile
time type of the source. Following is the declaration of the AsEnumerable operator.

public static IEnumerable<TSource> AsEnumerable<TSource>
(
 IEnumerable<TSource> source
)

In the next example, we define ArrayList, which is a non-generic type. Using the
AsEnumerable operator we will try to convert it as an enumerable object.

System.Collections.ArrayList arrList = new
System.Collections.ArrayList(4);
arrList.Add("String value One");
arrList.Add("String value Two");

Standard Query Operators

[192]

arrList.Add(new Icecreams {Category="Icecreams", Name="Vanilla
Icecream",
Ingredients="vanilla extract, guar gum, cream...", Cholesterol="65mg",
 Protein="4g", TotalCarbohydrates="26g", TotalFat="16g",
Price=9.80});
 arrList.Add(new Icecreams {Category="Icecreams", Name="Banana Split
 Icecream", Ingredients="Banana, guar gum, cream...",
 Cholesterol="58mg", Protein="6g", TotalCarbohydrates="24g",
 TotalFat="13g", Price=7.5});

Now use the AsEnumerable operator against the list of strings retrieved from the
main array list.

List<string> query1 = arrList.OfType<string>();
IEnumerable<string> qry = query1.AsEnumerable();
Console.WriteLine("Elements of type 'string' are:");
foreach (string str in qry)

 Console.WriteLine(str);

Cast
This operator converts the type of the specified element to a different type. The
declaration for the Cast operator is given as follows:

public static IEnumerable<TResult> Cast<TResult>
(
 IEnumerable source
)

Now let us consider an array list containing objects of type array list containing objects of typecontaining objects of type Item, which we have
seen in our previous examples. The ArrayList operator does not implement
IEnumerable<T>. We can use the Cast operator to change the type of the result.

ArrayList stringsOne = new ArrayList
{
 new Item
 {
 Category = "Icecreams", Name = "Chocolate Fudge Icecream",
 Ingredients = "cream, milk, mono and diglycerides...",
 Cholesterol = "50mg", Protein = "4g", TotalCarbohydrates = "35g",
 TotalFat = "20g", Price = 10.5,
 FatContents = new FatContent
 {
 SaturatedFat = "6g", TransFat = "4g", OtherFat = "6g"
 }

Chapter 7

[193]

 }
};
IEnumerable<Item> icecreamsList = stringsOne.Cast<Item>().
Where(o => o.Category == "Icecreams");

ArgumentNullException is raised if the source is null. If the source element cannot
be cast to the type specified, InvalidCastException will be thrown.

OfType
The OfType operator is used to filter elements based on a particular type. This
operator can be used along with the Cast operator to cast the element of a particular
type, so that we can avoid InvalidcastException.

Following is an array list which contains mixed types of elements. It has strings,
integer and double. Out of these values, if we want to extract only the elements that
are strings, then we can use the OfType operator as given below.

ArrayList strings = new ArrayList(5);
strings.Add("Icecreams");
strings.Add("Chocolates");
strings.Add("Pastries");
strings.Add(5);
strings.Add(2.5);
IEnumerable<string> onlyStrings = strings.OfType<string>();
Console.WriteLine("The Elements of type string are :");
foreach (string str in onlyStrings)
 Console.WriteLine(str);

We will get the ArgumentNullException if the source value is null.

ToArray
The ToArray operator is used for converting a collection into an array. The
declaration for the ToArray operator is as follows:

public static TSource[] ToArray<TSource>
(
 IEnumerable<TSource> source
)

This operator enumerates the sequence and returns the elements in the form of an
array. If the source is null, an ArgumentNullException is thrown.

Standard Query Operators

[194]

Following is an example that shows how to get the categories of items in an array
using the ToArray operator.

List<Item> items = GetItemsList();
string[] icecreamNames = items.Select(itm =>
itm.Category).Distinct().ToArray();
foreach (string nam in icecreamNames)
 Console.WriteLine(name);

ToDictionary
The ToDictionary operator creates a dictionary from a given sequence. Following is
the declaration of the ToDictionary operator.

public static Dictionary<TKey, TSource> ToDictionary<TSource, TKey>
(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector
)
public static Dictionary<TKey, TSource> ToDictionary<TSource, TKey>
(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector,
 IEqualityComparer<TKey> comparer
)
public static Dictionary<TKey, TElement>
 ToDictionary<TSource, TKey, TElement>
(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector,
 Func<TSource, TElement> elementSelector
)
public static Dictionary<TKey, TElement>
 ToDictionary<TSource, TKey, TElement>
(
 IEnumerable<TSource> source,
 Func<TSource, TKey> keySelector,
 Func<TSource, TElement> elementSelector,
 IEqualityComparer<TKey> comparer
)

The KeySelector and ElementsSelector functions are useful for creating a key-
value pair for the dictionary. If the ElementSelector is not specified, the element
itself is considered as a value by default.

Chapter 7

[195]

Following is an example for creating the dictionary from the list of items:

List<Icecreams> items = GetItems();
Dictionary<string, Icecreams> icecreamNames = items.
 ToDictionary(itm => itm.Name);
Console.WriteLine("ToDictionary Example: ");
foreach (KeyValuePair<string, Icecreams> ice in icecreamNames)
 Console.WriteLine("Key:{0}, Name:{1}", ice.Key,
 ice.Value.Ingredients);

In the above example, items is a list that contains a list of Icecreams objects that
have different properties such as name, category, ingredients, price, etc. Here,
KeySelector is a string which is the key for the dictionary, and the object Icecreams
itself is the element. The resultant dictionary has the item name as a key and the
Item itself as a value.

An ArgumentNullException is thrown if the source, KeySelector,
ElementSelector, or the key itself produced by the KeySelector is null. An
ArgumentException is thrown if the KeySelector returns the same key for two
elements. Key values are compared using a specified comparer, and if it is not
specified, the default comparer is used for comparing.

ToList
The ToList operator is used for creating the list from the given sequence. It is
enumerated through the sequence and returns the elements as a list.

public static List<TSource> ToList<TSource>
(
 IEnumerable<TSource> source
)

Following is an example that returns the list of item names from strings: from strings:from strings: strings:strings:

string[] strings = { "Icecreams", "Pastries", "Buiscuits",
"Chocolates", "Juices", "Fruits" };
List<string> icecreamsPrices = strings.ToList();
Console.WriteLine("List of items :");
foreach (var icecream in icecreamsPrices)
Console.WriteLine("{0}", icecream);

An ArgumentNullException is thrown if the source is null.

Standard Query Operators

[196]

ToLookup
The ToLookup method returns a lookup which is a one-to-many dictionary that maps
the key to a collection of values.

Overloaded List o�� ToLookup Description
ToLookup<(Of TSource,
TKey>)(IEnumerable<(Of TSource>),
Func<(Of TSource, TKey>))

Creates a lookup according to a specified
key selector function.

ToLookup<(Of TSource,
TKey>)(IEnumerable<(Of TSource>),
Func<(Of TSource, TKey>),
IEqualityComparer<(Of TKey>))

Creates a lookup according to the
specified key selector and the comparer
functions.

ToLookup<(Of TSource, TKey, TElement
>)(IEnumerable<(Of TSource>), Func<(Of
TSource, TKey>), Func<(Of TSource,
TElement>))

Creates a lookup according to the
specified key selector and element selector
functions.

ToLookup<(Of TSource, TKey, TElement
>)(IEnumerable<(Of TSource>), Func<(Of
TSource, TKey>), Func<(Of TSource,
TElement>), IEqualityComparer<(Of TKey>))

Creates a lookup according to the
specified key selector, element selector
and comparer functions.

This lookup operator is similar to the dictionary but the dictionary returns one-to-
one mapping of keys and values. But the lookup returns the one-to-many mapping
of key and collections.

Given below is an example that first gets a collection of items of type Icecream. The
items collection contains information for a list of different ice-creams and pastries.
The look up operator is used for grouping Icecreams and Pastries as the key, and
then looking up the items collection for each key.

List<Icecreams> items = GetItems();
Lookup<string, string> lookup = items.
ToLookup(p => p.Category, p => p.Name);
Console.WriteLine("Lookup Operator Example :");
foreach (IGrouping<string, string> group in lookup)
{
 Console.WriteLine(group.Key);
 foreach (string str in group)
 Console.WriteLine(" {0}", str);
}

Chapter 7

[197]

The result from the previous code is shown as follows:

If the source or the key selector is null, ArgumentNullException is thrown.

Equality Operators
This is to find the equality between two sequences. They are considered equal if the
number of elements and their value are equal. SequenceEqual is the operator used
for finding the equality between the sequences.

SequenceEqual
This operator is useful for comparing two sequences and finding their equality. This
operator compares the elements in two sequences by using the equality comparer.

public static bool SequenceEqual<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second
)
public static bool SequenceEqual<TSource>
(
 IEnumerable<TSource> first,
 IEnumerable<TSource> second,
 IEqualityComparer<TSource> comparer
)

Following is an example that compares two sequences using the SequenceEqual
operator:

List<Icecreams> items1 = GetItems();
List<Icecreams> items2 = GetItems();
bool equal = items1.SequenceEqual(items2);
Console.WriteLine("The lists {0} equal.", equal ? "are" : "are not");

If the first or second element is null, ArgumentNullExcpetion is thrown.

Standard Query Operators

[198]

Generation Operators
This operator is used for creating new sequences. The various generation operators
are discussed in detail in the following sub-sections.

Empty
This operator returns an empty sequence of a given type.

public static IEnumerable<TResult> Empty<TResult> ()

If the object returned by this operator is enumerated, it yields nothing.

For example, the following code returns an empty sequence of type Item.

IEnumerable<Item> noItems = Enumerable.Empty<Item>();
Console.WriteLine(noItems.ToString());

Range
This operator is used to generate a sequence of integral numbers within a
specified range.

public static IEnumerable<int> Range
(
 int start,
 int count
)

The code given below shows the use of Range operator to generate ten numbers.

IEnumerable<int> numbers = Enumerable.Range(1, 10);
foreach (int number in numbers)
Console.WriteLine(number);

ArgumentOutOfRangeException is thrown when the count is less than zero.

Repeat
This operator is used for generating a collection that contains repeated values.

public static IEnumerable<TResult> Repeat<TResult>
(
 TResult element,
 int count
)

Chapter 7

[199]

The following code example demonstrates how to use the Repeat operator to
generate a sequence of a repeated values. This code generates the same string,
five times.

IEnumerable<string> strings = Enumerable.
 Repeat("Language Integrated Query", 5);
foreach (String str in strings)
 Console.WriteLine(str);

When the count is less than zero, ArgumentOutOfRangeException is thrown.

Quantifiers
This operator is used to find if any or all the elements in a sequence satisfy a
specific condition.

All
The All operator is useful in determining whether all values in a collection satisfy a
particular condition.

public static bool All<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

This operator does not return any collection. It only returns true or false. The
following code uses the All operator, which returns true if all the items category is
equal to Icecreams.

List<Icecreams> items1 = GetItems();
bool all = items1.All(itm => itm.Category.Equals("Icecreams"));
Console.WriteLine("All Items are Icecreams ? {0}", all.ToString());

If the source element is null, ArgumentNullException is thrown.

Any
This is similar to the All operator, but it checks if any of the elements in a collection
is equal to the specified value.

Standard Query Operators

[200]

Following is the declaration of the Any operator to determine if the sequence contains
any of the specified elements:

public static bool Any<TSource>
(
 IEnumerable<TSource> source
)

Following is the declaration of the Any operator to determine whether any of the
elements in the sequence satisfy the condition.

public static bool Any<TSource>
(
IEnumerable<TSource> source,
Func<TSource, bool> predicate
)

The following example shows the use of Any operator to find if any of the items
category is equal to Pastrie. If it is, it returns a true value.

List<Icecreams> items1 = GetItems();
bool any = items1.Any(itm => itm.Category.Equals("Pastries"));
Console.WriteLine("Item contains Pastries Also ? {0}",

 any.ToString());

ArgumentNullException is thrown if the source element is null.

Contains
This is similar to Any operator. It determines whether a sequence contains the
specified element.

public static bool Contains<TSource>
(
 IEnumerable<TSource> source,
 TSource value
)
public static bool Contains<TSource>
(
 IEnumerable<TSource> source,
 TSource value,
 IEqualityComparer<TSource> comparer
)

Chapter 7

[201]

The following example shows the code to check whether the specified item is present
or not.

List<Icecreams> items = GetItems();
Icecreams itm = new Icecreams {Category="Icecreams", Name="Chocolate
 Fudge Icecream", Ingredients="cream, milk,
 mono and diglycerides...",
 Cholesterol="50mg", Protein="4g", TotalCarbohydrates="35g",
 TotalFat="20g", Price=10.5 };
 bool contains = items.Contains(itm);

If the value is null, ArgumentNullException is thrown.

Aggregation Operators
These operators are used to compute a value from a collection of values. For
example, find the sum of all the numbers in a collection, or find the average of a
collection of numbers. We will discuss all the aggregate operators in the following
sub-sections:

Average
The Average operator is useful in computing an average value of a sequence of
elements. This operator enumerates the source, invokes the selector function for each
element, and computes the average of the resulting values.

If no selector function is specified, the average of the elements themselves is
computed. An ArgumentNullException is thrown if any argument is null, and an
OverflowException is thrown if the sum of the elements is too large.

Following is the code for calculating the average price of all ice-creams:

List<Item> items = GetItemsList();
var averageIcecreamsPrice = items.
Select(itm => new
{ itm.Name, averagePrice = itm.Price.Average(p => p.Price) });

Standard Query Operators

[202]

Count
The Count operator is useful for counting the number of elements in a sequence.

public static int Count<TSource>
(
 IEnumerable<TSource> source
)
public static int Count<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

If the source implements ICollection, the count can be obtained from the
implementation itself.

ArgumentNullException is thrown if the source is null, and an OverflowException
is thrown if the number of elements in the source is larger than the largest possible
value of that type. This can be avoided by using LongCount.

LongCount
This is very similar to the Count method, but it can be used when we expect the
result to be a large value.

Min
This operator finds the minimum value from a sequence of values. The Min operator
enumerates the source sequence, invokes the selector function for each element and
finds the minimum from a collection values.

public static decimal Min
(
 IEnumerable<T> source
)
public static S Min<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, S> selector
)

If a selector function is not specified, the minimum of the elements themselves is
computed. If the values implement the IComparable<T> interface, the values are
compared using it. Otherwise the values use the non-generic IComparable interface.

Chapter 7

[203]

The following example uses the Min operator to find out the minimum value from a
group of numbers.

int[] integers = { 5, 3, 8, 9, 1, 7};
int minNum = integers.Min();
Console.WriteLine("Minimum Number : {0}", minNum.ToString());

An ArgumentNullException is thrown if any of the arguments are null, and
InvalidOperationException is thrown if the source contains no elements.

Max
This operator finds the maximum value from a sequence of values. The Max operator
enumerates the source sequence, invokes the selector function for each element, and
finds the maximum of the values.

public static decimal Max
(
 IEnumerable<T> source
)
public static S Max<TSource>
(
 Enumerable<TSource> source,
 Func<TSource, S> selector
)

If a selector function is not specified, the maximum of the elements themselves is
computed. If the values implement the IComparable<T> interface, then the values
are compared using it. If the values do not implement this interface then the
non-generic IComparable interface is used for comparing the values.

The following example uses the Max operator to find out the maximum value from
the group of numbers:

int[] integers = { 5, 3, 8, 9, 1, 7};
int maxNum = integers.Max();
Console.WriteLine("Maximum Number : {0}", maxNum.ToString());

If any of the arguments is null, then an ArgumentNullException is thrown, and
InvalidOperationException is thrown if the source contains no elements.

Standard Query Operators

[204]

Sum
This operator finds the total of the elements in a sequence. This Sum operator
enumerates the source sequence, invokes the selector function for each element, and
finds the total sum.

public static decimal Sum
(
 IEnumerable<T> source
)
public static S Sum<TSource> (
 IEnumerable<TSource> source,
 Func<TSource, S> selector
)

If a selector function is not specified, the sum of the elements themselves
is computed.

The following example uses the Sum operator to find out the total of the
given numbers:

int[] integers = { 5, 3, 8, 9, 1, 7};
int sum = integers.Sum();
Console.WriteLine("Total of all Numbers : {0}", sum.ToString());

If any of the arguments are null, an ArgumentNullException is thrown, and an
OverflowException is thrown if the sum is larger than the maximum value for
that type.

Aggregate
This operator applies a function over a sequence. It calls the function once for each
element in the sequence. The first element of the source is the initial aggregate value.
Every time the function is called, the operator passes the current element of the
sequence to the function, and the current aggregated value as arguments. The first
element of the source is the initial aggregated value. Every time the function returns
a result, the previously aggregated value is replaced by the new value returned by it.

public static TSource Aggregate<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, TSource, TSource> func
)
public static TAccumulate Aggregate<TSource, TAccumulate>
(
 IEnumerable<TSource> source,

Chapter 7

[205]

 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> func
)
public static TResult Aggregate<TSource, TAccumulate, TResult>
(
 IEnumerable<TSource> source,
 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> func,
 Func<TAccumulate, TResult> resultSelector
)

The following code is an example that shows how to change the order of strings.

string[] numbers = {"One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight", "Nine", "Ten"};
string reversedOrder = numbers.Aggregate((nums, next) =>
 next + " " + nums);
Console.WriteLine("Reversed using Aggregate: {0}", reversedOrder);

For every element in the sequence, the function which adds the values to the
aggregate value is called. This happens for all the elements in the sequence. When
we take the end result of the aggregate function, we will get the reversed order of the
elements. The result would look like this:

Reversed using Aggregate: Ten Nine Eight Seven Six
Five Four Three Two One

If the source or function is null, ArgumentNullException is thrown, and an
InvalidOperationException is thrown if the source does not contain any elements.

Partitioning Operators
These operators divide the input sequence into two or more sections, without
rearranging the elements. Also, it returns only one of the sections and ignores the
remaining elements.

Take
This operator returns only the specified number of elements from a sequence and
skips the remaining elements. It starts from the beginning, and continues until the
number is reached and then returns the elements.

Standard Query Operators

[206]

It enumerates the source sequence and retrieves the elements one-by-one until the
number of elements retrieved is equal to the number given by the count argument. If
the count argument is less than or equal to zero, the sequence is not enumerated and
no elements are returned.

public static IEnumerable<TSource> Take<TSource>
(
 IEnumerable<TSource> source,
 int count
)

The following code takes only five elements from a set of ten numbers.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var firstFive = numbers.Take(5);
foreach (int num in firstFive)
Console.WriteLine(num.ToString());

Following is another example for taking the first two ice-cream's objects from the list
of objects retrieved using the GetItems method:

List<Icecreams> icecreams = GetItems();
IEnumerable<Icecreams> firstTwoIcecreams = icecreams.Take(2);
foreach (Icecreams ice in firstTwoIcecreams)
Console.WriteLine(ice.Name);

If the source is null, ArgumentNullException is thrown.

Skip
This operator is just the opposite of Take operator. It skips the specified number of
elements in the sequence, and returns the remaining elements.

If the source sequence contains a lower number elements than the value specified by
the count argument, it returns nothing. If the count argument is less than or equal to
zero, it returns all the elements from the sequence.

public static IEnumerable<TSource> Skip<TSource>
(
 IEnumerable<TSource> source,
 int count
)

Chapter 7

[207]

The following code skips the first five elements out of all the numbers, and returns
the remaining numbers as sequence.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
var lastFive = numbers.Skip(5);
foreach (int num in lastFive)
Console.WriteLine(num.ToString());

An ArgumentNullException is thrown if the source is null.

TakeWhile
This operator returns elements from a sequence, while testing each element using the
predicate function, and yields the element if the result is true. It fetches only those
elements for which the function returns true.

public static IEnumerable<TSource> TakeWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)
public static IEnumerable<TSource> TakeWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, int, bool> predicate
)

The following code gets all the values that are less than five in the given sequence.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var firstFive = numbers.TakeWhile(num => num <= 5);
foreach (int num in firstFive)
Console.WriteLine(num.ToString());

This operator starts enumerating from the first element and continues until the
function returns true. So in the above example, if the value is greater than five, it
returns false and skips the elements after that.

SkipWhile
This operator starts enumerating a sequence, and skips all the elements while a
specified condition is true, and then returns the remaining elements. The following
code is a declaration where the first argument is the source sequence, and the second
one is the predicate function to check against the source elements.

Standard Query Operators

[208]

public static IEnumerable<TSource> SkipWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

Following is the declaration, similar to the above declaration but the integer used in
the predicate function is the element index, in the sequence.

public static IEnumerable<TSource> SkipWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, int, bool> predicate
)

The following code skips the first five elements and then retrieves the remaining
elements in the sequences that are greater than five.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
var lastFive = numbers.SkipWhile(num => num >5);
foreach (int num in lastFive)
Console.WriteLine(num.ToString());

ArgumentNullException is thrown if the source or the predicate function is null.

TakeWhile
This operator starts enumerating a sequence and takes all the elements while a
specified condition is true, and then stops enumerating the remaining elements in
the sequence. Given below is the syntax for TakeWhile, where the first argument is
the source sequence and the second one is the predicate function to check against the
source elements.

public static IEnumerable<TSource> TakeWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

Following is a declaration similar to the above declaration, but the integer used in the
predicate function is the element index in the sequence.

public static IEnumerable<TSource> TakeWhile<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, int, bool> predicate
)

Chapter 7

[209]

The following code takes all the items from a list, while the item with price more
than 10 is reached. Here, you can see the descending order on the price of the items
list to get all the items with price less than or equal to 10.

List<Item> items = GetItemsList();
List<Item> icecreamsWithLesserPrice = from itms in items
orderby itms.Price descending
select itms;
List<Item> topicecreamsWithLesserPrice = icecreamsWithLesserPrice.
TakeWhile(item => item.Price <= 10);
Console.WriteLine("Items with lesser price");
foreach (Item ItemswithLowPrice in icecreamsWithLesserPrice)
Console.WriteLine("Icecream Name: " + ItemswithLowPrice.Name + "
Price : " + ItemswithLowPrice.Price);

The variable, topicecreamsWithLesserPrice will contain only those items with
price less than or equal to 10. Once the item with price greater than ten is found, all
the remaining items will be ignored, including the first one which does not satisfy
the condition.

Element Operators
These operators return a specific or a single element from a sequence.

DefaultIfEmpty
This operator is useful for replacing an empty sequence with a default value. When
an object returned byby DefaultIfEmpty is enumerated, it enumerates the source
sequence object and retrieves its elements. If the source is empty, a single elementd retrieves its elements. If the source is empty, a single element
with a default value is returned. The default value for reference and nullable types is
null. An ArgumentNullException is thrown if the source is null.

public static IEnumerable<TSource> DefaultIfEmpty<TSource>
(
 IEnumerable<TSource> source
)
public static IEnumerable<TSource> DefaultIfEmpty<TSource>
(
 IEnumerable<TSource> source,
 TSource defaultValue
)

Standard Query Operators

[210]

In the following example, we use the defaultItem argument. Then we define a list
of items, which is an empty collection. After that, we try to enumerate through the
object collection using DefaultIfEmpty. The defaultItem argument used for the
operator, means that the default item defined is considered if the original sequence
is empty.

Item defaultItem = new Item {Category="Icecreams", Name="Default
Item Test", Ingredients="cream, milk, ...", Cholesterol="50mg",
Protein="4g", TotalCarbohydrates="35g", TotalFat="20g", Price=10.5
, FatContents = new FatContent{SaturatedFat="6g", TransFat="4g",
OtherFat="6g"} };
List<Item> items = new List<Item>();
foreach (Item itm in items.DefaultIfEmpty(defaultItem))
Console.WriteLine("{0}", itm.Name);

An ArgumentNullException is thrown if the source argument is null.

ElementAt
This operator returns an element at a specified index in a sequence. It skips all the
elements until the index is specified, and then returns the element from the specified
index. If the source sequence implements IList<T>, the implementation is used for
retrieving the element at the specified index.

public static TSource ElementAt<TSource>
(
 IEnumerable<TSource> source,
 int index
)

An ArgumentNullException is thrown if the source is null, and an
ArgumentOutOfRangeException is thrown if the index value is less than zero or
greater than or equal to the number of elements in source.

ElementAtOrDefault
This operator is a combination of ElementAt and DefaultIFEmpty operators. It
checks for a specific item in the source. If it is empty, or the index is not found or out
of range, it returns the default element.

public static TSource ElementAtOrDefault<TSource>
(
 IEnumerable<TSource> source,
 int index
)

Chapter 7

[211]

The following code is gets the element at index fifteen, but we do not have that many
names in the array specified, and because of that the operator ElementAtOrDefault
will return a null to the string. We can check if the item is null or empty using the
IsNullOrEmpty method and change the end result of the method.

string[] strings = { "Icecreams", "Pastries", "Buiscuits",
 "Chocolates", "Juices", "Fruits" };
int index = 15;
string name = strings.ElementAtOrDefault(index);
Console.WriteLine("The name at index {0} is '{1}'.",
index, String.IsNullOrEmpty(name) ? "<name not found at the specified
 index>" : name);

An ArgumentNullException is thrown if the source is null.

First
This First operator returns the very first element or the first element that satisfies a
condition in a sequence.

public static TSource First<TSource>
(
 IEnumerable<TSource> source
)
public static TSource First<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

Following is an example which shows how to retrieve the first element from a list,
with and without using a condition.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int firstNumber = numbers.First();
Console.WriteLine("The First number in the list is: {0}", firstNumber.
ToString());
int firstNumberwithCondition = numbers.First(num => num == 10);
Console.WriteLine("The First number in the list which satifies the
condition is: {0}", firstNumberwithCondition.ToString());

An ArgumentNullException is thrown if the source is null.

Standard Query Operators

[212]

FirstOrDefault
This operator is very similar to the First operator, but it returns the default value if
the source does not have any elements in it.

public static TSource FirstOrDefault<TSource>
(
 IEnumerable<TSource> source
)
public static TSource FirstOrDefault<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

In the following code, FirstOrDefault returns a default value if the source
sequence does not have any value. In the first example, the integer array is empty.
The FirstOrDefault operator returns a zero in this case.

int[] numbers = {};
int firstNumber = numbers.FirstOrDefault();
Console.WriteLine("The First number in the list is: {0}",
 firstNumber);

The following example shows an empty string array. In this case, the operator
returns nothing. We can check the value using IsNullOrEmpty, and then return the
default value or a message.

string[] strings = { };
string firstStringwithCondition = strings.FirstOrDefault(str =>
str == "Chocolate");
Console.WriteLine("{0}",
 string.IsNullOrEmpty(firstStringwithCondition) ? "Source is Empty" :
 firstStringwithCondition);

An ArgumentNullException is thrown if the source is null.

Last
This operator returns the last element, or the last element which satisfies a
predicate condition.

public static TSource Last<TSource>
(
 IEnumerable<TSource> source
)

Chapter 7

[213]

public static TSource Last<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

The following code shows how to get the last element from a sequence, and also the
last element in the sequence that satisfies the given condition.

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
 12, 13, 14, 15 };
int lastNumber = numbers.Last();
Console.WriteLine("The last number in the list is: {0}", lastNumber.
ToString());
int lastNumberwithCondition = numbers.Last(num => num == 10);
Console.WriteLine("The last number in the list
which satisfies the condition is: {0}",
 lastNumberwithCondition.ToString());

An ArgumentNullException is thrown if the source is null, and the
InvalidOperationException is thrown if none of the elements satisfy the
condition, or the source sequence is empty.

LastOrDefault
This operator is very similar to the Last operator, but it returns a default if the
source does not have any element in it.

public static TSource LastOrDefault<TSource>
(
 IEnumerable<TSource> source
)
public static TSource LastOrDefault<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

In the following code, LastOrDefault returns the default value if the source
sequence does not have any value. In the first example, the integer array is empty.
The LastOrDefault operator returns zero in this case.

int[] numbers = {};
int lastNumber = numbers.LastOrDefault();
Console.WriteLine("The Last number in the list is: {0}", lastNumber);

Standard Query Operators

[214]

The next shows the empty string array. In this case, the operator returns nothing. We
can check the value using the IsNullOrEmpty operator and then return the default
value or message required.

string[] strings = { };
string lastStringwithCondition = strings.LastOrDefault(str => str ==
 "Chocolate");
Console.WriteLine("{0}",

 string.IsNullOrEmpty(lastStringwithCondition) ? "Source is Empty" :

 lastStringwithCondition);

An ArgumentNullException is thrown if the source is null.

Single
This operator returns a single element from a sequence. If there is more then one
element in the sequence, we should use a condition to get a single element from
the list.

public static TSource Single<TSource>
(
 IEnumerable<TSource> source
)
public static TSource Single<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

The following code gets a single element, using a condition from the sequence.

int[] numbers = { 12};
int singleNumber = numbers.Single();
Console.WriteLine("The Single number is: {0}",
 singleNumber.ToString());
int singleNumberwithCondition = numbers.Single(num => num == 12);
Console.WriteLine("Single number in the list which satifies the
condition is: {0}", singleNumberwithCondition.ToString());

In the above example, if the sequence is like int[] numbers = {12, 13, 14 ,
15, 12}, then the then the Single operator throws an exception.

An ArgumentNullException is thrown if the source is null and an
InvalidOperationException is thrown if no element satisfies the condition, more
than one element satisfies the condition, or the source is empty.

Chapter 7

[215]

SingleOrDefault
This operator is similar to the Single operator that returns a single element in the
sequence, but the difference is the SingleOrDefault will return the default value if
the source does not have any element in it.

public static TSource SingleOrDefault<TSource>
(
 IEnumerable<TSource> source
)
public static TSource SingleOrDefault<TSource>
(
 IEnumerable<TSource> source,
 Func<TSource, bool> predicate
)

The following example uses the SingleOrDefault operator to fetch a single element
from the sequence. It returns the default value, zero, if the integer array is empty.

int[] numbers = { };
int singleNumber = numbers.SingleOrDefault();
Console.WriteLine("The Single number in the list is: {0}",

 singleNumber);

The following code has a condition to fetch the element from the sequence. It
returns null if the sequence does not have any element in it. So we can use the
IsNullOrEmpty operator to check the null value, and then return a custom message
or value.

string[] strings = { };
string singleStringwithCondition = strings.SingleOrDefault(str =>
str == "Chocolate");
 Console.WriteLine("{0}", string.IsNullOrEmpty(singleSt
ringwithCondition) ? "Source is Empty":
 singleStringwithCondition);

An ArgumentNullException is thrown if the source is null, and
InvalidOperationException is thrown if more than one element satisfies
the condition.

Standard Query Operators

[216]

List of Query Operators
Operator Type Operator Description
Restriction Where Filters elements.

OfType Filters elements based on their type in the
collection.

Projection Select Selects values.
SelectMany Selects values and combines the resulting

collections into one collection.
Join Join Joins two sequences based on matching keys

and extracts a pair of values from different
sources of data.

GroupJoin Joins two sequences based on matching keys
and groups the resulting matches.

Concatenation Concat Concatenates two different collections of data
into one.

Ordering OrderBy Sorts the resulting values in ascending order.
OrderByDescending Sorts resulting values in descending order.
ThenBy Performs a secondary sort in ascending order.
ThenByDescending Performs secondary sort in descending order.
Reverse Reverses the order of the elements in

a collection.
Set Distinct Removes duplicate values, and returns unique

values from a collection.
Except Returns only those elements from a collection

that do not appear in another collection.
Intersect Returns only those elements that are common

to both collections
Union Returns those elements that appear in either

of the two collections. This is a combination
of both the collections containing unique
elements.

Grouping GroupBy Returns grouped elements that are having a
common key.

Chapter 7

[217]

Operator Type Operator Description
Conversion AsEnumerable Returns the input typed as IEnumerable<T>.

Cast Casts the element to a specified type.
OfType This is to filter the values depending on

the ability of the values to be cast to a
specified type.

ToArray Converts a collection into an array.
ToDictionary Puts elements into a dictionary.
ToList Converts a collection into a list.
ToLookup Puts elements into a lookup, which is a one-to-

many dictionary.
Equality SequenceEqual Determines whether two collections are equal

by comparing the elements.
Element DefaultIfEmpty If the collection is empty, it will be replaced

with a default valued single collection.
ElementAt Returns the element at a specified index in the

collection.
ElementAtOrDefault Returns an element from a specified index or

a default value, if the index is out of range.
First Returns the first element in a collection or the

first element that satisfies a condition.
FirstOrDefault Returns the first element or the first element

in a collection that satisfies a condition. If the
first element is empty, it returns the default
value. This is the combination of First and
DefaultIfEmpty operators.

Last Returns the last element or the last element
that satisfies the condition in a collection.

LastOrDefault Returns the last element or the last element
that satisfies a condition. If the last element is
empty, it returns the default value.

Single Returns the only element or the only element
in a collection which satisfies the condition.

SingleOrDefault Returns the only element or the only element
in a collection that satisfies the condition. If no
such elements exists or if the collection does
not contain exactly one element, return the
default value.

Standard Query Operators

[218]

Operator Type Operator Description
Generation Empty Returns an empty collection.

Range Generates a collection that contains a sequence
of numbers.

Repeat Generates a collection that contains one
repeated value.

Quantifiers All Determines whether all values in a collection
satisfy the condition.

Any Determines whether any of the values in a
collection satisfy the condition.

Contains Determines whether the collection contains any
element which is specified.

Aggregation Aggregate Accumulates all the values in a collection.
Average Calculates the average of all the values in a

collection.
Count Counts the number of elements that satisfy a

condition in a collection.
LongCount Counts the number of elements that satisfy a

condition in a large collection.
Max Determines the maximum value in a collection.
Min Determines a minimum value in a collection.
Sum Calculates the sum of all the values in

a collection.
Partitioning Skip Skips elements in a collection up to the

specified number
SkipWhile Skips elements in a collection while an element

in the collection does not satisfy a condition.
Take Takes all the elements up to a specified

position in the collection
Takewhile Takes elements in a collection, while an

element in the collection does not satisfy
the condition.

Chapter 7

[219]

Query Operator Equivalent Expressions
Some of the important query operators have equivalent query expressions. A query
expression is a more readable form of query. At compile time, these expressions are
translated into calls to the corresponding query methods. The following table shows
the list of equivalent expressions for some of the query operators.

Query Operator Equivalent Expression
Cast Use explicitly typed range variable
GroupBy Group by

(or)
Group by…into
This is for grouping of objects

GroupJoin Join…in…on…equals…into
Join Join…in…on…equals
OrderBy Order by
OrderByDescending Order by…descending
Select select
SelectMany Multiple from clauses
Where where
ThenBy Order by
ThenByDescending Order by…, …descending

Summary
In this chapter, we have seen different query operators supported by LINQ. These
operators can be used on the objects whose type implements the IEnumerable<T>
interface, or the interface IQueryable<T>. All operators differ from one another with
respect to the time of execution. The operators like Average and Sum, which return a
single value, will execute immediately, whereas operators like Select, SelectMany,
TakeWhile, will defer the query execution and return an enumerable object. We can
also replace standard query operators with our own implementation that provides
additional required services.

Building an ASP.NET
Application

In this book we have seen how to use LINQ to Objects, SQL, Dataset, XML and
XSD. We have also seen a number of examples for different query operators used by
LINQ. Now, in this appendix, we will see how we can use LINQ features to make
web application development easier. Let's build a simple ASP.NET application with
one page having a drop-down, and a grid to show details corresponding to the
selection of the drop-down box.

On selecting a particular category, we should be able to get the list of items for the
selected category in the grid. Let us see how we can build this web application in
Visual Studio using LINQ.

Create a new ASP.NET web application using File | New | Web Site | ASP.NET
Web Site, as shown in the following screenshot:

Building an ASP.NET Application

[222]

Following are the default references that get added to a project when we create it. To
make use of LINQ to SQL, we need to add some additional references to the project,
specifically System.Data.Linq and System.Data.

Also add the following namespaces to the project. This will let you use LINQ for
querying data from the database.

using System.Data.Linq;
using System.Data.Linq.Mapping;

Now we have to create the required database entity objects for our web application.
Create the database objects with properties as shown below:

The above database objects can be created using LINQ to SQL queries. For more
information on this, please see Chapter 4, LINQ to SQL. Let's consider that we have
these database objects ready. Now we have to create classes that map to the above
database objects and the database.

Appendix A

[223]

[Database(Name = "Deserts")]
public class Deserts : DataContext
{
 public Table<Categories> Categories;
 public Table<Items> Items;
 public Deserts(string connection) : base(connection) { }
}

[Table(Name = "Categories")]
public class Categories
{
 [Column(Name = "CategoryID", IsPrimaryKey = true,
 IsDbGenerated = true, DbType = "int NOT NULL IDENTITY",
 CanBeNull = false)]
 public int CategoryID
 {
 get;
 private set;
 }
 [Column(Name = "Category", DbType = "nvarchar(1000)")]
 public string Category
 {
 get;
 set;
 }
 [Column(Name = "Description", DbType = "nvarchar(1000)",
 UpdateCheck = UpdateCheck.Never)]
 public string Description
 {
 get;
 set;
 }
 private EntitySet<Items> _Items;
 [Association(Name = "FK_Category_Items", Storage = "_Items",
 OtherKey = "CategoryID", IsForeignKey = true)]
 public EntitySet<Items> Items
 {
 get { return this._Items; }
 set { this._Items.Assign(value); }
 }
 public Categories() { this._Items = new EntitySet<Items>(); }
}
[Table(Name = "Items")]
public class Items
{

Building an ASP.NET Application

[224]

 [Column(Name = "ItemID", IsPrimaryKey = true, IsDbGenerated = true,
 DbType = "int NOT NULL IDENTITY", CanBeNull = false)]
 public int ItemID { get; private set; }
 [Column(Name = "CategoryID")]
 public int CategoryID { get; set; }
 [Column(Name = "Name", DbType = "nvarchar(1000)")]
 public string Name { get; set; }
 [Column(Name = "Ingredients", DbType = "nvarchar(1000)")]
 public string Ingredients { get; set; }
 [Column(Name = "ServingSize", DbType = "nvarchar(1000)")]
 public string ServingSize { get; set; }
 [Column(Name = "TotalFat", DbType = "nvarchar(1000)")]
 public string TotalFat { get; set; }
 [Column(Name = "Cholesterol", DbType = "nvarchar(1000)")]
 public string Cholesterol { get; set; }
 [Column(Name = "TotalCarbohydrates", DbType = "nvarchar(1000)")]
 public string TotalCarbohydrates { get; set; }
 [Column(Name = "Protein", DbType = "nvarchar(1000)")]
 public string Protein { get; set; }
 private EntityRef<Categories> _Categories;
 [Association(Name = "FK_Category_Items", Storage = "_Categories",
 ThisKey = "CategoryID", IsForeignKey = true)]
 public Categories Categories
 {
 get { return this._Categories.Entity; }
 set { this._Categories.Entity = value; }
 }
 public Items() { this._Categories = new EntityRef<Categories>(); }
}

The above code creates mapping of:

1. Deserts class to the Deserts SQL database. This class is of type
DataContext.

2. Categories class to the Categories SQL database object in the Deserts
database.

3. Items class to the Items SQL database object in the Deserts database.

We also need to have primary and foreign keys defined for these classes.

Now open the Default.aspx designer and add the following controls to build the
web page:

1. Add the HTML table to design the UI.
2. Add a Label and a DropDownList to the page for categories selection.

Appendix A

[225]

3. Add a button control to execute LINQ queries, and bind the results to the
GridView control.

4. Add a GridView control to show List o�� Items for the selected category in
the drop down list.

5. Add a Label and a TextBox control to show Total Items for the selected
category.

After adding all the controls to the web page, it would look like this:

The columns shown in GridView correspond to the details that will be fetched for
the selected category using LINQ queries. We can also set GridView's properties to
automatically generate columns at runtime.

Add the following code to the constructor of the class to create a connection to the
Deserts database, and this will also create an object using the Deserts DataContext.
The Deserts variable can be declared as public, as it is referred to throughout
the application.

public Deserts dataBase;
Deserts database = new Deserts("Data Source=.\sqlexpress;Initia
 Catalog=Deserts;Integrated Security=true");

Building an ASP.NET Application

[226]

Now add the following code to the Page_Init event of the page to load the
categories drop-down. We will also make use of a LINQ to SQL query to fetch the list
of categories from the database.

protected void Page_Init(object sender, EventArgs e)
{
 var icecreams = from cat in dataBase.Categories
 select cat.Category;
 DropDownList1.DataSource = icecreams;
 DropDownList1.DataBind();
 lblCount.Visible = false;
 lblTotalItems.Visible = false;

}

Now save the application and execute it. We can see the web page with the
drop-down list loaded with a list of categories as shown in the following figure:

You will also need to write code for getting items for the selected category that form
the drop-down list. Add the following code to the Get Items button control:

protected void Button1_Click(object sender, EventArgs e)
{
 GridView1.DataSource = from items in dataBase.Items
 join categories in dataBase.Categories on items.CategoryID
 equals categories.CategoryID
 where categories.Category == DropDownList1.SelectedValue.ToString()
 select new { items.Name, items.Categories.Category,
 items.Protein, items.Ingredients };
 GridView1.DataBind();

Appendix A

[227]

 int iCount = (from items in dataBase.Items
 join categories in dataBase.Categories on items.CategoryID
 equals categories.CategoryID
 where categories.Category == DropDownList1.SelectedValue.ToString()
 select new { items.Name, items.Categories.Category,
 items.Protein, items.Ingredients }).Count();
 if (iCount > 0)
 {
 lblCount.Visible = true;
 lblTotalItems.Visible = true;
 lblCount.Text = iCount.ToString();
 }
 else
 {
 lblCount.Visible = false;
 lblTotalItems.Visible = false;
 }

}

In the above code, the source for GridView1 is a LINQ query which fetches all items
for the selected category. The same query with the Count operator is used for getting
the total number items retrieved for the selected category.

The final output of the web page would be as follows:

LINQ with Outlook
In this appendix we will make use of LINQ to access an Outlook object and get
details of contacts.

Create a new .NET Console application using the File | New | Project | Windows |
Console application option in Visual Studio. Add a reference to the Outlook Object
Library to the project folder, as shown below.

LINQ with Outlook

[230]

The above image shows Microso��t Outlook 11.0 Object Library added to the project.
This provides an interface to access Outlook properties, which will let us collect
contact information from Outlook.

Add the following namespace to the project:

using Microsoft.Office.Interop.Outlook;

Now add the following code to the Main method of the project:

_Application outlook = new Application();
// Contacts
MAPIFolder folder = outlook.ActiveExplorer().Session
 .GetDefaultFolder(OlDefaultFolders.olFolderContacts);
var contacts = from contact in folder.Items.OfType<ContactItem>()
select contact;
foreach (var contact in contacts)
{
 Console.WriteLine(contact.FirstName);
}

The above code references the Contacts folder. A LINQ query is used to access
contact details from the folder by enumerating through the Items of type
ContactItem.

Each item within the Contacts list has different properties that can be seen when we
create a new contact in Outlook.

Appendix B

[231]

In the example we are collecting the FirstName of all the contacts in the contacts list.
The output of the example would be:

LINQ queries can also be used to access addresses, tasks, mails, etc. The following
code shows a query for collecting details from the address book.

// Addresses
var addresses = from address in folder.Items.OfType<AddressList>()
select address;
foreach (var addres in addresses)
{
 Console.WriteLine(addres.Name);

}

LINQ queries are not only used for accessing XML, database and Outlook objects,
but also to access information from Microsoft Excel, Microsoft Project, Microsoft
Word and others.

Index
A
ADO.NET

about 141
components 141

aggregation operators
Aggregate operator 204, 205
Average operator 201
Count operator 202
LongCount operator 202
Max operator 203
Min operator 202
Sum operator 204

anonymous type, C# 3.0 ��eatures 8
architecture, LINQ

LINQ to datasets 6
LINQ to entities 6
LINQ to objects 6
LINQ to SQL 6
LINQ to XML 6

ASP.NET application
building 221

attributes, entity classes
about 81
association attribute 84
association attribute, properties 84
column attribute 82
column attribute, properties 82-84
database attribute 81
function attribute 87
inheritance mapping attribute 88
parameter attribute 88
relationships 85
relationships, foreign keys 85
table attribute 82

C
C# 3.0

features 8
LINQ, supporting 8

classes, LINQ to XML
XAttribute class 36
XComment class 36
XDocument class 36
XElement class 36

class library, LINQ to XML
about 34
classes 34
classes, diagrammatic representation 35

conversion operators
AsEnumerable operator 191
Cast operator 192, 193
OfType operator 193
ToArray operator 193
ToDictionary operator 194, 195
ToList operator 195
ToLookup operator 196

D
data, manipulating

about 50
XML, deleting 55
XML, updating 56
XML attributes, deleting 56
XML attributes, inserting 54, 55
XML attributes, updating 57
XML elements, inserting 50-53

database
working with, datacontext used 77

[234]

DataSet query operators
about 148
CopyToDataTable 149
Except 151
Field<T> 151
Intersect 150
LoadDataRow 149
SetField<T> 152
Union 150

E
element operators

DefaultIfEmpty operator 209, 210
ElementAt operator 210
ElementAtOrDefault operator 210
First operator 211
FirstOrDefault operator 212
Last operator 212
LastOrDefault operator 213
Single operator 214
SingleOrDefault operator 215

entity classes
about 78
attributes 81
catagories, defining 79
creating 79-81
items, defining 80
properties 85-87

equality operators
SequenceEqual operator 197

expressions, C# 3.0 ��eatures
about 16
expression trees 22
expression trees, classes 23
expression trees, implementing 23
lambda expressions 16, 18
lambda expressions, limitations 18
lambda expressions with extension method,

example 18
query expressions 18-21

Extensible Stylesheet Language
Trans��ormation. See XSLT

F
��eatures, C# 3.0

anonymous type 8

anonymous type, example 9, 10
expressions 16
extensions 15, 16
implicitly typed local variables 14
implicitly typed local variables,

limitations 15
object initializers 11
object initializers, example 11

��unctional construction, LINQ to XML
constructors 41
XML tree, building 42, 43

G
generation operators

Empty operator 198
Range operator 198
Repeat operator 198

grouping operators
GroupBy operator 190, 191
Lookup operator 191

J
join operators

GroupJoin operator 181, 182
Join operator 179, 180

L
LINQ

about 5
architecture 5
ASP.NET application, building 221-227
C# 3.0 features, support for 8
data, loading into DataSets 142-144
DataSet query operators 148
DataSets, querying 144, 146
Distinct 154
features, differentiating over W3C DOM 40
integrating with SQL 7
integrating with XML 7, 8
Join 153
Outlook object, accessing 229-231
Projection 152
SequenceEqual 154
sequence operator 146, 147
Skip 154

[235]

standard query operators 31, 171
standard query operators, types 172
typed DataSets, querying 147, 148
with MSXML 41
with XmlReader 40
with XSLT 41
XML tree, building 42, 43

LINQ to Objects
about 25
array of integers 25-27
collection of objects 27-29
queries, applying on array 25
strings, reading from 29
text files, reading from 30

LINQ to SQL
about 7, 77
class generator tool, stored procedures

117-121
concurrency conflicts, handling 122, 123
data, manipulating 93-95
database, working with 77, 78
databases, creating 89, 90
databases, deleting 89, 90
datacontext methods 90
entity classes 78
entity classes, attributes 81
joins 107
object relational designer 123-139
queries 96
queries, assigning 98
queries, executing 98
queries, using 97
query expression, assigning to variable 98
query result 109, 110
raw SQL query 109
stored procedures 110-116
transactions 121
transactions, handling ways 122
user defined functions, stored procedures

116
using 7
XML, constructing 106, 107

LINQ to XML
about 7, 8, 33
classes 34
classes, diagrammatic representation 35
class library 34

data, manipulating 50
features 33, 34
functional construction 41
XML, loading 46
XML, outputting 57
XML, querying 59
XML, streaming 58
XML, traversing 46
XML names 44
XmlReader 40
XML technologies 38
XML tree, building 41-43

LINQ to XSD
about 155
typed XML 158
un-typed XML 157
un-typed XML elements, accessing 155

O
O/R designer. See object relational designer
object initializers, C# 3.0 ��eatures

about 11
collection initializers 12
partial methods 13
partial methods, constraints 13
partial methods, implementing 13

object relational designer 123
ordering operators

OrderByDescending operator 184
OrderBy operator 184
Reverse operator 185
ThenByDescending operator 184
ThenBy operator 184

Outlook object
accessing 229

P
partitioning operators

Skip operator 206, 207
SkipWhile operator 207
Take operator 205
TakeWhile operator 207-209

projection operators
SelectMany operator 177, 178
select operator 176

[236]

Q
quantifiers operators

All operator 199
Any operator 199
Contains operator 200

queries, LINQ to SQL
about 96
assigning 98
deferred loading 101
deferred loading, example 101, 102
deferred query 102
executing 98
immediate loading 103
immediate loading, disadvantage 104
local queries 101
multiple entities 100
projections 105, 106
remote queries 101
using 97

R
restriction operators

ofType operator 174, 175
Where operator 173, 174

S
set operators

Distinct operator 186
Except operator 187
Intersect operator 188
Union operator 189

SQL
LINQ, integrating with 7

standard query operators
about 31, 172
query operators equivalent expressions 219
set of query operators, list 216

standard query operators, types
aggregation operators 201
concatenation operator 183
conversion operators 191
element operators 209
equality operators 197
generation operators 198
grouping operators 190

join operators 179
ordering operators 183
partitioning operators 205
projection operators 176
quantifiers operators 199
restriction operators 173
set operators 186

T
typed XML

about 158
creating, visual studio using 159

U
un-typed XML 157

X
XML

constructing 106, 107
LINQ, integrating with 7

XML, querying
about 59
ancestors 63
CSV file, reading from 69, 70
descendants 63
dictionaries 65
dictionary from XML, creating 66
dictionary to XML, converting 65
LINQ to XML events 71-73
LINQ to XML events, types 71
LINQ to XML events, working with 71
queries 60, 61, 62
query, building 60
query operators 59
Visual basic, embedded expressions 74
Visual basic, XML literals 73
XML, transforming 64
 XML as CSV file, writing 67-69
 XML as text file, writing 67-69

XmlReader 40
XSLT 41

Thank you for buying
LINQ Quickly

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

	Cover
	Table of Contents
	Preface
	Chapter 1: Overview
	LINQ Architecture
	Integration with SQL
	Integration with XML
	Support for C# 3.0 Language Features
	Anonymous Types
	Object Initializers
	Collection Initializers
	Partial Methods

	Implicitly Typed Local Variables
	Extensions
	Expressions
	Lambda Expressions
	Query Expressions
	Expression Trees

	Summary
	Untitled

	Chapter 2: LINQ to Objects
	Array of Integers
	Collection of Objects
	Reading from Strings
	Reading from Text Files
	Summary

	Chapter 3: LINQ to XML
	Features
	Classes and Hierarchy
	XElement Class
	XAttribute Class
	XDocument Class
	Other Classes

	LINQ to XML with Other XML Technologies
	LINQ with XmlReader
	LINQ with XSLT
	LINQ with MSXML
	Functional Construction

	XML Names
	Loading and Traversing XML
	Loading XML
	Traversing XML

	Data Manipulation
	Inserting or Adding Elements to XML
	Inserting or Adding XML Attributes
	Deleting XML
	Updating XML
	Deleting XML Attributes
	Updating XML Attributes

	Outputting and Streaming XML
	Streaming XML

	Querying XML
	Query Operators
	Queries
	Ancestors and Descendants
	XML Transformation
	Dictionaries
	Convert Dictionary to XML
	Create Dictionary from XML

	Writing XML as Text Files and CSV Files
	Reading from CSV Files
	LINQ to XML Events
	XML Literals and Embedded Expressions in Visual Basic
	Summary

	Chapter 4: LINQ to SQL
	Working with Databases Using DataContext
	Entity Classes
	Attributes
	Database Attribute
	Table Attribute
	Column Attribute
	Association Attribute (Foreign Keys)
	Relationships
	Function Attribute
	Parameter Attribute
	Inheritance Mapping Attribute

	Creating and Deleting Databases
	DataContext Methods
	Data Manipulation
	LINQ to SQL Queries
	Identifying Objects
	Queries with Multiple Entities
	Remote Queries and Local Queries
	Deferred Loading
	Immediate Loading
	Projections

	Constructing XML
	Joins
	Raw SQL Query
	Query Result
	Stored Procedures
	User-Defined Functions
	Class Generator Tool

	Transactions
	Handling Concurrency Conflicts

	Object Relational Designer (O/R Designer)
	Summary

	Chapter 5: LINQ over DataSet
	Loading Data into DataSets
	Querying Datasets
	Sequence Operator
	Querying Typed DataSets
	DataSet Query Operators
	CopyToDataTable
	LoadDataRow
	Intersect
	Union
	Except
	Field<T>
	SetField<T>

	Projection
	Join
	SequenceEqual
	Skip
	Distinct
	Summary

	Chapter 6: LINQ to XSD
	Un-typed XML
	Creating Typed XML using Visual Studio
	Object Construction
	Load Method
	Parse Method
	Save Method
	Clone Method
	Default Values

	Customization of XML Objects
	Mapping Time Customization
	Compile Time Customization
	Post Compile Customization

	Using LINQ to XSD at Command Line
	Summary

	Chapter 7: Standard Query Operators
	Restriction Operators
	Where
	OfType

	Projection Operators
	Select
	SelectMany

	Join Operators
	Join
	GroupJoin

	Concatenation Operator
	Concat

	Ordering Operators
	Set Operators
	Distinct
	Except
	Intersect
	Union

	Grouping Operators
	GroupBy
	ToLookup

	Conversion Operators
	AsEnumerable
	Cast
	OfType
	ToArray
	ToDictionary
	ToList
	ToLookup

	Equality Operators
	SequenceEqual

	Generation Operators
	Empty
	Range
	Repeat

	Quantifiers
	All
	Any
	Contains

	Aggregation Operators
	Average
	Count
	LongCount
	Min
	Max
	Sum
	Aggregate

	Partitioning Operators
	Take
	Skip
	TakeWhile
	SkipWhile
	TakeWhile

	Element Operators
	DefaultIfEmpty
	ElementAt
	ElementAtOrDefault
	First
	FirstOrDefault
	Last
	LastOrDefault
	Single
	SingleOrDefault

	List of Query Operators
	Query Operator Equivalent Expressions

	Summary

	Appendix A: Building an ASP.NET Application
	Appendix B: LINQ with Outlook
	Index

